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Opening materials

0.1 Preface

Once upon a time I went to McGill University to try to get into the Master’s
program in sound recording at the Faculty of Music. In order to accomplish
this task, students are required to do a “qualifying year” of introductory
courses (although it felt more like obstacle courses...) to see who really
wants to get in the program. Looking back, there is no question that I
learned more in that year than in any other single year of my life. In
particular, two memories stand out.

One was my professor – a guy named Peter Cook who now works at
the CBC in Toronto as a digital editor. Peter is one of those teachers who
doesn’t know everything, and doesn’t pretend to know everything – but if
you ask him a question about something he doesn’t understand, he’ll show
up at the next week’s class with a reading list where the answer to your
question can be found. That kind of enthusiasm in a teacher cannot be
replaced by any other quality. I definitely wouldn’t have gotten as much out
of that year without him. A good piece of advice that I recently read for
university students is that you don’t choose courses, you choose professors.

The second thing was a book by John Woram called the Sound Recording
Handbook (the 1989 edition). This book not only proved to be the most
amazing introduction to sound recording for a novice idiot like myself, but
it continued to be the most used book on my shelf for the following 10 years.
In fact, I was still using it as a primary reference when I was studying for
my doctoral comprehensives 10 years later. Regrettably, that book is no
longer in print – so if you can find a copy (remember – the 1989 edition...
no other...) buy (or steal) it and guard it with your life.

Since then, I have seen a lot of students go through various stages of be-
coming a recording engineer at McGill and in other places and I’ve lamented
the lack of a decently-priced but academically valuable textbook for these
people. There have been a couple of books that have hit the market, but

xvii
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they’re either too thin, too full of errors, too simplistic or too expensive. (I
won’t name any names here, but if you ask me in person, I’ll tell you...)

This is why I’m writing this book. From the beginning, I intended it to
be freely accessible to anyone that was interested enough to read it. I can’t
guarantee that it’s completely free of errors – so if you find any, please let
me know and I’ll make the appropriate corrections as soon as I can. The
tone of this book is pretty colloquial – that’s intentional – I’m trying to
make the concepts presented here as accessible as possible without reducing
the level of the content, so it can make a good introduction that covers a lot
of ground. I’ll admit that it doesn’t make a great reference because there
are too many analogies and stories in here – essentially too low a signal to
noise ratio to make a decent book for someone that already understands the
concepts.

Note that the book isn’t done yet – in fact, in keeping with everything
else you’ll find on the web, it will probably never be finished. You’ll find
many places where I’ve made notes to myself on what will be added where.
Also, there’s a couple of explanations in here that don’t make much sense –
even to me... so they’ll get fixed later. Finally, there are a lot of references
missing. These will be added in the next update – I promise...

If you think that I’ve left any important subjects out of the Table of
Contents, please let me know by email at geoff.martin@tonmeister.ca.
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0.2 Thanks

There are a lot of people to thank for helping me out with this project. I
have to start with a big thanks to Peter Cook for getting me started on the
right track in the first place. To Wieslaw Woszczyk for allowing me to teach
courses at McGill back when I was still just a novice idiot – the best way to
learn something is to have to teach it to someone else. To Alain Terriault,
Gilbert Soulodre and Michel Lavoie for answering my dumb questions about
electronics when I was just starting to get the hang of exactly what things
like a capacitor or an op amp do in a circuit. To Brian Sarvis and Kypros
Christodoulides who were patient enough to put up with my subsequent
dumb questions regarding what things like diodes and transistors do in a
circuit. To Jason Corey for putting up with me running down many a
wrong track looking for answers to some of the questions found in here.
To Mark Ballora for patiently answering questions about DSP and trying
(unsuccessfully) to get me to understand Shakespeare. Finally to Philippe
Depalle – once upon a time I was taking a course in DSP for dummies at
McGill and, about two-thirds of the way through the semester, Philippe
guest-taught for one class. In that class, I wound up taking more notes
than I had for all classes in the previous part of the semester combined.
Since then, Philippe came to be a full-time faculty at McGill and I was
lucky enough to have him as a thesis advisor. Basically, when I have any
questions about anything, Philippe is the person I ask.

I also have to thank a number of people who have proofread some of
the stuff you’ll find here and have offered assistance and corrections – either
with or without being asked. In alphabetical order, these folks are Bruce
Bartlett, Peter Cook, Goran Finnberg, John La Grou, George Massenburg,
Bert Noeth, Ray Rayburn, Eberhard Sengpiel and Greg Simmons.

Also on the list of thanks are people who have given permission to use
their materials. Thanks to Claudia Haase and Thomas Lischker at RTW
Radio-Technische (www.rtw.de) for their kind permission to use graphics
from their product line for the section on levels and meters. Also to George
Massenburg (www.massenburg.com) for permission to duplicate a chapter
from the GML manual on equalizers that I wrote for him.

There are also a large number of people who have emailed me, either to
ask questions about things that I didn’t explain well enough the first time,
or to make suggestions regarding additions to the book. I’ll list those people
in a later update of the text – but thanks to you if you’re in that group.

Finally, thanks to Jonathan Sheaffer and The Jordan Valley Academic
College (www.yarden.ac.il) for hosting the space to put this file for now.

http://www.rtw.de
http://www.massenburg.com
http://www.yarden.ac.il
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0.3 Autobiography

Just in case you’re wondering “Who does this guy think he is?” I’ll tell
you... This is the bio I usually send out when someone asks me for one. It’s
reasonably up-to-date.

Originally from St. John’s, Newfoundland, Geoff Martin completed his
B.Mus. in pipe organ at Memorial University of Newfoundland in 1990.
He is a graduate of McGill’s Masters program in Sound Recording and, in
2001, he completed his doctoral studies in which he developed a method
of simulating reflections from quadratic residue diffusers for multichannel
virtual acoustic environments.

Following completion of his doctorate, Geoff was a Faculty Lecturer for
McGill’s Music Technology area, where he taught courses in new media,
electronics, and electroacoustics. In addition, he was a member of the de-
velopment team for McGill’s new Centre for Interdisciplinary Research in
Music Media and Technology (CIRMMT). He taught electroacoustic music
composition and conducted the contemporary music ensemble at the Uni-
versity of Ottawa. He has also been a regular member of the visiting faculty
in the Music and Sound Department at the Banff Centre for the Arts. He is
presently a researcher in acoustics and perception at Bang and Olufsen a/s
in Denmark where he has worked since the Fall of 2002. He maintains an
active musical career as an organist, choral conductor and composer.

Geoff has been a member of the Audio Engineering Society since 1990
and has served on the executive for the Montreal Student Chapter for two
years. He was the Papers Chair for the 24th International Conference of the
Audio Engineering Society titled “Multichannel Audio: The New Reality”
held at The Banff Centre in Alberta, Canada. He is presently the chair of
the AES Technical Committee on Microphones and Applications.

Figure 1: What I used to look like once upon a time.

http://www.aes.org


0. Opening materials xxi

0.4 Recommended Reading

There are a couple of books that I would highly recommend, either because
they’re full of great explanations of the concepts that you’ll need to know,
or because they’re great reference books. Some of these aren’t in print any
more

0.4.1 General Information

Ballou, G., ed. (1987) Handbook for Sound Engineers: The New Audio
Cyclopedia, Howard W. Sams & Company, Indianapolis.

Rane’s online dictionary of audio terms at www.rane.com

0.4.2 Sound Recording

Woram, John M. (1989) Sound Recording Handbook, Howard W. Sams &
Company, Indianapolis. (This is the only edition of this book that I can
recommend. I don’t know the previous edition, and the subsequent one
wasn’t remotely as good.)

Eargle, John (1986) Handbook of Recording Engineering, Van Nostrand
Reinhold, New York.

0.4.3 Analog Electronics

Jung, Walter G., IC Op-Amp Cookbook, Prentice Hall Inc.
Gayakwad, Ramakant A., (1983) Op-amps and Linear Integrated Circuit

Technology, Prentice-Hall Inc.

0.4.4 Psychoacoustics

Moore, B. C. J. (1997) An Introduction to the Psychology of Hearing, Aca-
demic Press, San Diego, 4th Edition.

Blauert, J. (1997) Spatial Hearing: The Psychophysics of Human Sound
Localization, MIT Press, Cambridge, Revised Edition.

Bregman, A. S. (1990) Auditory Scene Analysis : The Perceptual Orga-
nization of Sound, MIT Press. Cambridge.

Zwicker, E., & Fastl, H. (1999) Psychoacoustics: Facts and Models,
Springer, Berlin.

http://www.rane.com
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0.4.5 Acoustics

Morfey, C. L. (2001). Dictionary of Acoustics, Academic Press, San Diego.
Kinsler L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1982)

Fundamentals of Acoustics, John Wiley & Sons, New York, 3rd edition.
Hall, D. E. (1980) Musical Acoustics: An Introduction, Wadsworth Pub-

lishing, Belmont.
Kutruff, K. H. (1991) Room Acoustics, Elsevier Science Publishers, Es-

sex.

0.4.6 Digital Audio and DSP

Roads, C., ed. (1996) The Computer Music Tutorial, MIT Press, Cam-
bridge.

Strawn, J., editor (1985). Digital Audio Signal Processing: An Anthol-
ogy, William Kaufmann, Inc., Los Altos.

Smith, Steven W. The Scientist and Engineers Guide to Digital Signal
Processing (www.dspguide.com)

Steiglitz, K. (1996) A DSP Primer : With Applications to Digital Audio
and Computer Music, Addison-Wesley, Menlo Park.

Zlzer, U. (1997) Digital Audio Signal Processing, John Wiley & Sons,
Chichester.

Anything written by Julius Smith

0.4.7 Electroacoustic Measurements

Mezler, Bob (1993) Audio Measurement Handbook, Audio Precision, Beaver-
ton (available at a very reasonable price from www.ap.com

Anything written by Julian Dunn

http://www.dspguide.com
http://www.
http://www.ap.com
http://www.nanophon.com
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0.5 Why is this book free?

My friends ask me why in the hell I spend so much time writing a book
that I don’t make any money on. There are lots of reasons starting with the
three biggies:

1. If I did try to sell this through a publisher, I sure as hell wouldn’t
make enough money to make it worth my while. This thing has taken
many hours over many years to write.

2. By the time the thing actually got out on the market, I’d be long gone
and everything here would be obsolete. It takes a long long time to
get something published... and

3. It’s really difficult to do regular updates on a hard copy of a book. You
probably wouldn’t want me to be dropping by your house penciling in
corrections and additions in a book that you spent a lot of cash on.
So, it’s easier to do it this way.

I’ve recently been introduced to the concept of “charityware” which I’m
using as the model for this book. So, if you use it, and you think that it’s
worth some cash, please donate whatever you would have spent on it in a
bookstore to your local cancer research foundation. I’ve put together a small
list of suggestions below. Any amount will be appreciated. Alternatively,
you could just send me a postcard from wherever you live. My address is
Geoff Martin, Grønnegade 17, DK-7830 Vinderup, Denmark

I might try and sell the next one. For this one, you have my permission
to use, copy and distribute this book as long as you obey the following
paragraph:

Copyright Geoff Martin 1999-2003. Users are authorized to copy the
information in this document for their personal research or educational use
for non-profit activities provided this paragraph is included. There is no
limit on the number of copies that can be made. The material cannot be
duplicated or used in printed or electronic form for a commercial purpose
unless appropriate bibliographic references are used. - www.tonmeister.ca
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Chapter 1

Introductory Materials

1.1 Geometry

It may initially seem that a section explaining geometry is a very strange
place to start a book on sound recording, but as we’ll see later, it’s actually
the best place to start. In order to understand many of the concepts in
the chapters on acoustics, electronics, digital signal processing and electroa-
coustics, you’ll need to have a very firm and intuitive grasp of a couple of
simple geometrical concepts. In particular, these two conceptes are the right
triangle and the concept of slope.

1.1.1 Right Triangles

I’ll assume at this point that you know what a triangle is. If you do not
understand what a triangle is, then I would recommend backing up a bit
from this textbook and reading other tomes such as Trevor Draws a Triangle
and the immortal classic, Baby’s First Book of Euclidian Geometry. (Okay,
I made those titles up... let’s move on, shall we?)

Once upon a time, a Greek by the name of Pythagoreas had a minor
obsession with triangles. (He also believed in reincarnation and thought that
if you were really bad, you might come back as a bean, so the Pythagoreans
(his followers) didn’t eat meat or beans... You can look it up if you don’t
believe me.) Interestingly, Pythagoreas, like many other Greeks at the time,
recognized the direct link between mathematics and musical acoustics, so
you’ll see his name popping up all over the place as we go through this book.

Anyways, back to triangles. The first thing that we have to define is
something called a right triangle. This is just a regular old everyday triangle
with one specific characteristic. One of its angles is a right angle meaning

1
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that it’s 90◦ as is shown in Figure 1.1. One other new word to learn. The
side opposite the right angle (in Figure 1.1, that would be side a) is called
the hypotenuse of the triangle.

a
b

c

Figure 1.1: A right trangle with sides of lengths a, b and c. Note that side a is called the hypotenuse
of the triangle.

One of the things Pythagoras discovered was that if you take a right
trangle and make a square from each of its sides as is shown in Figure 1.2,
then the sum of the areas of the two smaller squares is equal to the area of
the big square.

A

B

C

Figure 1.2: Three squares of areas A, B and C created by making squares out of the sides of a
right trangle of arbitrary dimensions. A = B + C

So, looking at Figure 1.2, then we can say that A = B + C. We also
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should know that the area of a square is equal to the square of the length
of one of its sides. Looking at Figures 1.1 and 1.2 this means that A = a2,
B = b2, and C = c2.

Therefore, we can put this information together to arrive at a standard
equation for right triangles known as the Pythagorean Theorem, shown in
Equation 1.2.

a2 = b2 + c2 (1.1)

and therefore

a =
√

b2 + c2 (1.2)

This equation is probably the single most important key to understand-
ing the concepts presented in this book, so you’d better remember it.

1.1.2 Slope

Let’s go downhill skiing. One of the big questions when you’re a beginner
downhill skiier is “how steep is the hill?” Well, there is a mathematical way
to calculate the answer to this question. Essentially, another way to ask the
same question is “how many metres do I drop for every metre that I ski
forward?” The more you drop over a given distance, the steeper the slope
of the hill.

So, what we’re talking about when we discuss the slope of the hill is how
much it rises (or drops) for a given run. Mathematically, the slope is written
as a ratio of these two values as is shown in Equation 1.3.

slope =
rise

run
(1.3)

but if we wanted to be a little more technical about this, then we would
talk about the ratio of the difference in the y-value (the rise) for a given
difference in the x-value (the run), so we’d write it like this:

slope =
∆y

∆x
(1.4)

Where ∆ is a symbol (it’s the Greek capital letter delta) commonly used
to indicate a difference or a change.

Let’s just think about this a little more for a couple of minutes and
consider some different slopes.
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When there is no rise or drop for a change in horizontal distance, (like
sailing on the ocean with no waves) then the value of ∆y is 0, so the slope
is 0.

When you’re climbing a sheer rock face that drops straight down, then
the value of ∆x is 0 for a large change in y therefore the slope is ∞.

If the change in x and y are both positive (so, you are going forwards
and up a the same time) then the slope is positive. In other words, the line
goes up from left to right on a graph.

If the change in y is negative while the change in x is positive, then the
slope is negative. In other words, you’re going downhill forwards, or you’re
looking at a graph of a line that goes downwards from left to right.

If you look at a real textbook on geometry then you’ll see a slightly
different equation for slope that looks like Equation 1.5, but we won’t bother
with this one. If you compare it to Equation 1.4, then you’ll see that, apart
from the k they’re identical, and that the k is just a sort of altitude reading.

y = mx + k (1.5)

where m is the slope.
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1.2 Exponents

An exponent is just a lazy way to write down that you want to multiply a
number by itself.

If I say 102, then this is just a short notation for “10 multiplied by itself
2 times” – therefore, it’s 10 ∗ 10 = 100. For example, 34 = 3 ∗ 3 ∗ 3 ∗ 3 = 81.

Sometime’s you’ll see a negative number as the exponent. This simply
means that you have to include a little division in your calculation. When-
ever you see a negative exponent, you just have to divide 1 by the same
thing without the negative sign. For example, 10−2 = 1

102
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1.3 Logarithms

Once upon a time you learned to do multiplication, after which someone
explained that you can use division to do the reverse. For example:

if

A = B ∗ C (1.6)

then

A

B
= C (1.7)

and

A

C
= B (1.8)

Logarithms sort of work in the same way, except that they are the back-
wards version of an exponent. (Just as division is the backwards version of
multiplication.) Logarithms (or logs) work like this:

If 102 = 100 then log10 100 = 2
Actually, it’s:
If AB = C then logA C = B

Now we have to go through some properties of logarithms.
log10 10 = 1 or log10 101 = 1
log10 100 = 2 or log10 102 = 2
log10 1000 = 3 or log10 103 = 3
This should come as no great surprise – you can check them on your

calculator if you don’t believe me. Now, let’s play with these three equations.
log10 1000 = 3
log10 103 = 3
3 ∗ log10 10 = 3
Therefore:
logC AB = B ∗ logC A

1.3.1 Warning

I once learned that you should never assume, because when you assume you
make an ass out of you and me... (get it? ass—u—me... okay... dumb joke).
One small problem with logarithms is the way they’re written. People usu-
ally don’t write the base of the log so you’ll see things like log(3) written
which usually means log10 3 – if the base isn’t written, it’s assumed to be 10.



1. Introductory Materials 7

This also holds true on most calculators. Punch in 100 and hit LOG and
see if you get 2 as an answer – you probably will. Unfortunately, this as-
sumption is not true if you’re using a computer to calculate your logarithms.
For example, if you’re using MATLAB and you type log(100) and hit the
RETURN button, you’ll get the answer 4.6052. This is because MATLAB
assumes that you mean base e (a number close to 2.7182) instead of base 10.
So, if you’re using MATLAB, you’ll have to type in log10(100) to indicate
that the logarithm is in base 10. If you’re in Mathematica, you’ll have to
use Log[10, 100] to mean the same thing.

Note that many textbooks write log and mean log10 just like your cal-
culator. When the books want you to use loge like your computer they’ll
write “ln” (pronounced “lawn”) meaning the natural logarithm.

The moral of the story is: BEWARE! Verify that you know the base of
the logarithm before you get too many wrong answers and have to do it all
again.
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1.4 Trigonometric Functions

I’ve got an idea for a great invention. I’m going to get a flat piece of wood
and cut it out in the shape of a circle. In the centre of the circle, I’m going
to drill a hole and stick a dowel of wood in there. I think I’m going to call
my new invention a wheel.

Okay, okay, so I ran down to the patent office and found out that the
wheel has already been invented... (Apparently, Bill Gates just bought the
patent rights from Michael Jackson last year...) But, since it’s such a great
idea let’s look at one anyway. Let’s drill another hole out on the edge of the
wheel and stick in a handle so that it looks like the contraption in Figure
1.3. If I turn the wheel, the handle goes around in circles.

Figure 1.3: Wheel rotating counterclockwise when viewed from the side of the handle that’s sticking
out on the right.

Now let’s think of an animation of the rotating wheel. In addition, we’ll
look at the height of the handle relative to the centre of the wheel. As the
wheel rotates, the handle will obviously go up and down, but it will follow
a specific pattern over time. If that height is graphed in time as the wheel
rotates, we get a nice wave as is shown in Figure 1.4.

That nice wave tells us a couple of things about the wheel:
Firstly, if we assume that the handle is right on the edge of the wheel, it

tells us the diameter of the wheel itself. The total height of the wave from
the positive peak to negative trough is a measurement of the total vertical
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Figure 1.4: A record of the height of the handle over time producing a wave that appears on the
right of the wheel.

travel of the handle, equal to the diameter. The maximum displacement
from 0 is equal to the radius of the wheel.

Secondly, if we consider that the wave is a plot of vertical displacement
over time, then we can see the amount of time it took for the handle to make
a full rotation. Using this amount of time, we can determine how frequently
the wheel is rotating. If it takes 0.5 seconds to complete a rotation (or for
the wave to get back to where it started half a second ago) then the wheel
must be making two complete rotations per second.

Thirdly, if the wave is a plot of the vertical displacement vs. time,
then the slope of the wave is proportional to the vertical speed of the han-
dle. When the slope is 0 the handle is stopped. (Remember that slope =
rise/run, therefore the slope is 0 when the “rise” or the change in vertical
displacement is 0 – this happens at the peak and trough because the handle
is finished going in one direction and is instantaneously stopped in order to
start heading in the opposite direction.) Note that the handle isn’t really
stopped – it’s still turning around the wheel – but for that moment in time,
it’s not moving in the vertical plane.

Finally, if we think of the wave as being a plot of the vertical displacement
vs. the angular rotation, then we can see the relationship between these
two as is shown in Figure 1.5. In this case, the horizontal (X) axis of the
waveform is the angular rotation of the wheel and the vertical height of the
waveform (the Y-value) is the vertical displacement of the handle.

This wave that we’re looking at is typically called a sine wave – the word
sine coming from the same root as words like “sinuous” and “sinus” (as in
“sinus cavity”) – from the Latin word “sinus” meaning “a bay”. This specific
waveshape describes a bunch of things in the universe – take, for example,
a weight suspended on a spring or a piece of elastic. If the weight is pulled
down, then it’ll bob up and down, theoretically forever. If you graphed the
vertical displacement of the weight over time, you’d get a graph exactly like
the one we’ve created above – it’s a sine wave.

Note that most physics textbooks call this behaviour simple harmonic



1. Introductory Materials 10

Figure 1.5: Graphs showing the relationship between the angle of rotation of the wheel and the
waveform’s X-axis.
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motion.
There’s one important thing that the wave isn’t telling us – the direction

of rotation of the wheel. If the wheel were turning clockwise instead of
counterclockwise, then the wave would look exactly the same as is shown in
Figure 1.6.
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Figure 1.6: Two wheels rotating at the same speed in opposite directions resulting in the same
waveform.

So, how do we get this piece of information? Well, as it stands now,
we’re just getting the height information of the handle. That’s the same as
if we were sitting to the side of the wheel, looking at its edge, watching the
handle bob up and down, but not knowing anything about it going from
side to side. In order to get this information, we’ll have to look at the wheel
along its edge from below. This will result in two waves – the sine wave that
we saw above, and a second wave that shows the horizontal displacement of
the handle over time as is shown in Figure 1.7.

As can be seen in this diagram, if the wheel were turning in the oppo-
site direction as in the example in Figure 1.6, then although the vertical
displacement would be the same, the horizontal displacement would be op-
posite, and we’d know right away that the wheel was tuning in the opposite
direction.

This second waveform is called a cosine wave (because it’s the compliment
of the sine wave). Notice how, whenever the sine wave is at a maximum or
a minimum, the cosine wave is at 0 – in the middle of its movement. The
opposite is also true – whenever the cosine is at a maximum or a minimum,
the sine wave is at 0. The four points that we talked about earlier (regarding
what the sine wave tells us) are also true for the cosine – we know the diam-
eter of the wheel, the speed of its rotation, and the horizontal (not vertical)
displacement of the handle at a given time or angle of rotation.
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Figure 1.7: Graphs showing the relationship between the angle of rotation of the wheel and the
vertical and horizontal displacements of the handle.

Keep in mind as well that if we only knew the cosine, we still wouldn’t
know the direction of rotation of the wheel – we need to know the simulta-
neous values of the sine and the cosine to know whether the wheel is going
clockwise or counterclockwise.

Now then, let’s assume for a moment that the circle has a radius of 1.
(1 centimeter, 1 foot... it doesn’t matter so long as we keep thinking in
the same units for the rest of this little chat.) If that’s the case then the
maximum value of the sine wave will be 1 and the minimum will be -1.
The same holds true for the cosine wave. Also, looking back at Figure 1.5,
we can see that the value of the sine is 1 when the angle of rotation (also
known as the phase angle) is 90◦. At the same time, the value of the cosine
is 0 (because there’s 0 horizontal displacement at 90◦). Using this, we can
complete Table 1.1:

In fact, if you get out your calculator and start looking for the Sine (“sin”
on a calculator) and the Cosine (“cos”) for every angle between 0 and 359◦

(no point in checking 360 because it’ll be the same as 0 – you’ve made a
full rototation at that point...) and plot each value, you’ll get a graph that
looks like Figure 1.8.

As can be seen in Figure 1.8, the sine and cosine intersect at 45◦ (with
a value of 0.707 or 1√

2
and at 215◦ (with a value of -0.707 or − 1√

2
. Also,

you can see from this graph that a cosine is essentially a sine wave, but 90◦
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Phase Vertical displacement Horizontal displacement
(degrees) (Sine) (Cosine)

0◦ 0 1
45◦ 0.707 0.707
90◦ 1 0
135◦ 0.707 -0.707
180◦ 0 -1
225◦ -0.707 -0.707
270◦ -1 0
315◦ -0.707 0.707

Table 1.1: Values of sine and cosine for various angles
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Figure 1.8: The relationship between Sine (blue) and Cosine (red) for angles from 0◦ to 359◦.
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earlier. That is to say that the value of a cosine at any angle is the same as
the value of the sine 90◦ later. These two things provide a small clue as to
another way of looking at this relationship.

Look at the first 90◦ of rotation of the handle. If we draw a line from the
centre of the wheel to the location of the handle at a given angle, and then
add lines showing the vertical and horizontal displacements as in Figure 1.7,
then we get a triangle like the one shown in Figure 1.9.

Figure 1.9: A right triangle within the rotating wheel. Notice that the value of the sine wave is the
green vertical leg of the triangle, the value of the cosine is the red horizontal leg of the triangle
and the diameter of the wheel (and therefore the peak values of both the sine and cosine) is the
hypotenuse.

Now, if the radius of the wheel (the hypotenuse of the triangle) is 1, then
the vertical line is the sine of the inside angle indicated with a red arrow.
Likewise, the horizontal leg of the triangle is the cosine of the angle.

Also, we know from Pythagoreas that the square of the hypotenuse of
a right triangle is equal to the sum of the squares of the other two sides
(remember a2 + b2 = c2 where c is the length of the hypotenuse). In other
words, in the case of our triangle above where the hypotenuse is equal to
1, then the sin of the angle squared + the cosine of the angle squared = 1
squared... This is a rule (shown below) that is true for any angle.

sin2 α + cos2 α = 1 (1.9)

where α is any angle.
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Since this is true, then when the angle is 45◦, then we know that the right
triangle is isoceles – meaning that the two legs other than the hypotenuse are
of equal length (take a look at the graph in Figure 1.8). Not only are they
the same length, but, their squares add up to 1. Remember that a2+b2 = c2

and that c2 = 1. Therefore, with a little bit of math, we can see that the
value of the sine and the cosine when the angle is 45◦ is 1√

2
because it’s the

square root of 1
2 and

√
1
2 =

√
1√
2

= 1√
2
.

1.4.1 Radians

Once upon a time, someone discovered that there is a relationship between
the radius of a circle and its circumference. It turned out that, no matter how
big or small the circle, the circumference was equal to the radius multiplied
by 2 and multiplied again by the number 3.141592645... That number was
given the name “pi” (written π) and people have been fascinated by it ever
since. In fact, the number does’t stop where I said it did – it keeps going
for at least a billion places without repeating itself... but 9 places after the
decimal is plenty for our purposes.

So, now we have a new little equation:

Circumference = 2 ∗ π ∗ r (1.10)

where r is the radius of the circle and π is 3.141592645...
Normally we measure angles in degrees where there are 360◦ in a full

circle, however, in order to measure this way, we need a protractor to tell us
where the degrees are. There’s another way to measure angles using only a
ruler and a piece of string...

Let’s go back to the circle above with a radius of 1. Since we have the
new equation, we know that the circumference is equal to 2 ∗ π ∗ r – but
r = 1, so the circumference is 2 ∗ π (say “two pi”). Now, we can measure
angles using the circumference – instead of saying that there are 360◦ in a
circle, we can say that there are 2π radians. We call them radians becase
they’re based on the radius. Since the circumference of the circle is 2πr
and there are 2π radians in the circle, then 1 radian is the angle where the
corresponding arc on the circle is equal to the length of the radius of the
same circle.

Using radians is just like using degrees – you just have to put your
calculator into a different mode. Look for a way of getting it into “RAD”
instead of “DEG” (RADians instead of DEGrees). Now, remember that
there are 2π radians in a circle which is the same as saying 360 degres.
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Therefore, 180◦ which is half of the circle is equal to π radians. 90◦ is π
2

radians and so on. You should be able to use these interchangeably in day
to day conversation.

1.4.2 Phase vs. Addition

If I take any two sinusoidal waves that have the same frequency, but they
have different amplitudes, and they’re offset in phase, and I add them, the
result will be a sinusoidal wave with the same frequency with another am-
plitude and phase. For example, take a look at Figure 1.10. The top plot
shows one period of a 1 kHz sinusoidal wave starting with a phase of 0 ra-
dians and a peak amplitude of 0.5. The second plot shows one period of a 1
kHz a sinusoidal wave starting with a phase of π

4 radians (45◦) and a peak
amplitude of 0.8. If these two waves are added together, the result, shown
on the bottom, is one period of a 1 kHz sinusoidal wave with a different
peak amplitude and starting phase. The important thing that I’m trying to
get across here is that the frequency and wave shape stay the same – only
the amplitude and phase change.

0 50 100 150 200 250 300 350
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0 50 100 150 200 250 300 350
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1

Figure 1.10: Adding two sinusiods with the same frequency and different phases. The sum of the
top two waveforms is the bottom waveform.

So what? Well, most recording engineers talk about phase. They’ll say
things like “a sine wave, 135◦ late” which looks like the curve shown in
Figure 1.11.

If we wanted to be a little geeky about this, we could use the equation
below to say the same thing:
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Figure 1.11: A sine wave, starting at a phase of 135◦.

y(n) = A sin(n + φ) (1.11)

which means the value of y at a given value of n is equal to A multiplied
by the sine of the sum of the values n and φ. In other words, the amplitude
y at angle n equals the sine of the angle n added to a constant value φ and
the peak value will be A. In the above example, y(n) would be equal to
1 ∗ sin(n + 135◦) where n can be any value.

Now, we have to be a little more geeky than that, even... We have to
talk about cosine waves instead of sine waves. We’ve already seen that these
are really the same thing, just 90◦ apart, so we can already figure out that
a sine wave that’s starting 135◦ late is the same as a cosine wave that’s
starting 45◦ late.

Now that we’ve made that transition, there is another way to describe
a wave. If we scale the sine and cosine components correctly and add them
together, the result will be a sinusoidal wave at any phase and amplitude
we want. Take a look at the equation below:

A cos(n + φ) = a cos(n)− b sin(n) (1.12)

where A is the amplitude
φ is the phase angle
a = A cos(φ)
b = A sin(φ)
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What does this mean? Well, all it means is that we can now specify
values for a and b and, using this equation, wind up with a sinusoidal
waveform of any amplitude and phase that we want. Essentially, we just
have an alternate way of describing the waveform.

For example, where you used to say “A cosine wave with a peak ampli-
tude of 0.93 and π

3 radians (60◦) late” you can now say:
A = 0.93
φ = π

3
a = 0.93 ∗ cos(π

3 ) = 0.93 ∗ 0.5 = 0.4650
b = 0.93 ∗ sin(π

3 ) = 0.93 ∗ 0.8660 = 0.8054
Therefore

A cos(n + 27◦) = 0.4650 cos(n)− 0.8054 sin(n) (1.13)

So we could say that it’s the combination of an upside-down sine wave
with a peak amplitude of 0.8054 and a cosine wave with a peak amplitude
of 0.4650. We’ll see in Chapter 1.5 how to write this a little more easily.

Remember that, if you’re used to thinking in terms of a peak amplitude
and a fixed phase offset, then this might seem less intuitive. However, if
your job is to build a synthesizer that makes a sinusoidal wave with a given
phase offset, you’d much rather just add an appropriately scaled cosine and
sine rather than having to build a delay.
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1.5 Complex Numbers

1.5.1 Whole Numbers and Integers

Once upon a time you learned how to count. You were probably taught to
count your fingers... 1, 2, 3, 4 and so on. Although no one told you so at
the time, you were being taught a set of numbers called whole numbers.

Sometime after that, you were probably taught that there’s one number
that gets tacked on before the ones you already knew – the number 0.

A little later, sometime after you learned about money and the fact that
we don’t have enough, you were taught negative numbers... -1, -2, -3 and
so on. These are the numbers that are less than 0.

That collection of numbers is called integers – all “countable” numbers
that are negative, zero and positive. So the collection is typically written

... -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 ...

1.5.2 Rational Numbers

Eventually, after you learned about counting and numbers, you were taught
how to divide. When someone said “20 divided by 5 equals 4” then they
meant “if you have 20 sticks, then you could put those sticks in 4 piles with 5
sticks in each pile.” Eventually, you learned that the division of one number
by another can be written as a fraction like 3

1 or 20
5 or 5

4 or 1
3 .

If you do that division the old-fashioned way, you get numbers like this:
3/1 = 3.000000000 etc...
20/5 = 4.00000000 etc...
5/4 = 1.200000000 etc...
1/3 = 0.333333333 etc...
The thing that I’m trying to point out here is that eventually, these

numbers start repeating sometime after the decimal point. These numbers
are called rational numbers.

1.5.3 Irrational Numbers

What happens if you have a number that doesn’t start repeating, no matter
how many numbers you have? Take a number like the square root of 2 for
example. This is a number that, when you multiply it by itself, results in the
number 2. This number is approximately 1.4142. But, if we multiply 1.4142
by 1.4142, we get 1.99996164 – so 1.4142 isn’t exactly the square root of 2.
In fact, if we started calculating the exact square root of 2, we’d result in a
number that keeps going forever after the decimal place and never repeats.
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Numbers like this (π is another one...) that never repeat after the decimal
are called irrational numbers

1.5.4 Real Numbers

All of these number types – rational numbers (which includes integers) and
irrational numbers fall under the general heading of real numbers. The fact
that these are called “real” implies immediately that there is a classification
of numbers that are “unreal” – in fact this is the case, but we call them
“imaginary” instead.

1.5.5 Imaginary Numbers

Let’s think about the idea of a square root. The square root of a number
is another number which, when multiplied by itself is the first number. For
example, 3 is the square root of 9 because 3 ∗ 3 = 9. Let’s consider this
a little further: a positive number muliplied by itself is a positive number
(for example, 4 ∗ 4 = 16... 4 is positive and 16 is also positive). A negative
number multiplied by itself is also positive (i.e. −4 ∗ −4 = 16).

Now, in the first case, the square root of 16 is 4 because 4∗4 = 16. (Some
people would be really picky and they’ll tell you that 16 has two roots: 4 and
-4. Those people are slightly geeky, but technically correct.) There’s just
one small snag – what if you were asked for the square root of a negative
number? There is no such thing as a number which, when multiplied by
itself results in a negative number. So asking for the square root of -16
doesn’t make sense. In fact, if you try to do this on your calculator, it’ll
probably tell you that it gets an error instead of producing an answer.

Mathematicians as a general rule don’t like loose ends – they aren’t the
type of people who leave things lying around... and having something as
simple as the square root of a negative number lying around unanswered
got on their nerves so they had a bunch of committee meetings and decided
to do something about it. Their answer was to invent a new number called
i (although some people – namely physicists and engineers – call it j just to
screw everyone up... we’ll stick with j for now, but we might change later...)

“What is j ?” I hear you cry. Well, j is the square root of -1. Of course,
there is no number that is the square root of -1, but since that answer is
inadequate, j will do the trick.

“Why is it called j ?” I hear you cry. That one is simple – j stands
for “imaginary” because the square root of -1 isn’t real, it’s an imaginary
number that someone just made up.
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Now, remember that j * j = -1. This is useful for any square root
of any negative number, you just calculate the square root of the number
pretending that it was positive, and then stick an j after it. So, since the
square root of 16, abbreviated

√
16 = 4 and

√
−1 = j, then

√
−16 = j4.

Let’s do a couple:

√
−9 = j3 (1.14)

√
−4 = j2 (1.15)

Another way to think of this is
√
−a =

√
−1 ∗ a =

√
−1 ∗

√
a = j

√
a so:

√
−9 =

√
−1 ∗

√
9 = j ∗

√
9 = j3 (1.16)

Of course, this also means that

j3 ∗ j3 = (3 ∗ 3) ∗ (j ∗ j) = −1 ∗ 9 = −9 (1.17)

1.5.6 Complex numbers

Now that we have real and imaginary numbers, we can combine them to
create a complex number. Remember that you can’t just mix real numbers
with imaginary ones – you keep them separate most of the time, so you see
numbers like

3 + j2
This is an example of a complex number that contains a real component

(the 3) and an imaginary component (the j2). In many cases, these numbers
are further abbreviated with a single Greek character, like α or β, so you’ll
see things like

α = 3 + j2
but for the purposes of what we’ll do in this book, I’m going to stick with

either writing the complex number the long way or I’ll use a bold character
so, instead, I’ll use

A = 3 + j2

1.5.7 Complex Math Part 1 – Addition

Let’s say that you have to add complex numbers. In this case, you have
to keep the real and imaginary components separate, but you just add the
separate components separately. For example:
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(5 + j3) + (2 + j4) (1.18)

(5 + 2) + (j3 + j4) (1.19)

(5 + 2) + j(3 + 4) (1.20)

7 + j7 (1.21)

If you’d like the short-cut rule, it’s

(a + jb) + (c + jd) = (a + c) + j(b + d) (1.22)

1.5.8 Complex Math Part 2 – Multiplication

The multiplication of two complex numbers is similar to multiplying regular
old real numbers. For example:

(5 + j3) ∗ (2 + j4) (1.23)

((5 ∗ 2) + (j3 ∗ j4)) + ((5 ∗ j4) + (j3 ∗ 2)) (1.24)

((5 ∗ 2) + (j ∗ j ∗ 3 ∗ 4)) + (j(5 ∗ 4) + j(3 ∗ 2)) (1.25)

(10 + (12 ∗ −1)) + (j20 + j6) (1.26)

(10− 12) + j26 (1.27)

− 2 + j26 (1.28)

The shortened rule is:

(a + jb)(c + jd) = (ac− bd) + j(ad + bc) (1.29)

1.5.9 Complex Math Part 3 – Some Identity Rules

There are a couple of basic rules that we can get out of the way at this point
when it comes to complex numbers. These are similar to their corresponding
rules in normal mathematics.
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Commutative Laws

This law says that the order of the numbers doesn’t matter when you add
or multiply. For example, 3 + 5 is the same as 5 + 3, and 3 * 5 = 5 * 3. In
the case of complex math:

(a + jb) + (c + jd) = (c + jd) + (a + jb) (1.30)

and

(a + jb) ∗ (c + jd) = (c + jd) ∗ (a + jb) (1.31)

Associative Laws

This law says that, when you’re adding more than two numbers, it doesn’t
matter which two you do first. For example (2 + 3) + 5 = 2 + (3 + 5). The
same holds true for multiplication.

((a + jb) + (c + jd)) + (e + jf) = (a + jb) + ((c + jd) + (e + jf)) (1.32)

and

((a + jb) ∗ (c + jd)) ∗ (e + jf) = (a + jb) ∗ ((c + jd) ∗ (e + jf)) (1.33)

Distributive Laws

This law says that, when you’re multiplying a number by the sum of two
other numbers, it’s the same as adding the results of multiplying the numbers
one at a time. For example, 2 * (3 + 4) = (2 * 3) + (2 * 4). In the case of
complex math:

(a+jb)∗((c+jd)+(e+jf)) = ((a+jb)∗(c+jd))+((a+jb)∗(e+jf)) (1.34)

Identity Laws

These are laws that are pretty obvious, but sometimes they help out. The
corresponding laws in normal math are x + 0 = x and x * 1 = x.

(a + jb) + 0 = (a + jb) (1.35)
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and

(a + jb) ∗ 1 = (a + jb) (1.36)

1.5.10 Complex Math Part 4 – Inverse Rules

Additive Inverse

Every number has what is known as an additive inverse – a matching num-
ber which when added to its partner equals 0. For example, the additive
inverse of 2 is -2 because 2 + -2 = 0. This additive inverse can be found by
mulitplying the number by -1 so, in the case of complex numbers:

(a + jb) + (−a +−jb) = 0 (1.37)

Therefore, the additive inverse of (a + jb) is (-a - jb)

Multiplicative Inverse

Similarly to additive inverses, every number has a matching number, which,
when the two are multiplied, equals 1. The only exception to this is the
number 0, so, if x does not equal 0, then the multiplicative inverse of x is
1
x because x ∗ 1

x = ∗x
x = 1. Some books write this as x ∗ x−1 = 1 because

x−1 = 1
x . In the case of complex math, things are unfortunately a little

different because 1 divided by a complex number is... well... complex.
if (a + jb) is not equal to 0 then:

1
a + jb

=
a− jb

a2 + b2
(1.38)

We won’t worry too much about how that’s calculated, but we can es-
tablish that it’s true by doing the following:

(a + jb) ∗ a− jb

a2 + b2
(1.39)

(a + jb)(a− jb)
a2 + b2

(1.40)

a2 + b2

a2 + b2
(1.41)

1 (1.42)
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There’s one interesting thing that results from this rule. What if we
looked for the multiplicative inverse of j? In other words, what is 1

j ? Well,
let’s use the rule above and plug in (0 + 1j).

1
a + jb

=
a− jb

a2 + b2
(1.43)

1
0 + j1

=
0− j1
02 + 12

(1.44)

1
j

=
−1j

1
(1.45)

1
j

= −j (1.46)

Weird, but true.

Dividing complex numbers

The multiplicative inverse rule can be used if you’re trying to divide. For
example, a

b is the same as a ∗ 1
b therefore:

a + jb

c + jd
(1.47)

(a + jb) ∗ 1
c + jd

(1.48)

(a + jb)(c− jd)
c2 + d2

(1.49)

1.5.11 Complex Conjugates

Complex math has an extra relationship that doesn’t really have a corre-
sponding equivalent in normal math. This relationship is called a complex
conjugate but don’t worry – it’s not terribly complicated. The complex con-
jugate of a complex number is defined as the same number, but with the
polarity of the imaginary component inverted. So:

the complex conjugate of (a + bj ) is (a - bj )
A complex conjugate is usually abbreviated by drawing a line over the

number. So:

(a + jb) = (a− jb) (1.50)
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1.5.12 Absolute Value (also known as the Modulus)

The absolute value of a complex number is a little weirder than what we
usually think of as an absolute value. In order to understand this, we have
to look at complex numbers a little differently:

Remember that j ∗ j = −1. Also, remember that, if we have a cosine
wave and we delay it by 90◦ and then delay it by another 90◦, it’s the same
as inverting the polarity of the cosine, in other words, multiplying the cosine
by -1. So, we can think of the imaginary component of a complex number
as being a real number that’s been rotated by 90◦, we can picture it as is
shown in Figure 1.12.
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Figure 1.12: The relationship bewteen the real and imaginary components for the number (2+3j).
Notice that the X and Y axes have been labeled the “real” and “imaginary” axes.

Notice that Figure 1.12 actually winds up showing three things. It shows
the real component along the x-axis, the imaginary component along the
y-axis, and the absolute value or modulus of the complex number as the
hypotenuse of the triangle.

This should make the calculation for determining the modulus of the
complex number almost obvious. Since it’s the length of the hypotenuse of
the right triangle formed by the real and imaginary components, and since
we already know the Pythagorean theorem then the modulus of the complex
number (a + jb) is
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modulus =
√

a2 + b2 (1.51)

Given the values of the real and imaginary components, we can also
calculate the angle of the hypotenuse from horizontal using the equation

φ = arctan
imaginary

real
(1.52)

φ = arctan
b

a
(1.53)

This will come in handy later.

1.5.13 Complex notation or... Who cares?

This is probably the most important question for us. Imaginary numbers are
great for mathematicians who like wrapping up loose ends that are incurred
when a student asks “what’s the square root of -1?” but what use are
complex numbers for people in audio? Well, it turns out that they’re used
all the time, by the people doing analog electronics as well as the people
working on digital signal processing. We’ll get into how they apply to each
specific field in a little more detail once we know what we’re talking about,
but let’s do a little right now to get a taste.

In the chapter that introduces the trigonometric functions sine and co-
sine, we looked at how both functions are just one-dimensional representa-
tions of a two-dimensional rotation of a wheel. Essentially, the cosine is the
horizontal displacement of a point on the wheel as it rotates. The sine is the
vertical displacement of the same point at the same time. Also, if we know
one of these two components, we know

1. the diameter of the wheel and

2. how fast it’s rotating, but we need to know both components to know

3. the direction of rotation.

At any given moment in time, if we froze the wheel, we’d have some
contribution of these two components – a cosine component and a sine com-
ponent for a given angle of rotation. Since these two components are effec-
tively identical functions that are 90◦ apart (for example, a sine wave is the
same as a cosine that’s been delayed by 90◦) and since we’re thinking of the
real and imaginary components in a complex number as being 90◦ apart,
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Figure 1.13: A signal consisting only of a cosine wave

then we can use complex math to describe the contributions of the sine and
cosine components to a signal.

Huh? Let’s look at an example. If the signal we wanted to look at a
signal that consisted only of a cosine wave as is shown in Figure 1.13, then
we’d know that the signal had 100% cosine and 0% sine. So, if we express
the cosine component as the real component and the sine as the imaginary,
then what we have is:

1 + 0j (1.54)

If the signal was an upside-down cosine, then the complex notation for
it would be (−1 + 0j) because it would essentially be a cosine * -1 and no
sine component. Similarly, if the signal was a sine wave, it would be notated
as (0− 1j).

This last statement should raise at least one eyebrow... Why is the
complex notation for a positive sine wave (0 − 1j)? In other words, why is
there a negative sign there to represent a positive sine component? Well...
Actually there is no good explanation for this at this point in the book,
but it should become clear when we discuss a concept known as the Fourier
Transform in Section 8.2.

This is fine, but what if the signal looks like a sinusoidal wave that’s
been delayed a little like the one in Figure 1.14?

This signal was created by a specific combination of a sine and cosine
wave. In fact, it’s 70.7% sine and 70.7% cosine. (If you don’t know how
I arrived that those numbers, check out Equation 1.11.) How would you
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Figure 1.14: A signal consisting of a combination of attenuated cosine and sine waves with the
same frequency.

express this using complex notation? Well, you just look at the relative
contributions of the two components as before:

0.707− 0.707j (1.55)

It’s interesting to notice that, although Figure 1.14 is actually a com-
bination of a cosine and a sine with a specific ratio of amplitudes (in this
case, both at 0.707 of “normal”), the result looks like a sine wave that’s been
shifted in phase by −45◦ or −π

4 radians (or a cosine that’s been phase-shifted
by 45◦ or π

4 radians). In fact, this is the case – any phase-shifted sine wave
can be expressed as the combination of its sine and cosine components with
a specific amplitude relationship.

Therefore, any sinusoidal waveform with any phase can be simplified into
its two elemental components, the cosine (or real) and the sine (or imagi-
nary). Once the signal is broken into these two constituent components, it
cannot be further simplified.

If we look at the example at the end of Section 1.4, we calculated using
the equation

A cos(n + φ) = a cos(n)− b sin(n) (1.56)

that a cosine wave with a peak amplitude of 0.93 and a delay of π
3 radians

was equivalent to the combination of a cosine wave with a peak amplitude of
0.4650 and an upside-down sine wave with a peak amplitude of 0.8054. Since
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the cosine is the real component and the sine is the imaginary component,
this can be expressed using the complex number as follows:

0.93 cos(n +
π

3
) = 0.4650 cos(n)− 0.8054 sin(n) (1.57)

which is represented as
0.4650 + j 0.8054
which is a much simpler way of doing things. (Notice that I flipped

the “-” sign to a “+.”) For more information on this, check out The
Scientist and Engineer’s Guide to Digital Signal Processing available at
www.dspguide.com

x cos ( φ + θ )

peak amplitude of the waveform

phase delay (in degrees or radians)

present phase (constantly changing over time)

the signal has the shape of a cosine wave

Figure 1.15: A quick guide to what things mean when you see a cosine wave expressed as this type
of equation.

http://www.dspguide.com
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1.6 Euler’s Identity

So far, we’ve looked at logarithms with a base of 10. As we’ve seen, a
logarithm is just an exponent backwards, so if AB = C then logA C = B.
Therefore log10 100 = 2.

There is a beast in mathematics known as a natural logarithm which
is just like a regular old everyday logarithm except that the base is a very
specific number – it’s e. “What’s e?” I hear you cry... Well, just like π
is an irrational number close to 3.14159, e is an irrational number that is
pretty close to 2.718281828459045235360287 but it keeps on going after the
decimal place forever and ever. (If it didn’t, it wouldn’t be irrational, would
it?) How someone arrived at that number is pretty much inconsequential –
particular if we want to avoid using calculus, but if you’d like to calculate
it, and if you’ve got a lot of time on your hands, the math is:

e =
1
1!

+
1
2!

+
1
3!

+
1
4!

+ ... (1.58)

(If you’re not familiar with the mathematical expression “!” you don’t
have to panic! It’s short for factorial and it means that you multiply all
the whole numbers up to and including the number. For example, 5! =
1 ∗ 2 ∗ 3 ∗ 4 ∗ 5.)

How is this e useful to us? Well, there are a number of reasons, but one
in particular. It turns out that if we raise e to an exponent x, we get the
following.

ex =
x1

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ ... (1.59)

Unfortunately, this isn’t really useful to us. However, if we raise e to an
exponent that is an imaginary number, something different happens.

ejθ = cos(θ) + j sin(θ) (1.60)

This is known as Euler’s identity or Euler’s formula.
Notice now that, by putting an i up there in the exponent, we have an

equation that links trigonometric functions to an algebraic function. This
identity, first proved by a man named Leonhard Euler , is really useful to us.

There’s just a couple of extra things to take note of:
Since cos(π) = −1 and sin(π) = 0 then:

ejπ = cos(π) + j sin(π) (1.61)
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ejπ = −1 + 0 (1.62)

therefore

ejπ + 1 = 0 (1.63)

1.6.1 Who cares?

Here’s where the beauty of all this math actually becomes apparent. What
we’ve essentially done is to make things look complicated in order to simplify
working with the equations.

We saw in the last two chapters how an arbitrary wave like a cosine with
a peak amplitude of 0.93 and π

3 radians late could be expressed in a number
of different ways. We can say 0.93 cos(n+ π

3 ) or 0.4650 cos(n)−0.8054 sin(n)
or we can represent it with the complex number 0.4650 + j0.8054. I argued
at the time that using these weird complex notations would make life sim-
pler. For example, it’s easier to add two complex numbers to get a third
complex number than it is to try and add two waves with different ampli-
tudes and delays. However, if you were the arguing type, you’d have pointed
out that multiplying two complex numbers really isn’t all that attractive a
proposition. This is where Euler becomes out friend.

Using Euler’s identity, we can convert the complex representation of our
waveform into a complex exponential notation as shown below

0.93 cos(n +
π

3
) = 0.4650 cos(n)− 0.8054 sin(n) (1.64)

Which is represented as

0.4650 + j0.8054 = 0.93ej π
3 (1.65)

There’s a really important thing to remember here. The two values
shown in Equation 1.65 are only representations of the values shown in
Equation 1.64. They are not the same thing mathematically.

In other words, if you calulated 0.93 cos(n + π
3 ) and 0.4650 cos(n) −

0.8054 sin(n), you’d get the same answer. If you calculated 0.4650+ j0.8054
and 0.93ej π

3 , you’d get the same answer. BUT the two answers that you
just got would not be the same. We just use the notation to make life a
little simpler.

The nice thing about this, and the thing to remember is the way that
the 0.93 and the π

3 on the left-hand side of Equation 1.64 correspond to the
same numbers on the right-hand side of Equation 1.65.
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Of course, now the question is “Why the hell do we go through all of
this hassle?” Well, the answer lies in the simplicity of dealing with complex
numbers represented as exponents, but I will leave it to other books to
explain this. A good place to start with this question is The Scientist and
Engineer’s Guide to Digital Signal Processing by Steven W. Smith and found
at www.dspguide.com.

x ej(φ + θ)

peak amplitude of the waveform phase delay (in degrees or radians)

present phase (constantly changing over time)

the signal has the shape of a cosine wave

Figure 1.16: A quick guide to what things mean when you see a cosine wave expressed in exponential
notation.

http://www.dspguide.com
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1.7 Binary, Decimal and Hexadecimal

1.7.1 Decimal (Base 10)

Let’s count. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ... Fun isn’t it? When we count
we’re using the words “one,” “two” and so on (or the symbols “1,” “2” and
so on) to represent a quantity of things. Two eyes, two ears, two teeth... The
word “two” or the symbol “2” is just used to denote how many of something
we have.

One of the great things about our numbering system is that we don’t need
a symbol for every quantity – we recycle. What I mean by this is, we have
individual symbols that we can write down which indicate the quantities
zero through to nine. Once we get past nine, however, we have to use two
symbols to denote the number ten – we write “one zero” but we mean “ten.”
This is very efficient for lots of reasons, not the least of which is the fact that,
if we had to have a different symbol for every number, our laptop computers
would have to be much bigger to accomodate the keyboard.

This raises a couple of issues:

1. why do we only have ten of those symbols?

2. how does the recycling system work?

We have ten symbols because most of us have ten fingers. When we
learned to count, we started by counting our fingers. In fact, another word
for “finger” is “digit” which is why we use the word digit for the symbols
that we use for counting – the digit “0” represents the quantity (or the
number) “zero.”

How does the system work? This won’t come as a surprise, but we’ll
go through it anyway... Let’s look at the number 7354. What does this
represent? Well, one way to write is to say “seven thousand, three hundred
and fifty-four.” In fact, this tells us right away how the system works. Each
digit represents a different “power” of ten... I’ll explain:

So, we can see that if we write a string of digits together, each of the
digits is multiplied by a power of ten where the placement of the digit in
question determines the exponent. The right-most digit multiplied by the
0th power of ten, the next digit to the left is multiplied by the 1st power of
ten, the next is multiplied by the 2nd power of ten and so on until you run
out of digits. Also, we can see why we’re taught phrases like “the thousand’s
place” – the digit 7 in the number above is multiplied by 1000 (103 because
of its location in the written number – it’s in the “thousand’s place”)
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7 3 5 4
Thousand’s place Hundred’s place Ten’s place One’s place

7 ∗ 10004+ 3 ∗ 100+ 5 ∗ 10+ 4 ∗ 1
7 ∗ 103+ 3 ∗ 102+ 5 ∗ 101+ 4 ∗ 100

= 7354

Table 1.2: An illustration of how the location of a digit within a number determines the power of
ten by which it’s multiplied.

This is a very efficient method of writing down a number because each
time you add an extra digit, you increase the number of possible numbers
you can represent by a factor of ten. For example, if I have three digits,
I can represent a total of one thousand different numbers (000 – 999). If
I add one more digit and make it a four-digit number, I can represent ten
thousand different numbers (0000 – 9999) – an increase by a factor of ten.

This particular property of the system makes some specific mathematical
functions very easy. If you want to multiply a number by ten, you just stick
a “0” on the right end of it. For example, 346 multiplied by ten is 3460.
By adding a zero, you shift all the digits to the left and the multiplication
is automatic. in fact, what you’re doin here is using the way you write the
number to do the multiplication for you – by shifting digits, you wind up
multiplying the digits by new powers of ten in your head when you read the
number aloud.

Similarly, if you don’t mind a little inaccuracy, you can divide by ten by
removing the right-most digit. This is a little less effective because it’s not
perfect – you are throwing some details away – but it’s pretty close. For
example, 346 divided by ten is pretty close to 34.

We typically call this system the decimal numbering system (beacuse
the root “dec” means “ten” – therefore words like “decimate” – to reduce in
number by a power of ten). There are those among us, however, who like our
lives to be a little more ordered – they use a different name for this system.
They call it base 10 – indicating that there are a total of ten different digits
at our disposal and that the location of the digits in a number correspond
to some power of 10.

1.7.2 Binary (Base 2)

Imagine if we all had only two fingers instead of ten. We would probably
have wound up with a different way of writing down numbers. We have ten
digits (0 – 9) because we have ten fingers. If we only had two fingers, then
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it’s reasonable to assume that we’d only have two digits – 0 and 1. This
means that we have to re-think the way we construct the recycling of digits
to make bigger numbers.

Let’s count using this new two-digit system...
000 (zero)
001 (one)
Now what? Well, it’s the same as in decimal, we increase our number to

two digits and keep going.
010 (two)
011 (three)
100 (four)
This time, because we only have two digits, we multiply the digits in

different locations by powers of two instead of powers of ten. So, for a big
number like 10011, we can follow the same procedure as we did for base 10.

1 0 0 1 1
Sixteen’s place Eight’s place Four’s place Two’s place One’s place

1 ∗24+ 0 ∗23+ 0 ∗22)+ 1 ∗21+ 1 ∗20

1 ∗ 16+ 0 ∗ 8+ 0 ∗ 4+ 1 ∗ 2+ 1 ∗ 1
16 + 0 + 0 + 2 + 1

= 19

Table 1.3: A breakdown of an abritrary binary number, converting it to a decimal number. Note
that binary and decimal are used simultaneously in this table: to distinguish the two, all binary
numbers are in italics.

So, the binary number 10011 represents the same quantity as the decimal
number 19. Remember, all we’ve done is to change the method by which
we’re writing down the same thing. “19” in base 10 and “10011” in base 2
both mean “nineteen.”

This would be a good time to point out that if we add an extra digit to
our binary number, we increase the number of quantities we can represent
by a factor of two. For example: if we have a three-digit binary number, we
can represent a total of eight different numbers (000 – 111 or zero to seven).
If we add an extra digit and make it a four-digit number we can represent
sixteen different quantities (0000 – 1111 or zero to fifteen).

There are a lot of reasons why this system is good. For example, let’s
say that you had to send a number to a friend using only a flashlight to
communicate. One smart way to do this would be to flash the light on and
off with a short “on” corresponding to a “0” and a long “on” corresponding



1. Introductory Materials 37

to a “1” – so the number nineteen would be “long – short – short – long –
long.” Of course another way would be to bang your flashlight on a table
nineteen times – or you could write the number “19” on the flashlight and
throw it to your friend...

In the world of digital audio we typically use slightly different names for
things in the binary world. For starters, we call the binary digits bits (get
it? binary digits). Also, we don’t call a binary number a “number” – we
call it a binary word . Therefore “1011010100101011” is a sixteen-bit binary
word.

Just like in the decimal system, there are a couple of quick math tasks
that can be accomplished by shifting the bits (programmers call this bit
shifting but be careful when you’re saying this out loud to use it in context,
thereby avoiding people getting confused and thinking that you’re talking
about dogs...)

If we take a binary word and bit shift it one place to the left (i.e. 111
becoming 1110) we are multiplying by two (in the previous example, 111 is
seven, 1110 is fourteen).

Similarly, if we bit shift to the right, removing the right-most bit, we are
dividing by two quickly, but frequently inaccurately. (i.e. 111 is seven, 11 is
3 – nearly half of seven) Note that, if it’s an even number (therefore ending
in a “0”) a bit shift to the right will be a perfect division by zero (i.e. 1110
is fourteen, 111 is seven – half of fourteen). So if we bit shift for division,
half of the time we’ll get the correct answer and the other half of the time
we’ll wind up ignoring a remainder of a half. (sorry... I couldn’t resist)

1.7.3 Hexadecimal (Base 16)

The advantage of binary is that we only need two digits (0 and 1) or two
“states” (on and off, short and long etc...) to represent the binary word.
The disadvantage of binary is that it takes so many bits to represent a big
number. For example, the fifteen-bit word 111111111111111 is the same as
the decimal number 32768. I only need five digits to express in decimal the
same number that takes me fifteen digits in binary. So, let’s invent a system
that has too much of a good thing: we’ll go the other way and pretend we
all have sixteen fingers.

Let’s count again: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ... now what? We can’t go
to “10” yet because we have six more fingers left... so we need some new
symbols to take care of the gap. We’ll use letters! A, B, C, D, E, F, 10, 11,
12, huh?

Remember, we’re assuming that we have sixteen digits to use, therefore
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there have to be sixteen individual symbols to represent the numbers zero
through to fifteen. Therefore, we can make the Table 1.4:

Number Decimal Hexadecimal Binary
zero 0 0 0000
one 1 1 0001
two 2 2 0010

three 3 3 0011
four 4 4 0100
five 5 5 0101
six 6 6 0110

seven 7 7 0111
eight 8 8 1000
nine 9 9 1001
ten 10 A 1010

eleven 11 B 1011
twelve 12 C 1100

thirteen 13 D 1101
fourteen 14 E 1110
fifteen 15 F 1111
sixteen 16 10 10000

Table 1.4: The numbers zero through to sixteen and the corresponding representations in decimal,
hexadecimal, and binary.

So, now we wind up with these strange numbers that include the letters A
through F. So we’ll see something like 3D4A. What number is this exactly?

If this seems a little confusing at this point, don’t panic. It does for
everyone. I think that the confusion with hexadecimal arises from the fact
that it’s so close to decimal – you can have the number 246 in decimal and
the number 246 in hexadecimal – but these are not the same number, so
you have to translate. (for example, the German word for “poison” is “Gift”
– so if you’re reading in German, this is not a word that you should think
in English. An English “gift” and a German “Gift” are different things...
hopefully...)

Of course, this raises the question “Why would we use such a confusing
system in the first place!?” The answer actually lies back in the binary
system. All of our computers and DSP and digital audio everything use the
binary system to fire numbers around. This is inescapable. The problem
is that those binary words are just so long to write down that, if you had
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3 D 4 A
4096’s place 256’s place 16’s place 1’s place

3∗163+ D∗162+ 4∗161+ A∗160

3∗4096+ D∗256+ 4∗16+ A∗1
3 ∗ 4096+ 13 ∗ 256+ 4 ∗ 16+ 10 ∗ 1
12288 + 3328 + 64 + 10

= 15690

Table 1.5: A breakdown of an abritrary hexadecimal number, converting it to a decimal number.
Note that hexadecimal and decimal are used simultaneously in this table: to distinguish the two,
all hexadecimal numbers are in italics.

to write them in a book, you’d waste a lot of paper. You could translate
the numbers into decimal, but there’s no correlation between binary and
decimal – it’s difficult to translate. However, check back to Table 3. Notice
that going from the number fifteen to the number sixteen results in the
hexadecimal number going from a 1-digit number to a 2-digit number. Also
notice that, at the same time, the binary word goes from 4 bits to 5. This is
where the magic lies. A single hexadecimal digit (0 – F) corresponds directly
to a four-bit binary word (0000 – 1111). Not only this, but if you have a
longer binary word, you can slice it up into four-bit sections and represent
each section with its corresponding hexadecimal digit. For example, take
the number 38069:

1001010010110101

Slice this number into 4-bit sections (start slicing from the right)

1001 0100 1011 0101

Now, look up the corresponding hexadecimal equivalents for each 4-bit
section using Table 1.4:

9 4 B 5

94B5

So, as can be seen from the example above, there is a direct relationship
between each 4-bit “slice” of the binary word and a corresponding hexadec-
imal number. If we were to try to convert the binary word into decimal, it
would be much more of a headache. Since this translation is so simple, and
because we use one quarter the number of digits, you’ll often see hexadeci-
mal used to denote numbers that are actually sent through the computer as
a binary word.
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1.7.4 Other Bases

This chapter only describes 3 different numbering systems, base 10, base 2
and base 16, but there are lots of others – even some that used to be used,
that aren’t anymore, but still have vestigages hidden in our language. “Four
score and seven years ago” means “4 * 20 + 7 years ago” or “87 years ago.”
This is a leftover from the days when time was measured in base 20. The
concept of a week is a form of base 7: 3 weeks is 3 * 7 = 21 days. 12 inches
in a foot (base 12), 14 pounds in a stone (base 14), 12 eggs in a dozen (base
12), 3 feet in a yard (base 3). We use these strange systems all the time
without even really knowing it.
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1.8 Intuitive Calculus

Warning! This chapter is not intended to teach you how to “do” calculus.
It’s just here to give you an intuitive feel for what’s being calculated when
you see a nasty-looking equation. If you want to learn calculus, this is
probably not going to help you at all...

Calculus can be thought of as math that can cope with the idea of infinity.
In normal, everyday math, we generally stick with finite numbers because
they’re easier to deal with. Whenever a problem starts to use infinity, we
just bail out and say something like “that’s undefined” or “you can’t do
that.” For example, let’s think about division for a moment. If you take
the equation y = 1

x , then you know that, the smaller x gets, the bigger
y becomes. The problem is that, as x approaches 0, y approaches infinity
which makes people nervous. Consequently, if x = 0, then we just back away
and say “you can’t divide by zero” and your calculator gives you a little
complaint like “ERROR.” Calculus lets us cope with this minor problem.

1.8.1 Function

When you have an equation, you are saying that something is equal to
something else. For example, look at Equation 1.66.

y = 2x (1.66)

This says that the value of y is calculated by getting a value for x and
multiplying that by 2 (I really hope that this is not coming as a surprise...).

A function is basically the busy side of an equation. Frequently, you
will see books talking about a function f(x) which just means that you do
something to x to come up with something else. For example, in Equation
1.66, the function f(x) (when you read this out loud, you say “f of x”) is
2x. Of course, this can be much more complicated, but it can still just be
thought of as a function - do some math using x and you’ll get your answer.

1.8.2 Limit

Let’s pretend that we’re standing in a concert hall with a very long reverb
time. If I clap my hands and create a sound, it starts dying away as soon
as I’ve stopped making the noise. Each second that goes by, the sound in
the concert hall gets closer and closer to no sound.

One interesting thing about this model is that, if it were true, the sound
pressure level would be reduced each second and, since half of something
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can never equal nothing, there will be sound in the room forever, always
getting quieter and quieter. The level of sound is always getting closer and
closer to 0, but it never actually gets there.

This is the idea behind a limit . In this particular example, the limit of
the sound pressure level in the decaying reverb is 0 – we never get to 0, but
we always get closer to it.

There are lots of things in nature that follow this idea of a limit. The
radioactive half-life of a material is one example. (The remaining principal
on my house loan feels like another example...)

We won’t do anything with limits directly, but we’ll use them below.
Just remember that a limit is a boundary that is never reached, but you can
always get closer to it.

Think about Equation 1.67.

y =
1
x

(1.67)

This is a pretty simple equation that says that y is inversely proportional
to x. Therefore, if x gets bigger, y gets smaller. For example, if we calculate
the value of y in this equation for a number of values of x, we’ll get a graph
that looks like Figure 1.17.
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Figure 1.17: A graph of Equation 1.67

As x gets bigger and bigger, y will get closer and closer to 0, but it will
never reach it. If x = ∞ then y = 0, but you don’t have an ∞ button on
your calculator. If x is less than ∞ but greater than 0, then y has to be a
number that is greater than 0 because 1 divided by something can never be
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nothing.
This is exactly the idea of a limit , the first concept to learn when delving

into the world of calculus. It’s the number that a function (like 1
x for exam-

ple) gets closer and closer to, but never reaches. In the case of the function
1
x , its limit is 0 as x approaches ∞.) For example, take a look at Equation
1.68.

z = lim
x→∞

1
x

(1.68)

Equation 1.68 says “z is equal to the number that the function 1
x ap-

proaches as x gets closer to ∞.” This does not mean that x will ever get to
∞, but that it will forever get closer to it.

In the example above, x is getting closer and closer to ∞ but this isn’t
always the case in a limit. For example, Equation 1.69 shows that you can
have a limit where a number is getting closer and closer to something other
than ∞.

lim
x→0

sin(x)
x

= 1 (1.69)

If x = 0, then we get a nasty number from f(x), but as x approaches 0,
then f(x) approaches 1 because sin(x) gets closer and closer to x as x gets
closer and closer to 0.

As I said in the introduction, calculus is just math than can cope with
infinity. In the case of limits, we’re talking about numbers that we get
infinitely close to, but never reach.

1.8.3 Derivation and Slope

Back in Chapter 1.1 we looked at how to find the slope of a straight line,
but what about if the line is a curve? Well, this gets us into a small problem
because, if the line is curved, the its slope is different in different places. For
example, take a look at the sinusoidal curve in Figure 1.18.

Our goal is to find the slope at the point marked on the plot where x = 2.
In other words, we’re looking for the slope of the tangent of the curve at
x = 2 as is shown in Figure 1.19.

We could estimate the slope at this point by drawing a line through two
points where x1 = 2 and x2 = 3 and then measuring the rise and run for
that line as is shown in Figure 1.20.
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Figure 1.18: A graph of y = sin(x) showing the point x = 2 where we want to find the slope of
the graph.
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Figure 1.19: A graph of y = sin(x) showing the tangent to the curve at the point x = 2. The slope
of the tangent is the slope of the curve at that point.
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Figure 1.20: A graph of y = sin(x) showing an estimate to the tangent to the curve at the point
x = 2 by drawing a line through the curve at x1 = 2 and x2 = 3.

As we can see in this example, the run for the line we’ve created is
1 (because it’s 3 − 2) and the rise is -0.768 (because it’s sin(3) − sin(2)).
Therefore the slope is -0.768.

This method of approximating will give us a slope that is pretty close
to the slope at the point we’re interested in, but how to we make a better
approximation? One way to do it is to reduce the distance between the
point we’re looking for and the points where we’re drawing the line. For
example, looking at Figure 1.21, we’ve changed the nearby points to x1 = 2
and x2 = 2.5, which gives us a line with a slope of -0.622. This is a little
closer to the real answer, but still not perfect.

As we get the points closer and closer together, the slope of the line gets
closer and closer to the right answer. When the two points are infinitely
close to x = 2 (therefore, they are at x1 = 2 and x2 = 2 because two points
that are infinitely close are in the same place) then the slope of the line is
the slope of the curve at that point.

What we’re doing here is using the idea of a limit – as the run of the
line (the horizontal distance between our two points) approaches the limit
of 0, then the slope of the line approaches the slope of the curve at the point
we’re looking at.

This is the idea behind something called the derivative of a function.
The curve that we’re looking at can be described by an equation where the
value of y is determined by some math that we do using the value of x. For
example, if the equation is
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Figure 1.21: A graph of y = sin(x) showing a better estimate to the tangent to the curve at the
point x = 2 by drawing a line through the curve at x1 = 2 and x2 = 2.5.

y = sin(x) (1.70)

then we get the curve seen above in Figure 1.18. In this particular case,
given a value of x, we can figure out the value of y. As a result we say that
y is a function of x or

y = f(x) (1.71)

So, the derivative of f(x) is just another equation that gives you the slope
of the curve at any value of x. In mathematical language, the derivative of
f(x) is written in one of two ways. This simplest is if we just we write f ′(x)
which means “the derivative (or the slope) of the function f(x)” (remember:
derivative is just a fancy word for slope).

If you’re dealing with an equation where y = f(x) as we’ve seen above in
this chapter, then you’re looking for the “derivative of y with respect to x.”
This is just a fancier way of saying “what’s the slope of f(x)?” We don’t
need to say “f of x” because it’s easier to say “y” but we need to say “with
respect to x” because the slope changes as x changes. Therefore there is a
relationship between the derivative of y and the value of x. If you want to
use mathematical language to write “derivative of y with respect to x,” you
write

dy

dx
(1.72)
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But, always remember, if y = f(x) then

dy

dx
= f ′(x) (1.73)

There is one important thing to remember when you see this symbol.
dy
dx is one thing that means “the derivative of y with respect to x.” It is
not something divided by something else. This is a stand-alone symbol that
doesn’t have anything to do with division.

Let’s look at a practical example. Any introductory calculus book will
tell you that the derivative of a sine function is a cosine. (We don’t need
to ask why at this point, but if you think back to the spinning wheel and
the horizontal and vertical components of its movement, then it might make
sense intuitively.) What does this mean? Well, that means that the slope
of a sine wave at some value of x is equal to the cosine of the same value of
x. This is written as is shown in Equation 1.74.

f ′(sin(x)) = cos(x) (1.74)

Just remember, if somebody walks up to you on the street and asks
“what’s the derivative of the curve at x = 2?” what they’re saying is “what’s
the slope of the curve at x = 2?”

If you want to calculate a derivative, then you can use the idea of a limit
to do it. Think back a bit to when we were trying to find the tangent of a
sine wave by plotting lines that crossed the sine wave at points closer and
closer to the point we were interested in. Mathematically, what we were
doing was finding the limit of the slope of the line, as the run between the
two points approached 0. This is described in Equation 1.75

f ′(x) = lim
h→0

f(x + h)− f(x)
h

(1.75)

Huh? What Equation 1.75 says is that we’re looking for the value that
the slope of the line drawn between two points separated in the x-axis by
the value h approaches as h approaches 0. For example, in Figure 1.20,
h = 1. In Figure 1.21, h = 0.5. Remember that h is just the “run” and
f(x + h) − f(x) is just the rise of the triangle shown in those plots. As
h approaches 0, the slope of the hypotenuse gets closer and closer to the
answer that we’re looking for.

Just to make things really miserable, I’ll let you know that you can have
beasts like the vicious double derivative written f ′′(x). This just means that
you’re looking for the slope of the slope of a function. So, we’ve already seen
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that the derivative of a sine function is a cosine function (or f ′(sin(x)) =
cos(x)), therefore the double derivative of a sine function is the derivative
of a cosine function (or f ′′(sin(x)) = f ′(cos(x))). It just so happens that
f ′(cos(x)) = −sin(x), therefore f ′′(sin(x)) = −sin(x).

1.8.4 Sigma - Σ

A Σ (the Greek capital letter Sigma) in an equation is just a lazy way of
writing “the sum of” whatever follows it. The stuff under and over it give
you an indication of when to start and when to stop adding. Let’s look at
a simple example shown in Equation 1.76...

y =
10∑

x=1

x (1.76)

Equation 1.76 says “y equals the sum of all of the values of x from x = 1
to x = 10. The Σ sign says “add up everything from...” the “x = 1” at the
bottom says where to start adding, the “10” on top says when to stop, and
the “x” after the Σ tells you what you’re adding. So:

10∑
x=1

x = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 (1.77)

This, of course, can get a little more complicated, as is shown in Equation
1.78 but if you don’t panic, it should be reasonably easy to figure out what
you’re adding.

5∑
x=1

sin(x) = sin(1) + sin(2) + sin(3) + sin(4) + sin(5) (1.78)

1.8.5 Delta - ∆

A ∆ (a Greek capital Delta) means “the change in...” or “the difference in.”
So, ∆x means “the change in x.” This is useful if you’re looking at a value
that’s changing like the speed of a car when you’re accelerating.

1.8.6 Integration and Area

If I asked you to calculate the area of a rectangle with the dimensions 2 cm
x 3 cm, you’d probably already know that you calculate this by multiplying
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the length by the width. Therefore 2 cm x 3 cm = 6 cm◦ or 6 square
centimeters.

If you were asked to calculate the area of a triangle, the math would be
a little bit more complicated, but not much more.

What happens when you have to find the area of a more complicated
shape that includes a curved side? That’s the problem we’re going to look
at in this section.

Let’s look at the graph of the function y = sin(x) from x = 0 to x = π
as is shown in Figure 1.22.
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Figure 1.22: y = sin(x) for 0 6 x 6 π

We’ve seen in the previous section how to express the equation for finding
the slope of this function, but what if we wanted to find the area under the
graph? How do we find this? Well, the way we found the slope was initially
to break the curve into shorter and shorter straight line components. We’ll
do basically the same thing here, but we’ll make rectangles by creating
simplified slices of the area under the curve.

For example, compare Figure 1.22 to Figure 1.23. What we’ve done in
the second one is to consider the sine wave as 10 discrete values, and draw
a rectangle for each. The width of each rectangle is equal to 1

n of the total
length of the curve where n is the number of rectangles. For example, in
Figure 1.23, there are 10 rectangles (so n = 10) in a total width of π (the
length of the curve on the x-axis) so each rectangle is π

10 wide. The height of
each rectangle is the value of the function (in our case, sin(x) for the series
of values of x, 0π

n , 1π
n , 2π

n , and so on up to nπ
n .

If we add the areas of these 10 rectangles together, we’ll get an approxi-
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Figure 1.23: y = sin(x) for 0 6 x 6 π divided into 10 rectangles

mation of the area under the curve. How do we express this mathematically?
This is shown in Equation ??.

A =
9∑

i=0

sin
(

i

10

)
π

10
(1.79)

What does this mess mean? Well, we already know that n is the number
of rectangles. The An on the left side of the equation means “the area
contained in n rectangles.” The right side of the equation says that we’re
going to add up the product of the sin of some changing number and π

10 ten
times (because the number under the

∑
is 1 and the number above is 10).

Therefore, Equation ?? written out the long way is shown in Equation
1.80

A = sin
(

0π

10

)
π

10
+sin

(
1π

10

)
π

10
+sin

(
2π

10

)
π

10
+ ...+sin

(
9π

10

)
π

10
(1.80)

Each component in this sum of ten components that are added together
is the product of the height (sin

(
iπ
10

)
) and width ( π

10) of each rectangle. (All
of those 10’s in there are there because we have divided the shape into 10
rectangles.) Therefore, each component is the area of a rectangle, which,
when all added together give an approximation of the area under the curve.

There is a general equation that describes the way we divided up the area
called the Riemann Sum. This is the general method of cutting a shape into
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Figure 1.24: y = sin(x) for 0 6 x 6 π divided into 20 rectangles
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Figure 1.25: y = sin(x) for 0 6 x 6 π divided into 50 rectangles



1. Introductory Materials 52

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

x (radians)

si
n(

x)

Figure 1.26: y = sin(x) for 0 6 x 6 π divided into 100 rectangles

a number of rectangles to find an approximation of its area. If you want to
learn about this, you’ll just have to look in a calculus textbook.

Using rectangular slices of the area under the curve gives you an approx-
imation of that area. The more rectangles you use, the better the approxi-
mation. As the number of rectangles approaches infinity, the approximation
approaches the actual area under the curve.

There is a notation that says the same thing as Equation ?? but with
an infinite number of rectangles. This is shown in Equation 1.81.∫ π

0
sin(x)dx (1.81)

What does this weird notation mean? The simplified version is that
you’re adding the areas of infinitely thin rectangles under the curve sin(x)
from x = 0 to x = π. The 0 and π are indicated below and above the

∫
sign. On the right side of the equation you’ll see a dx which means that’s
it’s the x that’s changing from 0 to π.

This equation is called an integral which is just a fancy word for “the
area under a function.” Essentially, just like “derivative” is another word
for “slope,” “integral” is another word for “area.”

The general form of an integral is shown in Equation 1.82.

A =
∫ b

a
f(x)dx (1.82)

Compare Equation 1.82 to Figure 1.27. What it’s saying is that the area
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A is equal to all of the vertical “slices” of the space under the curve f(x)
from a to b. Each of these vertical slices has a width of dx. Essentially, dx
has an infinitely small width (in other words, the width is 0) but there are
an infinite number of the slices, so the whole thing adds up to a number.

a b

y = f(x)

dx

x

y

A

Figure 1.27: A graphic representation of what is meant by each of the components in Equation
1.82

1.8.7 Suggested Reading List
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Chapter 2

Analog Electronics

2.1 Basic Electrical Concepts

2.1.1 Introduction

Everything, everywhere is made of molecules, which in turn are made of
atoms (Except in the case of the elements in which the molecules are atoms).
Atoms are made of two things, electrons and a nucleus. The nucleus is made
of protons and neutrons. Each of these three particles has a specific charge
or electrical capacity. Electrons have a negative charge, protons have a
positive charge, and neutrons have no charge. As a result, the electrons,
which orbit around the nucleus like planets around the sun, don’t go flying
off into the next atom because their negative charge attracts to the positive
charge of the protons. Just as gravity ensures that the planets keep orbiting
around the sun and don’t go flying off into space, charge keeps the electrons
orbiting the nucleus.

There is a slight difference between the orbits of the planets and the
orbits of the electrons. In the case of the solar system, every planet maintains
a unique orbit – each being a different distance from the sun, forming roughly
concentric ellipses from Mercury out to Pluto (or sometimes Neptune). In
an atom, the electrons group together into what are called valence shells. A
valence shell is much like an orbit that is shared by a number of electrons.
Different valence shells have different numbers of electrons which all add up
to the total number in the atom. Different atoms have a different number of
electrons, depending on the substance. This number can be found up in a
periodic table of the elements. For example, the element hydrogen, which is
number 1 on the periodic table, has 1 electron in each of its atoms; copper,
on the other hand, is number 29 and therefore has 29 electrons.

55
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Figure 2.1: The structure of a copper atom showing the arrangement of the electrons in valence
shells orbiting the nucleus.

Each valence shell likes to have a specific number of electrons in it to
be stable. The inside shell is “full” when it has 2 electrons. The number of
electrons required in each shell outside that one is a little complicated but
is well explained in any high-school chemistry textbook.

Let’s look at a diagram of two atoms. As can be seen in the helium atom
on the left, all of the valence shells are full, the copper atom, on the other
hand, has an empty space in one of its shells. This difference between the
two atom structures give the two substances very different characteristics.

In the case of the helium atom, since all the valence shells are full, the
atom is very stable. The nucleus holds on to its electrons very tightly and
will not let go without a great deal of persuasion, nor will it accept any
new stray electrons. The copper atom, in comparison, has an empty space
waiting to be filled by an electron nudged in its general direction. The
questions are, how does one “nudge” an electron, and where does it go when
released? The answers are rather simple: we push the electron out of the
atom with another electron from an adjacent atom. The new electron takes
its place and the now free particle moves to the next atom to fill its empty
space.

So essentially, if we have a wire of copper, and we add some electrons to
one end of it, and give the electrons on the other end somewhere to go, then
we can have a flow of particles through the metal.

2.1.2 Current and EMF (Voltage)

I have a slight plumbing problem in my kitchen. I have two sinks, side by
side, one for washing dishes and one for putting the washed dishes in to dry.
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The drain of the two sinks feed into a single drain which has built up some
rust inside over the years (I live in an old building).

When I fill up one sink with water and pull the plug, the water goes
down the drain, but can’t get down through the bottom drain as quickly as
it should, so the result is that my second sink fills up with water coming up
through its drain from the other sink.

Why does this happen? Well – the first answer is “gravity” – but there’s
more to it than that. Think of the two sinks as two tanks joined by a pipe
at their bottoms. We’ll put different amounts of water in each sink.

The water in the sink on the left weighs a lot – you can prove this by
trying to lift the tank. So, the water is pushing down on the tank – but
we also have to consider that the water at the top of the tank is pushing
down on the water at the bottom. Thus there is more water pressure at the
bottom than the top. Think of it as the molecules being squeezed together
at the bottom of the tank – a result of the weight of all the water above it.
Since there’s more water in the tank on the left, there is more pressure at
the bottom of the left tank than there is in the right tank.

Now consider the pipe. On the left end, we have the water pressure
trying to push the water through the pipe, on the right end, we also have
pressure pushing against the water, but less so than on the left. The result
is that the water flows through the pipe from left to right. This continues
until the pressure at both ends of the pipe is the same – or, we have the
same water level in each tank.

We also have to think about how much water flows through the pipe in
a given amount of time. If the difference in water pressure between the two
ends is quite high, then the water will flow quite quickly though the pipe.
If the difference in pressure is small, then only a small amount of water will
flow. Thus the flow of the water (the volume which passes a point in the
pipe per amount of time) is proportional on the pressure difference. If the
pressure difference goes up, then the flow goes up.

The same can be said of electricity, or the flow of electrons through
a wire. If we connect two “tanks” of electrons, one at either end of the
wire, and one “tank” has more electrons (or more pressure) than the other,
then the electrons will flow through the wire, bumping from atom to atom,
until the two tanks reach the same level. Normally we call the two tanks a
battery. Batteries have two terminals – one is the opening to a tank full of
too many electrons (the negative terminal – because electrons are negative)
and the other the opening to a tank with too few electrons (the positive
terminal). If we connect a wire between the two terminals (don’t try this at
home!) then the surplus electrons at the negative terminal will flow through
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to the positive terminal until the two terminals have the same number of
electrons in them. The number of surplus electrons in the tank determines
the “pressure” or voltage (abbreviated V and measured in volts) being put on
the terminal. (Note: once upon a time, people used to call this electromotive
force or EMF but as knowledge increases from generation to generation, so
does laziness, apparently... So, most people today call it voltage instead of
EMF.) The more electrons, the more voltage, or electrical pressure. The
flow of electrons in the wire is called current (abbreviated I and measured
in amperes or amps) and is actually a specific number of electrons passing
a point in the wire every second (6,250,000,000,000,000,000 to be precise).
(Note: some people call this “amperage” – but it’s not common enough to
be the standard... yet...) If we increase the voltage (pressure) difference
between the two ends of the wire, then the current (flow) will increase, just
as the water in our pipe between the two tanks.

There’s one important point to remember when you’re talking about
current. Due to a bad guess on the part of Benjamin Franklin, current flows
in the opposite direction to the electrons in the wire, so while the electrons
are flowing from the negative to the positive terminal, the current is flowing
from positive to negative. This system is called conventional current theory.
There are some books out there that follow the flow of electrons – and
therefore say that current flows from negative to positive. It really doesn’t
matter which system you’re using, so long as you know which is which.

Let’s now replace the two tanks by a pump with pipe connecting its
output to its input – that way, we won’t run out of water. When the pump
is turned on, it acts just like the fan in chapter 1 – it decreases the water
pressure at its input in order to increase the pressure at its output. The
water in the pipe doesn’t enjoy having different pressures at different points
in the same pipe so it tries to equalize by moving some water molecules out
of the high pressure area and into the low pressure area. This creates water
flow through the pipe, and the process continues until the pump is switched
off.

2.1.3 Resistance and Ohm’s Law

Let’s complicate matters a little by putting a constriction in the pipe – a
small section where the diameter of the tube is narrower than anywhere else
in the system. If we keep the same pressure difference created by the pump,
then less water will go through because of the restriction – therefore, in order
to get the same amount of water through the pipe as before, we’ll have to
increase the pressure difference. So the higher the pressure difference, the
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higher the flow; the greater the restriction, the smaller the flow.
We’ll also have a situation where the pressure at the input to the restric-

tion is different than that at the output. This is because the water molecules
are bunching up at the point where they are trying to get through the smaller
pipe. In fact the pressure at the output of the pump will be the same as
the input of the restriction while the pressure at the input of the pump will
match the output of the restriction. We could also say that there is a drop
in pressure across the smaller diameter pipe.

We can have almost exactly the same scenario with electricity instead of
water. The electrical equivalent to the restriction is called a resistor . It’s a
small component which resists the current, or flow of electrons. If we place a
resistor in the wire, like the restriction in the pipe, we’ll reduce the current
as is shown in Figure 2.2.

Constriction

Pump

Resistor

+

Battery

Figure 2.2: Equivalent situations showing the analogy between an electrical circuit with a battery
and resistor to a plumbing network consisting of a pump and a constriction in the pipe. In both
cases the flow (of electrical current or water, depending) runs clockwise around the loop.

In order to get the same current as with a single wire, we’ll have to
increase the voltage difference. Therefore, the higher the voltage difference,
the higher the current; bigger the resistor, the smaller the current. Just as
in the case of the water, there is a drop in voltage across the resistor. The
voltage at the output of the resistor is lower than that at its input. Normally
this is expressed as an equation called Ohm’s Law which goes like this:

Voltage = Current * Resistance
or

V = IR (2.1)

where V is in volts, I is in amps and R is in ohms (abbreviated Ω).
We use this equation to define how much resistance we have. The rule

is that 1 volt of potential difference across a resistor will make 1 amp of
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current flow through it if the resistor has a value of 1 ohm (abbreviated
Ω). An ohm is simply a measurement of how much the flow of electrons is
resisted.

The equation is also used to calculate one component of an electrical
circuit given the other two. For example, if you know the current through
and the value of a resistor, the voltage drop across it can be calculated.

Everything resists the flow of electrons to different degrees. Copper
doesn’t resist very much at all – in other words, it conducts electricity, so it
is used as wiring; rubber, on the other hand, has a very high resistance, in
fact it has an effectively infinite resistance so we call it an insulator

2.1.4 Power and Watt’s Law

If we return to the example of a pump creating flow through a pipe, it’s
pretty obvious that this little system is useless for anything other than wast-
ing the energy required to run the pump. If we were smart we’d put some
kind of turbine or waterwheel in the pipe which would be connected to
something which does work – any kind of work. Once upon a time a similar
system was used to cut logs – connect the waterwheel to a circular saw;
nowadays we do things like connecting generators to the turbine to generate
electricity to power circular saws. In either case, we’re using the energy or
power in the moving water to do work of some sort.

How can we measure or calculate the amount of work our waterwheel is
capable of doing? Well, there are two variables involved with which we are
concerned – the pressure behind the water and the quantity of water flowing
through the pipe and turbine. If there is more pressure, there is more energy
in the water to do work; if there is more flow, then there is more water to
do work.

Electricity can be used in the same fashion – we can put a small device in
the wire between the two battery terminals which will convert the power in
the electrical current into some useful work like brewing coffee or powering
an electric stapler. We have the same equivalent components to concern us,
except now they are named current and voltage. The higher the voltage
or the higher the current, the more work which can be performed by our
system – therefore the power it has.

This relationship can be expressed by an equation called Watt’s Law
which is as follows:

Power = Voltage * Current
or
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P = V I (2.2)

where P is in watts, V is in volts and I is in amps.
Just as Ohm’s law defines the ohm, Watt’s law defines the watt to be

the amount of power consumed by a device which, when supplied with 1
volt of difference across its terminals will use 1 amp of current.

We can create a variation on Watt’s law by combining it with Ohm’s law
as follows:

P = V I and V = IR
therefore

P = (IR)I (2.3)

P = I2R (2.4)

and

P = V
V

R
(2.5)

P =
V 2

R
(2.6)

Note that, as is shown in the equation above on the right, the power is
proportional to the square of the voltage. This gem of wisdom will come in
handy later.

2.1.5 Alternating vs. Direct Current

So far we have been talking about a constant supply of voltage – one that
doesn’t change over time, such as a battery before it starts to run down.
This is what is commonly know of as direct current or DC which is to
say that there is no change in voltage over a period of time. This is not the
kind of electricity found coming out of the sockets in your wall at home. The
electricity supplied by the hydro company changes over short periods of time
(it changes over long periods of time as well, but that’s an entirely different
story...) Every second, the voltage difference between the two terminals in
your wall socket fluctuates between about -170 V and 170 V sixty times a
second. This brings up two important points to discuss.

Firstly, the negative voltage... All a negative voltage means is that the
electrons are flowing in a direction opposite to that being measured. There
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are more electrons in the tested point in the circuit than there are in the
reference point, therefore more negative charge. If you think of this in terms
of the two tanks of water – if we’re sitting at the bottom of the empty tank,
and we measure the relative pressure of the full one, its pressure will be more,
and therefore positive relative to your reference. If you’re at the bottom of
the full tank and you measure the pressure at the bottom of the empty one,
you’ll find that it’s less than your reference and therefore negative. (Two
other analogies to completely confuse you... it’s like describing someone by
their height. It doesn’t matter how tall or short someone is – if you say
they’re tall, it probably means that they’re taller than you.

Secondly, the idea that the voltage is fluctuating. When you plug your
coffee maker into the wall, you’ll notice that the plug has two terminals. One
is a reference voltage which stays constant (normally called a “cold” wire
in this case...) and one is the “hot” wire which changes in voltage realtive
to the cold wire. The device in the coffee maker which is doing the work is
connected with each of these two wires. When the voltage in the hot wire is
positive in comparasion to the cold wire, the current flows from hot through
the coffee maker to cold. One one-hundred and twentieth of a second later
the hot wire is negative compared to the cold, the current flows from cold
to hot. This is commonly known as alternating current or AC.

So remember, alternating current means that both the voltage and the
current are changing in time.

2.1.6 RMS

Look at a light bulb. Not directly – you’ll hurt your eyes – actually let’s
just think of a lightbulb. I turn on the switch on my wall and that closes a
connection which sends electricity to the bulb. That electricity flows through
the bulb which is slightly resistive. The result of the resistance in the bulb
is that it has to burn off power which is does by heating up – so much that
it starts to glow. But remember, the electricity which I’m sending to the
bulb is not constant – it’s fluctuating up and down between -170 and 170
volts. Since it takes a little while for the bulb to heat up and cool down,
its always lagging behing the voltage change – actually, it’s so slow that it
stays virtually constant in temperature and therefore brightness.

This tendancy is true for any resistor in an AC circuit. The resistor does
not respond to instantaneous voltage values – instead, it burns off an average
amount of power over time. That average is essentially an equivalent DC
voltage that would result in the same power dissipation. The question is,
how do we calculate it?
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First we’ll begin by looking at the average voltage delivered to your
lightbulb by the hydro company. If we average the voltage for the full 360◦

of the sine wave that they provide to the outlets in your house, you’d wind up
with 0 V – because the voltage is negative as much as it’s positive in the full
wave – it’s symmetrical around 0 V. This is not a good way for the hydro
company to decide on how much to bill you, because your monthly cost
would be 0 dollars. (Sounds good to me – but bad to the hydro company...)
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Figure 2.3: A full cycle of a sinusoidal AC waveform with a level of 170Vp. Note that the total
average for this waveform would be 0 V because the negative voltage is identically opposite to the
positive voltage.

What if we only consider one half of a cycle of the 60 Hz waveform?
Therefore, the voltage curve looks like the first half of a sine wave. There
are 180◦ in this section of the wave. If we were to measure the voltage at
each degree of the wave, add the results together and divide by 180 (in other
words, find the average voltage) we would come up with a number which
is 63.6% of the peak value of the wave. For example, the hydro company
gives me a 170 volt peak sine wave. Therefore, the average voltage which I
receive for the positive half of each wave is 170 V * 0.636 or 108.1 V as is
shown in Figure 2.4.

This does not, however give me the equivalent DC voltage level which
would match my AC power usage, because our calculation did not bring
power into account. In order to find this level, we have to complicate mat-
ters a little. We know from Watt’s law and Ohm’s law that P = V 2/R.
Therefore, if we have an AC wave of 170Vpeak in a circuit containing a 1Ω
resistor, the peak power consumption is
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Figure 2.4: The positive half of one cycle of a sinusoidal AC waveform with a level of 170Vp. Note
that the total average for this waveform would be 63.6% of the peak voltage as is shown by the
red horizontal line at 108.1 V (63.6% of 170Vp).

170V 2

1Ω
= 28900Watts (2.7)

But this is the power consumption for one point in time, when the volt-
age level is actually at 170 V. The rest of the time, the voltage is either
swinging on its way up to 170 V or on its way down from 170 V. The power
consumption curve would no longer be a sine wave, but a sin2 wave. Think
of it as taking all of those 180 voltage measurements and squaring each one.
From this list of 180 numbers (the instantaneous power consumption for
each of the 180◦) we can find the average power consumed for a half of a
waveform. This number turns out to be 0.5 of the peak power, or, in the
above case, 0.5*28900 Watts, or 14450 W as is shown in Figure 2.5.

This gives us the average power consumption of the resistor, but what
is the equivalent DC voltage which would result in this consumption? We
find this by using Watt’s law in reverse as follows:

P =
V 2

R
(2.8)

14450W =
V 2

1Ω
(2.9)

√
14450 = V (2.10)
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Figure 2.5: The power consumed during the positive half of one cycle of a sinusoidal AC waveform
with a level of 170Vp and a resistance of 1 Ω. Note that the total average for this waveform would
be 50% of the peak power as is shown by the red horizontal line at 14450 W (50% of 28900 W).

V = 120V (2.11)

Therefore, 120 V DC would result in the same power consumption over
a period of time as a 170 V AC wave. This equivalent is called the Root
Mean Square or RMS of the AC voltage. We call it this because it’s the
square root of the mean (or average) of the square of the original voltage.

In other words, a lightbulb in a lamp plugged into the wall (remember,
it’s being fed 170Vpeak AC sine wave) will be exactly as bright if it’s fed 120
V DC.

Just for a point of reference, the RMS value of a sine wave is always 0.707
of the peak value and the RMS value of a square wave (with a 50% duty
cycle) is always the peak value. If you use other waveforms, the relationship
between the peak value and the RMS value changes.

This relationship between the RMS and the peak value of a waveform
is called the crest factor . This is a number that describes the ratio of the
peak to the RMS of the signal, therefore

Crestfactor =
Vpeak

VRMS
(2.12)

So, the crest factor of a sine wave is 1.41. The crest factor of a square
wave is 1.
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This causes a small problem when you’re using a digital volt meter.
The reading on these devices ostensibly show you the RMS value of the
AC waveform you’re measuring, but they don’t really measure the RMS
value. They measure the peak value of the wave, and then multiply that
value by 0.707 – therefore they’re assuming that you’re measuring a sine
wave. If the waveform is anything other than a sine, then the measurement
will be incorrect (unless you’ve thrown out a ton of money on a True RMS
multimeter...)

RMS Time Constants

There’s just one small problem with this explanation. We’re talking about
an RMS value of an alternating voltage being determined in part by an
average of the instantaneous voltages over a period of time called the time
constant. In Figure 2.5, we’re assuming that the signal is averaged for at
least one half of one cycle for the sine wave. If the average is taken for
anything more than one half of a cycle, then our math will work out fine.
What if this wasn’t the case, however? What if the time constant was shorter
than one half of a cycle?
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Figure 2.6: An arbitrary voltage signal with a short spike.

Take a look at the signal in Figure 2.6. This signal usually has a pretty
low level, but there’s a spike in the middle of it. This signal is comprised of
a string of 1000 values, numbered from 1 to 1000. If we assume that this a
voltage level, then it can be converted to a power value by squaring it (we’ll
keep assuming that the resistance is 1 Ω). That power curve is shown in
Figure 2.7.
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Figure 2.7: The power dissapation resulting from the signal in Figure 2.6 being sent through a 1 Ω
resistor.

Now, let’s make a running average of the values in this signal. One way
to do this would be to take all 1000 values that are plotted in Figure 2.7 and
find the average. Instead, let’s use an average of 100 values (the length of
this window in time is our time constant). So, the first average will be the
values 1 to 100. The second average will be 2 to 101 and so on until we get
to the average of values 901 to 1000. If these averages are plotted, they’ll
look like the graph in Figure 2.8.

There are a couple of things to note about this signal. Firstly, notice
how the signal gradually ramps in at the beginning. This is becuase, as the
time window that we’re using for the average gradually “slides” over the
transition from no signal to a low-level signal, the total average gradually
increases. Also notice that what was a very short, very high level spike in
the signal in the instantaneous power curve becomes a very wide (in fact,
the width of the time constant), much lower-level signal (notice the scale
of the y-axis). This is because the short spike is just getting thrown into
an average with a lot of low-level signals, so the RMS value is much lower.
Finally, the end ramps out just as the beginning ramped in for the same
reasons.

So, we can now see that the RMS value is potentially much smaller than
the peak value, but that this relationship is highly dependent on the time
constant of the RMS detection. The shorter the time constant, the closer the
RMS value is to the instantaneous peak value (in fact, if the time constant
was infinitely short, then the RMS would equal the peak...).

The moral of the story is that it’s not enough to just know that you’re
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Figure 2.8: The average power dissapation of 100 consecutive values from the curve in Figure 2.7.
For example, value 1 in this plot is the average of values 1 to 100 in Figure 2.7, value 2 is the
average of values 2 to 101 in Figure 2.7 and so on.

being given the RMS value, you’ll also need to know what the time constant
of that RMS value is.

2.1.7 Suggested Reading List

Fundamentals of Service: Electrical Systems, John Deere Service Publica-
tion

Basic Electricity, R. Miller
The Incredible Illustrated Electricity Book, D.R. Riso
Elements of Electricity, W.H. Timbie
Introduction to Electronic Technology, R.J. Romanek
Electricity and Basic Electronics, S.R. Matt
Electricity: Principles and Applications, R. J. Fowler
Basic Electricity: Theory and Practice, M. Kaufman and J.A. Wilson
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2.2 The Decibel

Thanks to Mr. Ray Rayburn for his proofreading of and suggestions for this
section.

2.2.1 Gain

Lesson 1 for almost all recording engineers comes from the classic movie
“Spinal Tap” [] where we all learned that the only reason for buying any
piece of audio gear is to make things louder (“It goes all the way up to 11...”)
The amount by which a device makes a signal louder or quieter is called the
gain of the device. If the output of the device is two times the amplitude of
the input, then we say that the device has a gain of 2. This can be easily
calculated using Equation 2.13.

gain =
amplitudeout

amplitudein
(2.13)

Note that you can use gain for evil as well as good - you can have a gain
of less than 1 (but more than 0) which means that the output is quieter
than the input.

If the gain equals 1, then the output is identical to the input.
If the gain is 0, then this means that the output of the device is 0,

regardless of the input.
Finally, if the device has a negative gain, then the output will have an

opposite polarity compared to the input. (As you go through this section,
you should always keep in mind that a negative gain is different from a gain
with a negative value in dB... but we’ll straighten this out as we go along.

(Incidentally, Lesson 2, entitled “How to wrap a microphone cable with
one hand while holding a chili dog and a styrofoam cup of coffee in the other
hand and not spill anything on your Twisted Sister World Tour T-shirt” will
be addressed in a later chapter.)

2.2.2 Power and Bels

Sound in the air is a change in pressure. The greater the change, the louder
the sound. The softest sound you can hear according to the books is 20∗10−6

Pascals (abbreviated “Pa”) (it doesn’t really matter how big a Pa is – you
just need to know the number for now...). The loudest sound you can tolerate
without screaming in pain is about 200000000 ∗ 10−6 Pa (or 200 Pa). This
ratio of the loudest sound to the softest sound is therefore a 10,000,000:1
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ratio (the loudest sound is 10,000,000 times louder than the softest). This
range is simply too big. So a group of people at Bell Labs decided to
represent the same scale with smaller numbers. They arrived at a unit of
measurement called the Bel (named after Alexander Graham Bell – hence
the capital B.) The Bel is a measurement of power difference. It’s really just
the logarithm of the ratio of two powers (Power1:Power2 or Power1

Power2). So to
find out the difference in two power measurements measured in Bels (B).
We use the following equation.

∆Power(Bels) = log
(

Power1
Power2

)
(2.14)

Let’s leave the subject for a minute and talk about measurements. Our
basic unit of length is the metre (m). If I were to talk about the distance
between the wall and me, I would measure that distance in metres. If I
were to talk about the distance between Vancouver and me, I would not
use metres, I would use kilometres. Why? Because if I were to measure
the distance between Vancouver and me in metres the number would be
something like 5,000,000 m. This number is too big, so I say I’ll measure it
in kilometres. I know that 1 km = 1000 m therefore the distance between
Vancouver and me is 5 000 000 m / 1 000 m/km = 5 000 km. The same
would apply if I were measuring the length of a pencil. I would not use
metres because the number would be something like 0.15 m. It’s easier to
think in centimetres or millimetres for small distances – all we’re really doing
is making the number look nicer.

The same applies to Bels. It turns out that if we use the above equation,
we’ll start getting small numbers. Too small for comfort; so instead of using
Bels, we use decibels or dB. Now all we have to do is convert.

There are 10 dB in a Bel, so if we know the number of Bels, the number
of decibels is just 10 times that. So:

1dB =
1Bel

10
(2.15)

∆Power(dB) = 10 log
(

Power1
Power2

)
(2.16)

So that’s how you calculate dB when you have two different amounts of
power and you want to find the difference between them. The point that I’m
trying to overemphasize thus far is that we are dealing with power measure-
ments. We know that power is measured in watts (Joules per second) so we
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use the above equation only when the ratio is comparing two measurements
in watts.

What if we wanted to calculate the difference between two voltages (or
electrical pressures)? Well, Watt’s Law says that:

Power =
V oltage2

Resistance
(2.17)

or

P =
V 2

R
(2.18)

Therefore, if we know our two voltages (V1 and V2) and we know the
resistance stays the same:

∆Power(dB) = 10 log
(

Power1
Power2

)
(2.19)

= 10 log

(
V 12

R
V 22

R

)
(2.20)

= 10 log
(

V 12

R
∗ R

V 22

)
(2.21)

= 10 log
(

V 12

V 22

)
(2.22)

= 10 log
(

V 1
V 2

)2

(2.23)

= 2 ∗ 10 log
(

V 1
V 2

)
(2.24)

(because log AB = B ∗ log A) (2.25)

= 20 log
(

V 1
V 2

)
(2.26)

That’s it! (Finally!) So, the moral of the story is, if you want to compare
two voltages and express the difference in dB, you have to go through that
last equation.

Remember, voltage is analogous to pressure. So if you want to compare
two pressures (like 20 ∗ 10−6 Pa and 200000000 ∗ 10−6 Pa) you have to use
the same equation, just substitute V1 and V2 with P1 and P2 like this:

∆Power(dB) = 2 ∗ 10 log
(

Pressure1
Pressure2

)
(2.27)
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This is all well and good if you have two measurements (of power, voltage
or pressure) to compare with each other, but what about all those books
that say something like “a jet at takeoff is 140 dB loud.” What does that
mean? Well, what it really means is “the sound a jet makes when it’s taking
off is 140 dB louder than...” Doesn’t make a great deal of sense... Louder
than what? The first measurement was the sound pressure of the jet taking
off, but what was the second measurement with which it’s compared?

This is where we get into variations on the dB. There are a number of
different types of dB which have references (second measurements) already
supplied for you. We’ll do them one by one.

2.2.3 dBspl

The dBspl is a measurement of sound pressure (spl stand for Sound Pressure
Level). What you do is take a measurement of, say, the sound pressure of
a jet at takeoff (measured in Pa). This provides Power1. Our reference
Power2 is given as the sound pressure of the softest sound you can hear,
which we have already said is 20 ∗ 10−6 Pa.

Let’s say we go to the end of an airport runway with a sound pressure
meter and measure a jet as it flies overhead. Let’s also say that, hypotheti-
cally, the sound pressure turns out to be 200 Pa. Let’s also say we want to
calculate this into dBspl. So, the sound of a jet at takeoff is :

Pressure(dBspl) = 20 log
(

Pressure1
Reference

)
(2.28)

= 20 log
(

Pressure1
20 ∗ 10−6Pa

)
(2.29)

= 20 log
(

200Pa

20 ∗ 10−6Pa

)
(2.30)

= 20 log 10000000 (2.31)
= 20 log 107 (2.32)
= 20 ∗ 7 (2.33)
= 140dBspl (2.34)

So what we’re saying is that a jet taking off is 140 dBspl which means
“the sound pressure of a jet taking off is 140 dB louder than the softest
sound I can hear.”



2. Analog Electronics 73

2.2.4 dBm

When you’re measuring sound pressure levels, you use a reference based on
the threshold of hearing (20∗10−6 Pa) which is fine, but what if you want to
measure the electrical power output of a piece of audio equipment? What is
the reference that you use to compare your measurement? Well, in 1939, a
bunch of people sat down at a table and decided that when the needles on
their equipment read 0 VU, then the power output of the device in question
should be 0.001 W or 1 milliwatt (mW). Now, remember that the power in
watts is dependent on two things – the voltage and the resistance (Watt’s
law again). Back in 1939, the impedance of the input of every piece of audio
gear was 600Ω. If you were Sony in 1939 and you wanted to build a tape
deck or an amplifier or anything else with an input, the impedance across
the input wire and the ground in the connector would have to be 600Ω.

As a result, people today (including me until my error was spotted by
Ray Rayburn) believe that the dBm measurement uses two standard refer-
ences – 1 mW across a 600Ω impedance. This is only partially the case. We
use the 1 mW, but not the 600Ω. To quote John Woram, “...the dBm may be
correctly used with any convenient resistance or impedance.” [Woram, 1989]

By the way, the m stands for milliwatt.
Now this is important: since your reference is in mW we’re dealing with

power. Decibels are a measurement of a power difference, therefore you use
the following equation:

Power(dBm) = 10 log
(

Power1
1mWRMS

)
(2.35)

Where Power1 is measured in mWRMS .
What’s so important? There’s a 10 in there and not a 20. It would be

20 if we were measuring pressure, either sound or electrical, but we’re not.
We’re measuring power.

2.2.5 dBV

Nowadays, the 600Ω specification doesn’t apply anymore. The input impedance
of a tape deck you pick up off the shelf tomorrow could be anything – but
it’s likely to be pretty high, somewhere around 10 kΩ. When the impedance
is high, the dissipated power is low, because power is inversely proportional
to the resistance. Therefore, there may be times when your power measure-
ment is quite low, even though your voltage is pretty high. In this case, it
makes more sense to measure the voltage rather than the power. Now we



2. Analog Electronics 74

need a new reference, one in volts rather than watts. Well, there’s actually
two references... The first one is 1VRMS . When you use this reference, your
measurement is in dBV.

So, you measure the voltage output of your piece of gear – let’s say a
mixer, for example, and compare that measurement with the 1VRMS refer-
ence, using the following equation.

V oltage(dBV ) = 20 log
(

V oltage1
1VRMS

)
(2.36)

Where Voltage1 is measured in VRMS .
Now this time it’s a 20 instead of a 10 because we’re measuring pressure

and not power. Also note that the dBV does not imply a measurement
across a specific impedance.

2.2.6 dBu

Let’s think back to the 1mW into 600Ω situation. What will be the voltage
required to generate 1mW in a 600Ω resistor?

P =
V 2

R
(2.37)

thereforeV 2 = P ∗R (2.38)
V =

√
P ∗R (2.39)

=
√

1mWRMS ∗ 600Ω (2.40)

=
√

0.001WRMS ∗ 600Ω (2.41)
=

√
0.6 (2.42)

= 0.774596669VRMS (2.43)

Therefore, the voltage required to generate the reference power was
about 0.775VRMS . Nowadays, we don’t use the 600Ω impedance anymore,
but the rounded-off value of 0.775VRMS was kept as a standard reference.
So, if you use 0.775VRMS as your reference voltage in the equation like this:

V oltage(dBu) = 20 log
(

V oltage1
0.775VRMS

)
(2.44)

your unit of measure is called dBu. Where Voltage1 is measured in
VRMS .

(It used to be called dBv, but people kept mixing up dBv with dBV and
that couldn’t continue, so they changed the dBv to dBu instead. You’ll still
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see dBv occasionally – it is exactly the same as dBu... just different names
for the same thing.)

Remember – we’re still measuring pressure so it’s a 20 instead of a 10,
and, like the dBV measurement, there is no specified impedance.

2.2.7 dB FS

The dB FS designation is used for digital signals, so we won’t talk about
them here. They’re discussed later in Chapter 9.1.

2.2.8 Addendum: “Professional” vs. “Consumer” Levels

Once upon a time you may have learned that “professional” gear ran at a
nominal operating level of +4 dB compared to “consumer” gear at only -10
dB. (Nowadays, this seems to be the only distinction between the two...)
What few people ever notice is that this is not a 14 dB difference in level.
If you take a piece of consumer gear outputting what it thinks is 0 dB VU
(0 dB on the VU meter), and you plug it into a piece of pro gear, you’ll find
that the level is not -14 dB but -11.79 dB VU... The reason for this is that
the professional level is +4 dBu and the consumer level -10 dBV. Therefore
we have two separate reference voltages for each measurement.

0 dB VU on a piece of pro gear is +4 dBu which in turn translates to an
actual voltage level of 1.228VRMS . In comparison, 0 dB VU on a piece of
consumer gear is -10 dBV, or 0.316VRMS . If we compare these two voltages
in terms of decibels, the result is a difference of 11.79 dB.

2.2.9 The Summary

dBspl

Pressure(dBspl) = 20 log
(

Pressure1
20 ∗ 10−6

)
(2.45)

where Pressure1 is measured in Pa.

dBm

Power(dBm) = 10 log
(

Power1
1mWRMS

)
(2.46)

where Power1 is measured in mWRMS .
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dBV

V oltage(dBV ) = 20 log
(

V oltage1
1VRMS

)
(2.47)

where Voltage1 is measured in VRMS .

dBu

V oltage(dBu) = 20 log
(

V oltage1
0.775VRMS

)
(2.48)

where Voltage1 is measured in VRMS .
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2.3 Basic Circuits / Series vs. Parallel

2.3.1 Introduction

Picture it – you’re getting a shower one morning and someone in the bath-
room downstairs flushes the toilet... what happens? You scream in pain
because you’re suddenly deprived of cold water in your comfortable hot /
cold mix... Not good. Why does this happen? It’s simple... It’s because
you were forced to share cold water without being asked for permission.
Essentially, we can pretend (for the purposes of this example...) that there
is a steady pressure pushing the flow of water into your house. When the
shower and the toilet are asking for water from the same source (the intake
to your house) then the water that was normally flowing through only one
source suddenly goes in two directions. The flow is split between two paths.

How much water is going to flow down each path? That depends on
the amount of resistance the water “sees” going down each path. The toilet
is probably going to have a lower “resistance” to impede the flow of water
than your shower head, and so more water flows through the toilet than the
shower. If the resistance of the shower was smaller than the toilet, then you
would only be mildly uncomfortable instead of jumping through the shower
curtain to get away from the boiling water...

2.3.2 Series circuits – from the point of view of the current

Think back to the tanks connected by a pipe with a restriction in it de-
scribed in Chapter 2.1. All of the water flowing from one tank to the other
must flow through the pipe, and therefore, through the restriction. The
flow of the water is, in fact, determined by the resistance of the restriction
(we’re assuming that the pipe does not impede the flow of water... just the
restriction...)

What would happen if we put a second restriction on the same pipe?
The water flowing though the pipe from tank to tank now “sees” a single,
bigger resistance, and therefore flows more slowly through the entire pipe.

The same is true of an electrical circuit. If we connect 2 resistors, end
to end, and connect them to a battery as is shown in the diagram below,
the current must flow from the positive battery terminal through the fist
resistor, through the second resistor, and into the negative terminal of the
battery. Therefore the current leaving the positive terminal “sees” one big
resistance equivalent to the added resistances of the two resistors.

What we are looking at here is called an example of resistors connected
in series. What this essentially means is that there are a series of resistors
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9 V

1.5 kΩ 500 Ω

+

Figure 2.9: Two resistors and a battery, all connected in series.

that the current must flow through in order to make its way through the
entire circuit.

So, how much current will flow through this system? That depends on
the two resistances. If we have a 9 V battery, a 1.5 kohm resistor and a 500
Ω resistor, then the total resistance is 2 kohms. From there we can just use
Ohm’s law to figure out the total current running through the system.

V = IR (2.49)
therefore (2.50)

I =
V

R
(2.51)

=
9V

1500Ω + 500Ω
(2.52)

=
9

2000Ω
(2.53)

= 0.0045A (2.54)
= 4.5mA (2.55)

Remember that this is not only the current flowing through the entire
system, it’s also therefore the current running through each of the two re-
sistors. This piece of information allows us to go on to calculate the amount
of voltage drop across each resistor.

2.3.3 Series circuits – from the point of view of the voltage

Since we know the amount of current flowing though each of the two re-
sistors, we can use Ohm’s law to calculate the voltage drop across eack of
them. Going back to our original example used above, and if we label our
resistors. (R1 = 1.5kΩ and R2 = 500Ω)
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V1 = I1R1 (This means the voltage drop across R1 = the current through
R1 times the resistance of R1)

V1 = 4.5mA ∗ 1.5kΩ (2.56)
= 0.0045 ∗ 1500 (2.57)
= 6.75V (2.58)

Therefore the voltage drop across R1 is 6.75 V.
Now we can do the same thing for R2 ( remember, it’s the same current...)

V2 = I2R2 (2.59)
= 4.5mA ∗ 500Ω (2.60)
= 0.0045A ∗ 500Ω (2.61)
= 2.25V (2.62)

So the voltage drop across R2 is 2.25 V. An interesting thing to note
here is that the voltage drop across R1 and the voltage drop across R2, when
added together, equal 9 V. In fact, in this particular case, we could have
simply calculated one of the two voltage drops and then simply subtracted
it from the voltage produced by the battery to find the second voltage drop.

2.3.4 Parallel circuits – from the point of view of the voltage

Now let’s connect the same two resistors to the battery slightly differently.
We’ll put them side by side, parallel to each other, as shown in the diagram
below. This configuration is called parallel resistors and their effect on the
current and voltage in the circuit is somewhat different than when they were
in series...

Look at the connections between the resistors and the battery. They
are directly connected, therefore we know that the battery is ensuring that
there is a 9 V voltage drop across each of the resistors. This is a state
imposed by the battery, and you simply expected to accept it as a given...
(just kidding...)

The voltage difference across the battery terminals is 9 V – this is a
given fact which doesn’t change whether they are connected with a resistor
or not. If we connect two parallel resistors across the terminals, they still
stay 9 V apart.
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9 V

1.5 kΩ

500 Ω

+

Figure 2.10: Two resistors and a battery, all in parallel.

If this is causing some difficulty, think back to the example at the top of
this page where we had a shower running while a toilet was flushing in the
same house. The water pressure supplied to the house didn’t change... It’s
the same thing with a battery and two parallel resistors.

2.3.5 Parallel circuits – from the point of view of the current

Since we know the amount of voltage applied across each resistor (in this
case, they’re both 9 V) then we can again use Ohm’s law to determine the
amount of current flowing though each of the two resistors.

I1 =
V1

R1
(2.63)

=
9V

1.5kΩ
(2.64)

=
9V

1500Ω
(2.65)

= 0.006A (2.66)
= 6mA (2.67)

I2 =
V2

R2
(2.68)

=
9V

500Ω
(2.69)

= 0.018A (2.70)
= 18mA (2.71)

One way to calculate the total current coming out of the battery here
is to calculate the two individual currents going through the resistors, and



2. Analog Electronics 81

adding them together. This will work, and then from there, we can calculate
backwards to figure out what the equivalent resistance of the pair of resistors
would be. If we did that whole procedure, we would find that the reciprocal
of the total resistance is equal to the sum of the reciprocals of the individual
resistors. (huh?) It’s like this...

1
RTotal

=
1

R1
+

1
R2

(2.72)

1
RTotal

=
1

R1
∗ R2

R2
+

1
R2

∗ R1

R1
(2.73)

1
RTotal

=
R2

R1R2
+

R1

R2R1
(2.74)

1
RTotal

=
R1 + R2

R1R2
(2.75)

RTotal =
R1R2

R1 + R2
(2.76)

2.3.6 Suggested Reading List
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2.4 Capacitors

Let’s go back a couple of chapters to the concept of a water pump sending
water out its output though a pipe which has a constriction in it back to
the input of the pump. We equated this system with a battery pushing
current through a wire and resistor. Now, we’re replacing the restriction in
the water pipe with a couple of waterbeds... Stay with me here... This will
make sense, I promise...

If the input of the water pump is connected to one of the waterbeds
and the output of the pump is connected to the other waterbed, and the
output waterbed is placed on top of the input waterbed, what will happen?
Well, if we assume that the two waterbeds have the same amount of water
in them before we turn on the pump (therefore the water pressure in the
two are the same... sort of...) , then, after the pump is turned on, the water
is drained from the bottom waterbed and placed in the top waterbed. This
means that we have a change in the pressure difference between the two
beds (The upper waterbed having the higher pressure). This difference will
increase until we run out of waster for the pump to move. The work the
pump is doing is assisted by the fact that, as the top waterbed gets heavier,
the water is pushed out of the bottom waterbed... Now, what does this have
to do with electricity?

We’re going to take the original circuit with the resistor and the battery
and we’re going to add a device called a capacitor in series with the resistor.
A capacitor is a device with two metal plates that are placed very close
together, but without touching (the waterbeds...). There’s a wire coming
off of each of the two plates (the pipes). Each of these plates, then can act
as a resevoir for electrons – we can push extra ones into a plate, making it
negative (by connecting the negative terminal of a battery to it...), or we
can take electrons out, making the plate positive (by connecting the positive
terminal of the battery to it...). Remember though that electrons, and the
lack-of-electrons (holes) are mutually attracted to each other. As a result,
the extra electrons in the negative plate are attracted to the holes in the
positive plate. This means that the electrons and holes line up on the sides
of the plates closest to the opposite plate – trying desperately to get across
the gap... The narrower the gap, the more attraction, therefore the more
electrons and holes we can pack in the plates... Also, the bigger the plates,
the more electrons and holes we can get in there...

This device has the capacity to store quantities of electrons and holes –
that’s why we call them capacitors. The value of the capacitor, measured
in Farads (abbreviated F) is a measure of its capacity... (we’ll leave it at
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that for now...) That capacitance is determined by two things essentially
– both physical attributes of the device. The first is the size of the plates
– the bigger the plates, the bigger the capacitance. For big caps, we take
a couple of sheets of metal foil with a piece of non-conductive material
sandwiched between them (called the dielectric) and roll the whole thing up
like a sleeping bag being stored for a hike – put the whole thing in a little can
and let the wires stick out of the ends (or one end...). The second attribute
controlling the capacitance is the gap between the plates (the smaller the
gap, the bigger the capacitance).

The reason we use these capacitors is because of a little property that
they have which could almost be considered a problem... you can’t dump all
the electrons you want to through the wire into the plate instantaneously...
It takes a little bit of time, especially if we restrict the current flow a bit
with a resistor. Let’s take a circuit as an example. We’ll connect a switch,
a resistor, and a capacitor all in series with a battery, as is shown in Figure
2.11.

switch

Vc
+

Figure 2.11: A battery, switch, resistor, and capacitor, all in series.

Just before we close the switch, let’s assume that the two plates of the
capacitor have the same number of electrons and holes in them – therefore
they are at the same potential – so the voltage across the capacitor is 0 V.
When we close the switch, the electrons in the negative terminal want to flow
to the top plate of the cap to meet the holes flowing into the bottom plate.
Therefore, when we first close the switch, we get a surge of current through
the circuit which gradually decreases as the voltage across the capacitor is
increased. The more the capacitor fills with holes and electrons. the higher
the voltage across it, and therefore the smaller the voltage across the resistor
– this in turn means a smaller current.

If we were to graph this change in the flow of current over time, it would
look like Figure 2.12:

As you can see, the longer in time after the switch has been closed, the
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Figure 2.12: The change in current flowing through the resistor and into the top plate of the
capacitor after the switch is closed.

smaller the current. The graph of the change in voltage over time would be
exactly opposite to this as is shown in Figure 2.13.

Figure 2.13: The change in voltage across the capacitor after the switch is closed.

You may notice that in most books, the time axis of the graph is not
marked in seconds but in something that looks like a T – it’s called Tau
(that’s a Greek letter and not a Chinese word, in case you’re thinking that
I’m going to make a joke about Winnie the Pooh... It’s also pronounced
differently – say “tao” not “dao”). This Tao is the symbol for something
called a time constant, which is determined by the value of the capacitor
and the resistor, as in Equation 2.77 :
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τ = RC (2.77)

As you can see, if either the resistance or the capacitance is increased,
the RC time constant goes up. “But what’s a time constant?” I hear you
cry... Well, a time constant is the time it takes for the voltage to reach 63.2
percent of the voltage applied to the capacitor. After 2 time constants, we’ve
gone up 63.2 percent and then 63.2 percent of the remaining 36.8 percent,
which means we’re at 86.5 percent... Once we get to 5 time constants,
we’re at 99.3 percent of the voltage and we can consider ourselves to have
reached our destination. (In fact, we never really get there... we just keep
approaching the voltage forever...)

So, this is all very well if or voltage source is providing us with a suddenly
applied DC, but what would happen if we replaced our battery with a square
wave and monitored the voltage across and the current flowing into the
capacitor? Well, the output would look something like Figure 2.14 (assuming
that the period of the square wave = 10 time constants...)

Figure 2.14: The change in voltage across a capacitor over time if the DC source in Figure 2.11
were changed to a square wave generator.

What’s going on? Well, the voltage is applied to the capacitor, and it
starts charging, initially demanding lots of current through the resistor, but
asking for less and less all the time... When the voltage drops to the lower
half of the square wave, the capacitor starts charging (or discharging) to the
new value, initally demanding lots of current in the opposite direction and
slowly reaching the voltage. Since I said that the period of the square wave
is 10 time constants, the voltage of the capacitor just reaches the voltage of
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the function generator (5 time constants...) when the square wave goes to
the other value.

Consider that, since the circuit is rounding off the square edges of the
initially applied square wave, it must be doing something to the frequency
response – but we’ll worry about that later.

Let’s now apply an AC sine wave to the input of the same circuit and
look at what’s going on at the output. The voltage of the function generator
is always changing, and therefore the capacitor is always being asked to
change the voltage across it. However, it is not changing nearly as quickly
as it was with the square wave. If the change in voltage over time is quite
slow (therefore, a low frequency sine wave) the current required to bring
the capacitor to its new (but always changing) voltage will be small. The
higher the frequency of the sine wave at the input, the more quickly the
capacitor must change to the new voltage, therefore the more current it
demands. Therefore, the current flowing through the circuit is dependent
on the frequency – the higher the frequency, the higher the current. If we
think of this another way, we could pretend that the capacitor is a resistor
which changes in value as the frequency changes – the lower the frequency,
the bigger the resistor, because the smaller the current. This isn’t really
what’s going on, but we’ll work that out in a minute.

The lower the frequency, the lower the current – the smaller the capacitor
the lower the current (because it needs less current to change to the new
voltage than a bigger capacitor). Therefore, we have a new equation which
describes this relationship:

XC =
1

2πfC
=

1
ωC

(2.78)

Where f is the frequency in Hz, C is the capacitance in Farads, and π is
3.14159264...

What’s XC? It’s something called the capacitive reactance of the capac-
itor, and it’s expressed inΩ. It’s not the same as resistance for two reasons
– firstly, resistance burns power if it’s resisting the flow of current... when
current is impeded by capacitic reactance, there is no power lost. It’s also
different from a resistor becasue there is a different relationship between the
voltage and the current flowing through (or into) the device. For resistors,
Ohm’s Law tells us that V=IR, therefore if the resistor stays the same and
the voltage goes up, the current goes up at the same time. Therefore, we
can say that, when an AC voltage is applied to a resistor, the flow of current
through the resistor is in phase with the voltage. (when V is 0, I is 0, when
V is maximum, I is maximum and so on...) In a capacitive circuit (one
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where the reactance of the capacitor is much greater than the resistance of
the resistor and the two are in series...) the current preceeds the voltage (re-
member the time constant curves... voltage changes slowly, current changes
quickly...) by 90◦. This also means that the voltage across the resistor is
90◦ ahead of the voltage across the capacitor (because the voltage across the
resistor is in phase with the current through it and into the capacitor)

As far as the function generator is concerned, it doesn’t know whether
the current it’s being asked to supply is determined by resistance or reac-
tance... all it sees is some THING out there, impeding the current flow
differently at different frequencies (the lower the frequency, the higher the
impedance...) This impedance is not simply the addition of the resistance
and the reactance, because the two are not in phase with each other... in
fact they’re 90◦ out of phase. The way we calculate the total impedance
of the circuit is by finding the square root of the sum of the squares of the
resistance and the reactance or :

Z =
√

R2 + X2
C (2.79)

Where Z is the impedance of the RC combination, R is the resistance of
the resistor, and XC is the capacitive reactance, all expressed inΩ.

Remember back to Pythagoreas – that same equation above is the one
we use to find the length of the hypotenuse of a right triangle (a triangle
whose legs are 90◦ apart...) when we know the lengths of the legs. Get it?
Voltages are 90◦ apart, legs are 90◦ apart... If you don’t get it, not to worry,
it’s explained in Chapter 6.

Also, remember that. as frequency goes up, the XC goes down, and
therefore the Z goes down. If the frequency is 0 Hz (or DC...) then the XC

is infinityΩ, and the circuit is no longer closed – no current will flow. This
will come in handy in the next chapter.

As for the combination of capacitors in seies and parallel, it’s exactly
the same equations as for resistors except that they’re opposite. If you put
two capacitors in parallel – the total capacitance is bigger... in fact it’s
the addition of the two capacitances (because you’re effectively making the
plates bigger...) Therefore, in order to calculate the total capacitance for a
number of capacitors connected in parallel, you use Equation 2.80.

Ctotal = C1 + C2 + ... + Cn (2.80)

If the capacitors are in series, then you use the equation
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1
Ctotal

=
1
C1

+
1
C2

+ ... +
1

Cn
(2.81)

Note that both of these equations are very similar to the ones for re-
sistors, except that we use them “backwards.” That is to say that the
equations for series resistors is the same as for parallel capacitors, and the
one for parallel resistors is the same as for series capacitors.

2.4.1 Suggested Reading List
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2.5 Passive RC Filters

In the last chapter, we looked at the circuit in Figure 2.15 and we talked
about the impedance of the RC combination as it related to frequency. Now
we’ll talk about how to harness that incredible power to screw up your audio
signal.

Figure 2.15: A first-order RC circuit. This is called “first-order” because there is only 1 reactive
component in it (the capacitor).

In this circuit, the lower the frequency, the higher the impedance, and
therefore the lower the current flowing through the circuit. If we’re at 0 Hz,
there is no current flowing through the circuit. If we’re at infinity Hz (this
is very high...) then the capacitor has a capacitive reactance of 0Ω, and the
impedance of the circuit is the resistance of the resistor. This can be see in
Figure 2.16.

We also talked about how, at low frequencies, the circuit is considered
to be capacitive (because the capacitive reactance is MUCH greater than
the resistor value and therefore the resistor is negligible in comparason).

When the circuit is capacitive, the current flowing through the resistor
into the capacitor is changing faster than the voltage across the capacitor.
We said last week, that, in this case, the current is 90 degree ahead of the
voltage. This also means that the voltage across the resistor (which is in
phase with the current) is 90◦ ahead of the voltage across the capacitor.
This is shown in Figure 2.17.

Let’s look at the voltage across the capacitor as we change the voltage.
At very low frequencies, the capacitor has a very high capacitive reactance,
therefore the resistance of the resistor is negligible in comparison. If we
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Figure 2.16: The resistance, capacitive reactance and total impedance of the above circuit. Notice
that there is one frequency where XC is equal to R.

Figure 2.17: The relationship in the time domain between VIN (the voltage difference across the
function generator), VR (the voltage across the resistor), and VC (the voltage across the capacitor).
Time is passing from left to right, so VC is later than VIN which is preceeded by VR. Note as well
that VR is 90◦ ahead of VC .
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consider the circuit to be a voltage divider (where the voltage is divided
between the capacitor and the resistor) then there will be a much larger
voltage drop across the capacitor than the resistor. At DC (0 Hz) the XC is
infinite, and the voltage across the capacitor is equal to the voltage output
from the function generator. Another way to consider this is, if XC is infinite,
then there is no current flowing through the resistor, therefore there is no
voltage drop across is (because 0 V = 0 A * R). If the frequency is higher,
then the reactance is lower, and we have a smaller voltage drop across the
capacitor. The higher we go, the lower the voltage drop until, at infinity
Hz, we have 0 V.

If we were to plot the voltage drop across the capacitor relative to the
frequency, it would, therefore produce a graph like Figure 2.18.

Figure 2.18: The output level of the voltages across the resistor and capacitor relative to the voltage
of the sine wave generator in Figure 2.15 for various frequencies.

Note that we’re specifying the voltage as a level relative to the input of
the circuit, expressed in dB. The frequency at which the output (the voltage
drop across the capacitor) is 3 dB below the input (that is to say -3 dB) is
called the cutoff frequency (fc) of the circuit. (We may as well start calling
it a filter, since it’s filtering different frequencies differently... since it allows
low frequencies to pass through unchanged, we’ll call it a low-pass filter.)

The fc of the low-pass filter can be calculated if you know the values of
the resistor and the capacitor. The equation is shown in Equation 2.82:

fc =
1

2πRC
(2.82)

(Note that if we put the values of the resistor and the capacitor from
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Figure 1 – R = 1000Ω and C = 1 microfarad) into this equation, we get 159
Hz – the same frequency where R = XC)

Where fc is expressed in Hz, R is inΩ and C is in Farads.
At frequencies below fc / 10 (1 decade below fc – musicians like to think

in octaves – 2 times the frequency – engineers like to think in decades, 10
times the frequency) we consider the output to be equal to the input –
therefore at 0 dB. At frequencies 1 decade above fc and higher, we drop
6 dB in amplitude every time we go up 1 octave, so we say that we have
a slope of -6 dB per octave (this is also expressed as -20 dB per decade –
means the same thing)

We also have to consider, however that the change in voltage across
the capacitor isn’t always keeping up with the change in voltage across the
function generator. In fact, at higher frequencies, it lags behind the input
voltage by 90◦. Up to 1 decade below fc, we are in phase with the input,
at fc, we are 45◦ behind the input voltage, and at 1 decade above fc and
higher, we are lagging by 90◦. The resulting graph looks like Figure 2.19 :

Figure 2.19: The phase relationship between the voltages across the resistor and the capacitor
relative to the voltage across the function generator with different frequencies.

As is evident in the graph, a lag in the sine wave is expressed as a positive
phase, therefore the voltage across the capacitor goes from 0◦ to 90◦ relative
to the input voltage.

While all that is going on, what’s happening across the resistor? Well,
since we’re considering that this circuit is a fancy type of voltage divider, we
can say that if the voltage across the capacitor is high, the voltage across the
resistor is low – if the voltage across the capacitor is low, then the voltage
across the resistor is high. Another way to consider this is to say that if the
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frequency is low, then the current through the circuit is low (because XC is
high) and therefore Vr is low. If the frequency is high, the current is high
and Vr is high.

The result is Figure 4, showing the voltage across the resistor relative to
frequency. Again, we’re plotting the amplitude of the voltage as it relates
to the input voltage, in dB.

Now, of course, we’re looking at a high-pass filter. The fc is again the
frequency where we’re at -3 dB relative to the input, and the equation to
calculate it is the same as for the low-pass filter.

fc =
1

2πRC
(2.83)

The slope of the filter is now 6 dB per octave (20 dB per decade) because
we increase by 6 dB as we go up one octave... That slope holds true for
frequencies up to 1 decade below the fc. At frequencies above fc, we are at
0 dB relative to the input.

The phase response is also similar but different. Now the sine wave that
we see across the resistor is ahead of the input. This is because, as we
said before, the current feeding the capacitor preceeds its voltage by 90◦.
At extremely low frequencies, we’ve established that the voltage across the
capacitor is in phase with the input – but the current preceeds that by 90◦...
therefore the voltage across the resistor must preceed the voltage across the
capacitor (and therefore the voltage across the input) by 90◦ (up to fc /
10)...

Again, at fc, the voltage across the resistor is 45◦ away from the input,
but this time it is ahead, not behind.

Finally, at fc ∗ 10 and above, the voltage across the resistor is in phase
with the input. This all results in the phase response graph shown in Figure
5.

As you can see, the voltage across the resistor and the voltage across the
capacitor are always 90◦ out of phase with each other, but their relationships
with the input voltage change.

There’s only one thing left that we have to discuss... this is an apparent
conflict in what we have learned (though it isn’t really a conflict...) We
know that the fc is the point where the voltage across the capacitor and the
voltage across the resistor are both -3 dB relative to the input. Therefore
the two voltages are equal – yet, when we add them together, we go up by
3 dB and not 6 dB as we woudl expect. This is because the two waves are
90◦ apart – if they were in phase, they would add to produce a gain of 6 dB.
Since they are out of phase by 90◦, their sum is 3 dB.
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2.5.1 Another way to consider this...

We know that the voltage across the capacitor and the voltage across the
resistor are always 90◦ apart at all frequencies, regardless of their phase
relationships to the input voltage.

Consider the Resistance and the Capacitive reactance as both providing
components of the impedance, but 90◦ apart. Therefore, we can plot the
relationship between these three using a right triangle as is shown in Figure
2.21.

Figure 2.20: The triangle representing the relationship between the resistance, capacitive reactance
and the impedance of the circuit. Note that, as frequency changes, only R remains constant.

At this point, it should be easy to see why the impedance is the square
root of the sum of the squares of R and XC . In addition, it becomes in-
tuitive that, as the frequency goes to infinity Hz, XC goes to zero and the
hypotenuse of the triangle, Z, becomes the same as R. If the frequency goes
to 0 Hz (DC), XC goes to infinityΩ as does Z.

Go back to the concept of a voltage divider using two resistors. Re-
member that the ratio of the two resistances is the same as the ratio of the
voltages across the two resistors.

R1

R2
=

V1

V2
(2.84)

If we consider the RC circuit in Figure 2.15, we can treat the two com-
ponents in a similar manner, however the phase change must be taken into
consideration. Figure 2.21 shows a triangle exactly the same as that in Fig-
ure 2.20 – now showing the relationship bewteen the input voltage, and the
voltages across the resistor and the capacitor.

So, once again, we can see that, as the frequency goes up, the voltage
across the capacitor goes down until, at infinity Hz, the voltage across the



2. Analog Electronics 95

Figure 2.21: The triangle representing the relationship bewteen the input voltage and the outputs
of the high-pass and low-pass filters. Note that, as frequency changes, only VIN remains constant.

cap is 0 V and VIN = VR.
Notice as well, that this triangle gives us the phase relationships of the

voltages. The voltage across the Resistor and the Capacitor are always 90◦

apart, but the phase of these two voltages in relation to the input voltage
changes according to the value of the capacitive inductance which is, in turn,
determined by the capacitance and the frequency.

So, now we can see that, as the frequency goes down, the voltage across
the resistor goes down, the voltage across the resistor approaches the input
voltage, the phase of the low-pass filter approaches 90◦ and the phase of
the high-pass filter approaches 0◦. As the frequency goes up, the voltage
across the capacitor goes down, the voltage across the resistor appraoches
the input voltage and the phase of the low-pass filter approaches 0◦ and the
phase of the high-pass filter approaches 90◦.

TO BE ADDED LATER: Discussion here about how to use
complex numbers to describe the contributions of the components
in this system

2.5.2 Suggested Reading List
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2.6 Electromagnetism

Once upon a time, you did an experiment, probably around grade 3 or so,
where you put a piece of paper on top of a bar magnet and sprinkled iron
filings on the paper. The result was a pretty pattern that spread from pole
to pole of the magnet. The iron filings were aligning themselvesalong what
are called magnetic lines of force. These lines of force spread out around
a magnet and have some effect on the things around them (like iron filings
and compasses for example...) These lines of force have a direction – they
go from the north pole of the magnet to the south pole as shown in Figures
2.22 and 2.23.

Figure 2.22: Magnetic lines of force around a bar magnet.

It turns out that there is a relationship between current in a wire and
magnetic lines of force. If we send current through a wire, we generate
magentic lines of force that rotate around the wire. The more current, the
more the lines of force expand out from the wire. The direction of the
magnetic lines of force can be calculated using what is probably the first
calculator you ever used... your right hand... Look at Figure 2.24. As you
can see, if your thumb points in the direction of the current and you wrap
your fingers around the wire, the direction your fingers wrap is the direction
of the magnetic field. (You may be asking yourself “so what!?’ – but we’ll
get there...)

Let’s then, take this wire and make a spring with it so that the wire at
one point in the section of spring that we’ve made is adjacent to another
point on the same wire. The direction of the magnetic field in each section
of the wire is then reinforced by the direction of the adjacent bits of wire
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Figure 2.23: Magnetic lines of force around a horseshoe magnet.

Figure 2.24: Right hand being used to show the direction of rotation of the magnetic lines of force
when you know the direction of the current.
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and the whole thing acts as one big magnetic field generator. When this
happens, as you can see below, the coil has a total magnetic field similar to
the bar magnet in the diagram above.

We can use our right hand again to figure out which end of the coil is
north and which is south. If you wrap your fingers around the coil in the
direction of the current, you will find that your thumb is pointing north, as
is shown in Figure 2.25. Remember again, that, if we increase the current
through the wire, then the magnetic lines of force move farther away from
the coil.

Figure 2.25: Right hand being used to find the polarity of the magnetic field around a coil of wire
(the thumb is pointing towards the North pole) when you know the direction of the current around
the coil (the fingers are wrapping around the coil in the same direction as the current).

One more interesting relationship between magnetism and current is that
if we move a wire in a magnetic field, the movement will create a current
in the wire. Essentially, as we cut through the magnetic lines of force, we
cause the electrons to move in the wire. The faster we move the wire, the
more current we generate. Again, our right hand helps us determine which
way the current is going to flow. If you hold your hand as is shown in Figure
2.26, point your index finger in the direction of the magnetic lines of force
(N to S...) and your thumb in the direction of the movement of the wire
relative to the lines of force, your middle finger will point in the direction of
the current.
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Figure 2.26: Right hand being used to find the current though a wire when it is moving in a
magnetic field. The index finger points in the direction of the lines of magnetic force, the thumb
is pointing in the direction of movement of the wire and the middle finger indicates the direction
of current in the wire.

2.6.1 Suggested Reading List

Thanks to Mr. Francois Goupil for his most excellent hand-modelling.
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2.7 Inductors

We saw in Section 2.6 that if you have a piece of wire moving through a
magnetic field, you will induce current in the wire. The direction of the
current is dependent on the direction of the magnetic lines of force and the
direction of movement of the wire. Figure 2.30 shows an example of this
effect.

N

S

Figure 2.27: A wire moving through a constant magnetic field causing a current to be induced in the
wire. The black arrows show the direction of the magnetic field, the red arrows show the direction
of the movement of the wire and the blue arrow shows the direction of the electical current.

We also saw that the reverse is true. If you have a piece of wire with
current running through it, then you create a magnetic field around the wire
with the magnetic lines of force going in circles around it. The direction of
the magnetic lines of force is dependent on the direction of the current. The
strength of the magnetic field and, therefore, the distance it extends from
the wire is dependent on the amount of current. An example of this is shown
in Figure 2.28 where we see two different wires with two different magnetic
fields due to two different currents.
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Figure 2.28: Two independent wires with current running through them. The wire on the right has
a higher current going through it than the one on the left. Consequently, the magnetic field around
it is stronger and therefore extends further from the wire.

What happens if we combine these two effects? Let’s take a piece of
wire and connect it to a circuit that let’s us have current running through
it. Then, we’ll put a second piece of wire next to the first piece as is shown
in Figure 2.29. Finally, we’ll increase the current over time, so that the
magnetic field expands outwards from the first wire. What will happen?
The magnetic lines of force will expand outwards from around the first wire
and cut through the second wire. This is essentially the same as if we had a
constant magnetic field between two magnets and we moved the wire through
it – we’re just moving the magnetic field instead of the wire. Consequently,
we’ll induce a current in the second wire.

Figure 2.29: The wire on the right has a current induced in it because the magnetic field around
the wire on the right is expanding. This is happening because the current through the wire on the
left is increasing. Notice that the induced current is in the opposite direction to the current in the
left wire. This diagram is essentially the same as the one shown in Figure 2.30.

Now let’s go a step further and put a current through the wire on the
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Figure 2.30: The wire on the right has a current induced in it because the magnetic field around
the wire on the right is expanding. This is happening because the current through the wire on the
left is increasing. Notice that the induced current is in the opposite direction to the current in the
left wire. This diagram is essentially the same as the one shown in Figure 2.29
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right that is always changing – the most common form of this signal in
the electrical world is a sinusoidal waveform that alternates back and forth
between positive and negative current (meaning that it changes direction).
Figure 2.31 shows the result when we put an everyday AC signal into the
wire on the left in Figure 2.30.

Figure 2.31: The relationship between the current in the two wires. The top plot shows the current
in the wire on the left in Figure 2.30. The middle plot also shows the rate of change (the slope) of
the top plot, therefore it is a plot of the velocity (the speed and direction of travel) of the magnetic
field. The bottom plot shows the induced current in the wire on the right in the same figure. Note
that the plots are not drawn on any particular scale in the vertical axes – so you shouldn’t assume
that you’ll get the same current in both wires, but the phase relationship is correct.

Let’s take a piece of wire and wind it into a coil consisting of two turns
as is shown in Figure 2.32. One thing to beware of is that we aren’t just
wrapping naked wire in a coil - we have to make sure that adjacent sections
of the wire don’t touch each other, so we insulate the wire using a thin
insulation.

Now think about Figure 2.30 as being just the top two adjacent sections
of wire in the coil in Figure 2.32. This should raise a question or two. As
we saw in Figure 2.30, increasing the current in one of the wires results in
a current in the other wire in the opposite direction. If these two wires are
actually just two sections of the same coil of wire, then the current we’re
putting through the coil goes through the whole length of wire. However, if
we increase that current, then we induce a current in the opposite direction
on the adjacent wires in the coil, which, as we know, is the same wire.
Therefore, by increasing the current in the wire, we increase the induced
current pushing in the opposite direction, opposing the current that we’re
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Figure 2.32: A piece of wire wound into a coil with only two turns.

putting in the wire. This opposing current results in a measurable voltage
difference across the coil that is called back electromotive force or back EMF .
This back EMF is is proportional to the change (and thefore the slope, if
we’re looking at a graph) in the current, not the current itself, since it’s
proportional to the speed at which the wire is cutting through the magnetic
field. Therefore, the amount that the coil (which we’ll now start calling
an inductor because we are inducing a current in the opposite direction),
opposes the AC voltage applied to it is proportional to the frequency, since
the higher the frequency, the faster the change in voltage.

This effect generates something called inductive reactance, abbreviated
XL which is measured in Ω. It’s similar to capacitive reactance in that
it opposes a change in current (whereas a capacitor opposes a change in
voltage) without consuming power. This time, however, the roles of current
and voltage are reversed in that, when we apply a change in current to the
inductor, the current through it changes slowly, but the voltage across it
changes quickly.

The inductance of an inductor is given in Farads, abbreviated F . Gener-
ally speaking, the bigger the inductance in Farads, the bigger the inductor
has to be physically. There is one trick that is used to make the inductor a
little more efficient, and that is to wrap the coil around an iron core. Re-
member that the wire in the coil is insulated (usually with a kind of varnish
to keep the insulation really thin, and therefore getting the sections of wire
as close together as possible to increase efficiency. Since the wire is insu-
lated, the only thing that the iron core is doing is to act as a conductor for
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the magnetic field. This may sound a little strange at first – so far we have
only talked about materials as being conductors or insulators of electrical
current. However, materials can also be classified as how well they conduct
magnetic fields – iron is a very good magnetic conductor.

Similar to a capacitor, the inductive reactance of an inductor is depen-
dent on the inductance of the device, in Farads and the frequency of the
sinusoidal signal being sent through it. This is shown in Equation 2.85.

XL = 2πfL = ωL (2.85)

Where L is the inductance of the inductor, in Farads. As can be seen, the
inductive reactance, XL, is proportional to both frequency and inductance
(unlike a capacitor, in which XC is inversely proportional to both frequency
and capacitance).

2.7.1 Impedance

Let’s put an inductor in series with a resistor as is shown in Figure 2.33.

R

L Vout

Figure 2.33: A resistor and an inductor in series.

Just like the case of a capacitor and a resistor in series (see section 2.4),
the resulting load on the signal generator is an impedance, the result of
a combination of a resistance and an inductance. Similar to what we saw
with capacitors, there will be a phase difference of 90◦ between the voltages
across the inductor and the resistor. However, unlike the capacitor, the
voltage across the inductor is 90◦ ahead of the voltage across the resistor.

Since the resistance and the inductive reactance are 90◦ apart, we can
calculate the total impedance – the load on the signal generator using the
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Pythagorean Theorem shown in Equation 2.86 and explained in Section 2.5.

Z =
√

R2 + X2
L (2.86)

2.7.2 RL Filters

We saw in Section 2.5 that we can build a filter using the relationship be-
tween the resistance of a resistor and the capacitive inductance of a capaci-
tor. The same can be done using a resistor and an inductor, making an RL
filter instead of an RC filter.

Connect an inductor and a resistor in series as is shown in Figure 2.33
and look at the voltage difference across the inductor as you change the
frequency of the signal generator. If the frequency is very low, then the
reactance of the inductor is practically 0 Ω, so you get almost no voltage
difference across it – therefore no output from the circuit. The higher the
frequency, the higher the reactance. At some frequency, the reactance of the
inductor will be the same as the resistance of the resistor, and the voltages
across the two components are the same. However, since they are 90◦ apart,
the voltage across either one will be 0.707 of the input voltage (or -3 dB).
As we go higher in frequency, the reactance goes higher and higher and we
get a higher and higher voltage difference across the inductor.

This should all sound very familiar. What we have done is to create
a first-order high-pass filter using a resistor and an inductor, therefore it’s
called an RL filter. If we wanted a low-pass filter, then we use the voltage
across the resistor as the output.

The cutoff frequency of an RL filter is calculated using Equation 2.87.

fc =
1

2πRL
(2.87)

2.7.3 Inductors in Series and Parallel

Finding the total inductance of a number of inductors connected in series
or parallel behave the same way as resistors.

If the inductors are connected in series, then you add the individual
inductances as in Equation 2.88.

Ltotal = L1 + L2 + L3 + · · ·+ Ln (2.88)

If the inductors are connected in parallel, then you use Equation 2.89.
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Ltotal =
1

1
L1

+ 1
L2

+ 1
L3

+ · · ·+ 1
Ln

(2.89)

2.7.4 Inductors vs. Capacitors

So, if we can build a filter using either an RC circuit or an RL circuit, which
should we use, and why? They give the same frequency and phase responses,
so what’s the difference?

The knee-jerk answer is that we should use an RC circuit instead of an
RL circuit. This is simply because inductors are bigger and heavier than
capacitors. You’ll notice on older equipment that RL circuits were frequently
used. This is because capacitor manufacturing wasn’t great - capacitors
would leak electrolytic over time, thus changing their capacitance and the
characteristics of the filter. An inductor is just a coil, so it doesn’t change
over time. However, modern capacitors are much more stable over long
periods of time, so we can trust them in circuits.

2.7.5 Suggested Reading List
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2.8 Transformers

If we take our coil and wrap it around a bar of iron, the iron acts as a con-
ductor for the magnetic lines of force (not a conductor for the electricity...
our wire is insulated...) therefore the lines are concentrated within the bar
(the second right hand rule still applies for figuring out which way is north –
but remember that if we’re using an AC waveform, the magnetic is changing
in strength and polarity according to the change in the current.) Better yet,
we can bend our bar around so it looks like a donut (mmmmmm donuts...)
– that way the lines of force are most concentrated all the time. If we then
wrap another coil around the bar (now donut-shaped, also known by topolo-
gists as toroidal) then the magnetic lines of force expanding and contracting
around the bar will cut through the second coil. This will generate an alter-
nating current in the second coil, just because it’s sitting there in a moving
magnetic field. The relationship between these two coils is interesting...

It turns out (we’ll find out in a minute that that was just a pun...) that
the power that we send into the input coil (called the primary coil) of this
thing (called a transformer) is equal to the power that we get out of the
second coil (called the secondary coil). (this is not entirely true – if it were,
that would mean that the transformer is 100 percent efficient, which is not
the case... but we’ll pretent that it is...)

Also, the ratio of the primary voltage to the secondary voltage is equal
to the ratio of the number of turns of wire in the primary coil to the number
of turns of wire in the secondary coil. This can also be expressed as an
equation :

Vprimary

Vsecondary
=

Turnsprimary

Turnssecondary
(2.90)

Given these two things... we can therefore figure out how much current
is flowing into the transformer based on how much current is demanded of
the secondary coil. Looking at the diagram below :

We know that we have 120Vrms applied to the primary coil. We therefore
know that the voltage across the secondary coil and therefore across the
resistor, is 12Vrms because 120Vrms

12Vrms
= 10Turns

1Turn .
If we have 12Vrms across a 15 kohm resistor, then there is 0.8mArms

flowing through it (V=IR). Therefore the power consumed by the resistor
(therefore the power output of the secondary coil) is 9.6mWrms (P=VI).
Therefore the power input of the transformer is also 9.6mWrms. Therefore
the current flowing into the primary coil is 0.08mArms.
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15 kΩ

10:1

120 Vrms

Figure 2.34: A 120 Vrms AC voltage source connected to the primary coil of a transformer with a
10:1 turns ratio. The secondary coil is connected to (or “loaded with”) a 15 kΩ resistor.

Note that, since the voltage went down by a factor of 10 (the turns ratio
of the transformer) as we went from input to output, the current went up
by the same factor of 10. This is the result of the powerin being equal to
the powerout.

You can have more than 1 secondary coil on a transformer. In fact, you
can have as many as you want – the power into the primary coil will still be
equal to the power of all of the secondary coils. We can also take a tap off
the secondary coil at its half-way point. This is exactly the same as if we had
two secondary coils with exactly the same number of turns, connected to
each other. In this case, the centre tap (wire connected to the the half-way
point on the coil) is always half-way in voltage between the two outside legs
of the coil. If, therefore, we use the centre tap as our reference, arbitrarily
called 0 V (or ground...) then the two ends of the coil are always an equal
voltage “away” from the ground, but in opposite directions – therefore the
two AC waves will be opposite in polarity.

2.8.1 Suggested Reading List
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2.9 Diodes and Semiconductors

Back in the second chapter, we said that some substances have too few
electrons in their outer valence shell. These electrons are therefore free to
move on to the adjacent atom if we give them a nudge with an extra electron
from a negative battery terminal – we then call this substance a conductor,
because it conducts the flow of electricity.
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Copper (Cu 29)

Figure 2.35: Diagram of a copper atom. Notice that there is one lone electron out there in the
outer shell.

If the outer valence shell has too many electrons, they don’t like mov-
ing (too many things to pack... moving vans are too expensive, and all
their friends go to this school...) so they don’t – we call those substances
insulators.

There is a class of substances that have an in-between number of elec-
trons in their outer valence shell. These substances (like silicon, germanium
and carbon...) are neither conductors nor insulators – they lie somewhere in
between so we call them semiconductors(not insuductors nor consulators...)

Now take a look at Figure 2.37. As you can see, when you put a bunch
of silicon atoms together, they start sharing outer electrons – that way each
atom “thinks” that it has 8 electrons in its outer shell, but each one needs
the 4 adjacent atoms to accomplish this

Compare Figure 2.36, which shows the structure of Silicon, to Figures
2.38 and 2.39 which show Arsenic and Gallium. The interesting thing about
Arsenic is that it has 5 electrons in its outer shell (1 more than 4). Gallium
has 3 electrons in its outer shell. We’ll see why this is interesting in a
second...

Recipe :
1 cup arsenic



2. Analog Electronics 111

N eee

e
e

e

ee
e

e

e

e

e e

Silicon (Si 14)

Figure 2.36: Diagram of a silicon atom. Notice that there are 4 electrons in the outer shell.

999 999 cups silicon
Stir well and bake until done.
Serves lots.
If you follow those steps carefully (do NOT sue me because I told you to

play with arsenic...) you get a substance called arsenic doped silicon. Since
arsenic has one too many electrons floating around its outer shell, then this
new substance will have 1 extra electron per 1 000 000 atoms. We call this
substance N-silicon or an N-type material (because electrons are negative)
in spite of the fact that the substance really doesn’t have a negative charge
(because the extra electrons are equalled in opposite charge by the extra
proton in each Arsenic atom’s nucleus.

If you repeat the same recipe, replacing the arsenic with gallium, you
wind up with 1 atom per 1 000 000 with 1 too few electrons. This makes
P-silicon or P-type material (P because it’s positive... Well, it’s not really
positive because the Gallium atom has only 3 protons in it, so it’s balanced.)

Now, let’s take a chunk of N-type material and glue it to a similarly sized
chunk of P-type material as in the diagram below. (We’ll also run a wire
out of each chunk...) The extra electrons in the N-type material near the
joint between the two materials see some new homes to move into across the
street (the lack of electrons in the P-type material) and pack up and move
out – this creates a barrier of sorts around the joint where there are no extra
electrons floating around – therefore it is an insulating barrier. This doesn’t
happen for the entire collection of electrons and holes in the two materials
because the physical attraction just isn’t great enough.

If we connect the materials to a battery as shown below, with the positive
terminal connected to the N-type material and the negative terminal to the
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Figure 2.37: Diagram of a collection of silicon atoms. Note the sharing of outer electrons.
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Figure 2.38: Diagram of a Arsenic atom. Notice that there are 5 electrons in the outer shell.
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Figure 2.39: Diagram of a Gallium atom. Notice that there are 3 electrons in the outer shell.
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Figure 2.40: Diagram of N-type material. Notice that the extra “unattached” electron orbiting the
Arsenic atom.
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Figure 2.41: Diagram of P-type material. Notice that the “missing” electron orbiting the Gallium
atom.

Figure 2.42: A chunk of N-type material glued to a chunk of P-type material.
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P-type material through a resistor, the electrons in the N-type material will
get attracted to the holes in the positive terminal and the electrons in the
negative terminal will move into the holes in the P-type material. Once this
happens, there are no spare electrons floating around, and no current can
pass through the system. This situation is called reverse-biasing the device
(called a diodediode). When the circuit is connect in this way, no current
flows through the diode.

Figure 2.43: A reverse-biased diode. Note that no current will flow through the circuit.

If we connect the battery the other way, with the negative terminal to
the N-type material and the positive terminal to the P-type material, then
a completely different situation occurs. The extra electrons in the battery
terminal push the electrons in the N-type material across the barrier, into
the P-type material where they are drawn into the positive terminal. At the
same time, of course, the holes (and therefore the current) is flowing in the
opposite direction. This situation is called forward biasing the diode, which
allows current to pass through it. There’s only one catch with this electrical
one-way gate. The diode needs some amount of voltage across it to open
up and stay open. If it’s a silicon diode (as most are...) then, you’ll see a
drop of about 0.6 V or 0.7 V across it – irrespective of current or voltage
applied to the circuit (the remainder of the voltage drop will be across the
resistor, which also determines the current). If the diode is made of doped
germanium, then you’ll only need about 0.3 V to get things running.

Of course, we don’t draw all of those -’s and +’s on a schematic, we just
indicate a diode using a little triangle with a cap on it. The arrow points
in the direction of the current flow, so Figure 2.45 below is a schematic
representation of the forward-biased diode in the circuit shown in Figure
2.44.

Now, remember that the diode “costs” 0.6 V to stay open, therefore if
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Figure 2.44: A forward-biased diode with current flowing through it.

Figure 2.45: A forward-biased diode with current flowing through it just like in Figure 2.44. Note
that current flows in the direction of the arrow, and will not flow in the opposite direction.
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the voltage supply in Figure 2.45 is a 10 V DC source, we will see a 9.4 V
DC difference across the resistor (because 0.6 V is lost across the diode). If
the voltage source is 100 V DC, then there will be a 99.4 V DC difference
across the resistor.

2.9.1 The geeky stuff:

Let’s think back to the top of the page. The way we first considered a diode
was as a 1-way gate for current. If we were to graph the characteristics of
this “ideal diode” the result would look like Figure 2.46.

Figure 2.46: A graph showing the characteristics of an ideal diode. Notice how, if the voltage is
positive (and therefore the diode is forward biased) you can have an infinite current going through
the diode. Also, it does not require any voltage to open the diode – if the positive voltage is
anything over 0V, the current will flow. If the voltage is negative (and therefore the diode is
reverse biased), no current flows through the system. Also note that the current goes infinite
because there are no resistors in the circuit. If a resistor were placed in series with the diode, it
would act as a “current limiter” resulting in a current that went to a finite amount determined by
the supply voltage and the resistance. (V=IR...)

We then learned that this didn’t really represent the real world – in fact,
the diode needs a little voltage in order to turn on – about 0.6 V or so.
Therefore, a better representation of this characteristic is shown in Figure
2.47.

In fact, this isn’t really a good representation of the real-world case ei-
ther. The problem with this graph is that it leaves out a couple of important
little details about the diode’s behaviour. Take a look at Figure 2.48 which
shows a good representation of the real-world diode.

There are a couple of things to notice here.
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Figure 2.47: A graph showing the characteristics of a diode with slightly more realistic character-
istics. Notice how you have to have about a small voltage applied to the diode before you can get
current through it. The specific amount of voltage that you’ll need depends on the materials used
to make the diode as well as the particular characteristics of the one that you buy (in a package of
5 diodes, every one will be slightly different). If the voltage is negative (and therefore the diode is
reverse biased), no current flows through the system.

Figure 2.48: A graph showing the real-world characteristics of a diode.
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Notice that the small turn-on voltage is still there, but notice that the
current doesn’t suddenly go from 0 amps to infinity amps when we pass
that voltage. In fact, as soon as we go past 0 V, a very small amount of
current will start to trickle through the diode. This amount is negligible
in day-to-day operation, but it does exist. As we get closer and closer to
the turn-on voltage, the amount of current trickling through gets bigger and
bigger until it goes very big very quickly. The result on the graph is that
the plot near the turn-on voltage is a curve, not a right angle as is shown in
the simplification in Figure 2.47.

Also notice that when the diode is reverse-biased (and therefore the
voltage is negative) there is also a very small amount of trickle current back
through the diode. We tend to think of a reverse-biased diode as being a
perfect switch that doesn’t permit any current back through it, but in the
real world, a little will get through.

The last thing to notice is the big swing to negative infinity amps when
the voltage gets very negative. This is called the reverse breakdown voltage
and you do not want to reach it. This is the point where the diode goes up
in smoke and current runs through it whether you want it to or not.

2.9.2 Zener Diodes

There’s a special type of diode that is supposed to be reversed biased. This
device, called a Zener Diode has the characteristics shown in Figure 2.49.

Figure 2.49: A graph showing the idealized characteristics of a zener diode.
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Now, the breakdown voltage of the zener is a predicted value – in addition,
when the zener breaks down and lets current through it in the opposite
direction, it doesn’t go up in smoke. When you buy a zener, it’s rated
for its breakdown voltage. So now, if you put the zener in series with a
resistor and the zener is reverse biased, if the voltage applied to the circuit
is bigger than the rated breakdown voltage, then the zener will ensure that
the voltage across it is its rated voltage and the remaining voltage is across
the resistor. This is useful in a bunch of applications that we’ll see later on.

Figure 2.50: A circuit showing how a zener diode can be used to “regulate” one voltage to another.
In order for this circuit to work, the voltage supply on the left must be a higher voltage than the
rated breakdown voltage of the zener. The voltage across the resistor on the right will be the rated
breakdown voltage of the zener. The voltage across the resistor on the left will be equal to the level
of the voltage supply minus the rated breakdown voltage of the zener diode. Also, we’re assuming
that R1 is small compared to R2 so that the voltage across R2 without the zener in place would
be normally bigger than the breakdown voltage of the zener.

So, for example, if the rated breakdown voltage of the zener diode in
Figure 2.50 is 5.6 V, and the voltage supply is a 9 V battery, then the
voltage across R2 will be 5.6V (because you can’t have a higher voltage
than that across the zener) and the voltage across R1 will be 9V – 5.6V
= 3.4V. (Remember, we’re assuming that the voltage across R2 would be
bigger than 5.6V if the zener wasn’t there...)

Note as well that the graph in Figure 2.49 shows the characteristics of
an ideal zener diode. The real-world characteristics suffer from the same
trickle problems as normal diodes. For more info on this, a good book to
look at is the book by Madhu in the Suggested Reading List below.
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2.9.3 Suggested Reading List

Electronics: Circuits and Systems Swaminathan Madhu 1985 by Howard W.
Sams and Co. Inc. ISBN 0-672-21984-0
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2.10 Rectifiers and Power Supplies

What use are diodes to us? Well, what happens if we replace the battery
from last chapter’s circuit with an AC source as shown in the schematic
below?

Figure 2.51: Circuit with AC voltage source, 1 diode and 1 resistor.

Now, when the voltage output of the function generator is positive rela-
tive to ground, it is pushing current through the forward-biased diode and
we see current flowing through the resistor to ground. There’s just the small
issue of the 0.6 V drop across the diode, so until the voltage of the function
generator reaches 0.6 V, there is no current, after that, the voltage drop
across the resistor is 0.6 V less than the function generator’s voltage level
until we get back to 0.6 V on the way down...

When the voltage of the function generator is on the negative half of the
wave, the diode is reverse-biased and no current flows, therefore there is no
voltage drop across the resistor.

This circuit is called a half-wave rectifier because it takes a wave that is
alternating between positive and negative voltages and turns it into a wave
that has only positive voltages – but it throws away half of the wave...

If we connect 4 diodes as shown in the diagram below, we can use our
AC signal more efficiently.

Now, when the output at the top of the function generator is positive,
the current is pushed through to the diodes and sees two ways to go – one
diode (the green one) will allow current through, while the other (red) one,
which is reverse biased, will not. The current flows through the green diode
to a junction where it chooses between a resistor and another reverse-biased
diode (the blue one) ... so it goes through the resistor (note the direction of
the current) and on to another junction between two diodes. Again, one of
these diodes is reverse-biased (red) so it goes through the other one (yellow)
back to the ground of the function generator.



2. Analog Electronics 124

Figure 2.52: Comparison of voltage of function generator in blue and voltage across the resistor in
red.

Figure 2.53: A smarter circuit for rectifying an AC waveform.
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Figure 2.54: The portion of the circuit that has current flow for the positive portion of the waveform.
Note that the current is flowing downwards through the resistor, therefore VR will be positive.

When the function generator is outputting a negative voltage, the current
follows a different path. The current flows from ground through the blue
diode, through the resistor (note that the direction of the current flow is the
same – therefore the voltage drop is of the same polarity) through the red
diode back to the function generator.

Figure 2.55: The portion of the circuit that has current flow for the positive portion of the waveform.
Note that the current is flowing downwards through the resistor, therefore VR will still be positive.

The important thing to notice after all that tracing of signal is that
the voltage drop across the resistor was positive whether the output of the
function generator was positive or negative. Therefore, we are using this
circuit to fold the negative half of the original AC waveform up into the
positive side of the fence. This circuit is therefore called a full-wave rectifier
(actually, this particular arrangement of diodes has a specific name – a bridge
rectifier) Remember that at any given time, the current is flowing through
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two diodes and the resistor, therefore the voltage drop across the resistor
will be 1.2 V less than the input voltage (0.6 V per diode – we’re assuming
silicon...)

Figure 2.56: The input voltage and the output voltage of the bridge rectifier. Note that the output
voltage is 0 V when the absolute value of VIN is less than 1.2 V, or 1.2 V below the input voltage
when the absolute value of VIN is greater than 1.2 V.

Now, we have this weird bumpy wave – what do we do with it? Easy... if
we run it through a type of low-pass filter to get rid of the spiky bits at the
bottom of the waveform, we can turn this thing into something smoother.
We won’t use a “normal” low-pass filter from two weeks ago, however... we’ll
just put a capacitor in parallel with the resistor. What will this do? Well,
when the voltage potential of the capacitor is less than the output of the
bridge rectifier, the current will flow into the capacitor to charge it up to
the same voltage as the output of the rectifier. This charging current will be
quite high, but that’s okay for now... trust me... When the voltage of the
bridge rectifer drops down, the capacitor can’t discharge back into it, be-
cause the diodes are now reverse-biased, so the capacitor discharges through
the resistor according to their time constant (remember?). Hopefully, before
it gets time to discharge, the voltage of the bridge rectifier comes back up
and charges up the capacitor again and the whole cycle repeats itself.

The end result is that the voltage across the resistor is now a slightly
weird AC with a DC offset, as is shown in Figure 2.57.

The width of the AC of this wave is given as a peak-peak measurement
which is a percentage of the DC content of the wave. The smaller the
percentage, the smoother and therefore better, the waveform.

If we know the value of the capacitor and the resistor, we can calculate
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Figure 2.57: “DC” output of filtered bridge rectifier output showing ripple caused by the capacitor
slowly discharging between cycles.

the ripple using the Equation 2.91 :

Ripplepeak−peak =
100%

4fRC
√

3
(2.91)

where f is the frequency of the original waveforem in Hz, R is the value
of the resistor inΩ and C is the value of the capacitor.

All we need to do, therefore, to make the ripple smaller, is to make the
capacitor bigger (the resistor is really not a resistor in a real power supply,
its actually something like a lightbulb or a portable CD player...)

Generally, in a real power supply, we’d add one more thing called a
voltage regulator as is shown in Figures 8 and 9. This is a magic little
device which, when fed a voltage above what you want, will give you what
you want, burning off the excess as heat. They come in two flavours, negative
an positive, the positive ones are designated 78XX where XX is the voltage
(for example, a 7812 is a + 12 V regulator) the negative ones are designated
79XX (ditto... 7918 is a -18 V regulator.) These chips have 3 pins, one input,
one ground and one output. You feed too much voltage into the input (i.e.
8.5 V into a 7805) and the chip looks at its ground, gives you exactly the
right voltage at the output and gets toasty... If you use these things (you
will) you’ll have to bolt it to a little radiator or to the chassis of whatever
you’re building so that the heat will dissapate.

A couple of things about regulators : if you reverse-bias them (i.e. try
and send voltage in its output) you’ll break it... probably gonna see a bit
of smoke too... Also, they get cranky if you demand too much current from
their output. Be nice. (This is why you won’t see regulators in a power
supply for a power amp which needs lots-o-current...)
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So, now you know how to build a real-live AC to DC power supply just
like the pros. Just use an appropriate transformer instead of a function
generator, plug the thing into the wall (fuses are your friend...) and throw
away your batteries. The schematic below is a typical power supply of any
device built before switching power supplies were invented... (we’re not
going to even try to figure out how THEY work...)

78XX +V

0 V

fuse

switch

transformer

bridge 
rectifier

smoothing 
capacitor voltage 

regulator

Figure 2.58: Unipolar power supply.

Below is another variation of the same power supply, but this one uses
the centre-tap as the ground, so we get symmetrical negative and positive
DC voltages output from the regulators.

78XX +V

0 V

fuse

switch

centre-tapped 
transformer bridge 

rectifier

smoothing 
capacitors voltage 

regulators

79XX +V

Figure 2.59: Bipolar power supply.
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Suggested Reading List
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2.11 Transistors

NOT YET WRITTEN

2.11.1 Suggested Reading List
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2.12 Basic Transistor Circuits

NOT YET WRITTEN

2.12.1 Suggested Reading List
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2.13 Operational Amplifiers

2.13.1 Introduction

If we take enough transistors and build a circuit out of them we can construct
a device with three very useful characteristics. In no particular order, these
are

1. infinite gain

2. infinite input impedance

3. zero output impedance

At the outset, these don t appear to be very useful, however, the device,
called an operational amplifier or op amp, is used in almost every audio
component built today. It has two inputs (one labeled “positive” or “non-
inverting” and the other “negative” or “inverting”) and one output. The op
amp measures the difference between the voltages applied to the two input
“legs” (the positive minus the negative), multiples this difference by a gain
of infinity, and generates this voltage level at its output. Of course, this
would mean that, if there was any difference at all between the two input
legs, then the output would swing to either infinity volts (if the level of the
non-inverting input was greater than that of the inverting input) or negative
infinity volts (if the reverse were true). Since we obviously can’t produce a
level of either infinity or negative infinity volts, the op amp tries to do it,
but hits a maximum value determined by the power supply rails that feed
it. This could be either a battery or an AC to DC power supply such as the
ones we looked at in Chapter 9.

We’re not going to delve into how an op amp works or why – for the
purposes of this course, our time is far better spent simply diving in and
looking at how it’s used. The simplest way to start looking at audio circuits
which employ op amps is to consider a couple of possible configurations,
each of which are, in fact, small circuits in and of themselves which can be
combined like Legos to create a larger circuit.

2.13.2 Comparators

The first configuration we’ll look at is a circuit called a comparator . You
won’t find this configuration in many audio circuits (blinking light circuits
excepted) but it’s a good way to start thinking about these devices.
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Figure 2.60: An op amp being used to create a comparator circuit.

Looking at the above schematic, you ll see that the inverting input of the
op amp is conntected directely to ground, therefore, it reamins at a constant
0 V reference level. The audio signal is fed to the non-inverting input.

The result of this circuit can have three possible states.

1. If the audio signal at the non-inverting input is exactly 0 V then it will
be the same as the level of the voltage at the inverting input. The op
amp then subtracts 0 V (at the inverting input, because it’s connected
to ground) from 0 V (at the non-inverting input, because we said that
the audio signal was at 0 V) and multiplies the difference of 0 V by
infinity and arrives at 0 V at the output. (okay, okay – I know. 0
multipled by infinity is really equal to any real number, but, in this
case, that real number will always be 0)

2. If the audio signal is greater than 0 V, then the op amp will subtract
0 V from a positive number, arriving at a positive value, multiply that
result by infinity and have an output of positive infinity (actually, as
high as the op amp can go, which will really be the voltage of the
positive power supply rail)

3. If the audio signal is less than 0 V, then the op amp will subtract 0
V from a negative number, arriving at a negative value, multiply that
result by infinity and have an output of negative infinity (actually,
as low as the op amp can go, which will really be the voltage of the
negative power supply rail)

So, if we feed a sine wave with a level of 1 Vp and a frequency of 1 kHz
into this comparator and power it with a 15 V power supply, what we ll see
at the output is a 1 kHz square wave with a level of 15 Vp.

Unless you re a big fan of square waves or very ugly distortion pedals, this
circuit will not be terribly useful to your audio circuits with one noteable
exception with we ll discuss later. So, how do we use op amps to our
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Figure 2.61: The output voltage vs. input voltage of the comparator circuit in Figure 1.

advantage? Well, the problem is that the infinite gain has to be tamed –
and luckily this can be done with the helps of just a few resistors.

2.13.3 Inverting Amplifier

Take a look at the following circuit

Figure 2.62: An op amp in an inverting amplifier configuration.

What do we have here? The non-inverting input of the op amp is perma-
nently connected to ground, therefore it remains at a constant level of 0 V.
The non-inverting input, on the other hand, is connected to a couple of re-
sistors in a configuration that sort of resembles a voltage divider. The audio
signal feeds into the input resistor labeled R1. Since the input impedance
of the op amp is infinite, all of the current travelling through R1 caused
by the input must be directed through the second resistor labeled Rf and
therefore to the output. The big “problem” here is that the output of the
op amp is connected to its own input and anyone who works in audio knows



2. Analog Electronics 135

that this means one thing... the dreaded monster known as feedback (which
explains the “f” in “Rf” – it’s sometimes known as the feedback resistor).
Well, it turns out that, in this particular case, feedback is your friend – this
is because it is a special brand of feedback known as negative feedback.

There are a number of ways to conceptualize what s happening in this
circuit. Let’s apply a +1 V DC signal to the input R1 which we’ll assume
to be 1 k – what will happen?

Let’s assume for a moment that the voltage at the inverting input of
the op amp is 0 V. Using Ohm’s Law, we know that there is 1 mA of
current flowing through R1. Since the input impedance of the op amp is
infinity, there will be no current flowing into the amplifier – therefore all
of the current must flow through Rf (which we’ll also make 1 kΩ) as well.
Again using Ohm’s Law, we know that there s 1 mA flowing through a 1 kΩ
resistor, therefore there is a 1 V drop across it. This then means that the
voltage at the output of Rf (and therefore the op amp) is -1 V. Of course,
this magic wouldn’t happen without the op amp doing something...

Another way of looking at this is to say that the op amp “sees” 1 V
coming in its inverting input – therefore it swings its output to negative
infinity. That negative infinity volt output, however, comes back into the
inverting input through Rf which causes the output to swing to positive
infinity which comes back into the inverting input through Rf which causes
the output to swing to negative infinity and so on and so on... All of this
swinging back and forth between positive and negative infinity looks after
itself, causing the 1 V input to make it through, inverted to -1 V.

One little thing that s useful to know – remember that assumption that
the level of the inverting input stays at 0 V? It s actually a good assumption.
In fact, if the voltage level of the inverting input was anything other than 0
V, the output would swing to one of the voltage rails. We can consider the
inverting input to be at a virtual ground – “ground” because it stays at 0
V but “virtual” because it isn’t actually connected to ground.

What happens when we change the value of the two resistors? We change
the gain of the circuit. In the above example, with both R1 and Rf were 1
kΩ and this resulted in a gain of -1. In order to achieve different gains we
follow the below equation:

Gain = −Rf

R1
(2.92)
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2.13.4 Non-Inverting Amplifier

There are a couple of advantages of using the inverting amplifier – you can
have any gain you want (as long as it’s negative or zero) and it only requires
two resistors. The disadvantage is that it inverts the polarity of the signal
– so in order to maintain the correct polarity of a device, you need an even
number of inverting amplifier circuits, thus increasing the noise generated
by extra components.

It is possible to use a single op amp in a non-inverting configuration as
shown in the schematic below.

Figure 2.63: An op amp in a non-inverting amplifier configuration.

Notice that this circuit is similar to the inverting op amp configuration
in that there is a feedback resistor, however, in this case, the input to R1 is
connected to ground and the signal is fed to the non-inverting input of the
op amp.

We know that the voltage at the non-inverting input of the op amp is the
same as the voltage of the signal, for now, let’s say +1 V again. Following an
assumption that we made in the case of the inverting amplifier configuration,
we can say that the level of the two input legs of the op amp are always
matched. If this is the case, then let’s follow the current through R1 and
Rf. The voltage across R1 is equal to the voltage of the signal, therefore
there is 1 mA of current flowing though R1, but this time from right to left.
Since the impedance of the input of the op amp is infinite, all of the current
flowing through R1 must be the same as is flowing through Rf. If there is 1
mA of current flowing through Rf, then there is a 1 V difference across it.
Since the voltage at the input leg side of the op amp is + 1 V, and there is
another 1 V across Rf, then the voltage at the output of the op amp is +2
V, therefore the circuit has a gain of 2.

The result of this circuit is a device which can amplify signals without
inverting the polarity of the original input voltage. The only drawback of
this circuit lies in the fact that the voltages at the input legs of the op amp
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must be the same. If the value of the feedback resistor is 0Ω, in other words,
a piece of wire, then the output will equal the input voltage, therefore the
gain of the circuit will be 1. If the value of the feedback resistor is greater
than 0Ω, then the gain of the circuit will be greater than 1. Therefore the
minimum gain of this circuit is 1 – so we cannot attenuate the signal as we
can with the inverting amplifier configuration.

Following the above schematic, the equation for determining the gain of
the circuit is

Gain = 1 +
Rf

R1
(2.93)

2.13.5 Voltage Follower

Figure 2.64: An op amp in a voltage follower configuration.

There is a special case of the non-inverting amplifier configuration whish
is used frequently in audio circuitry to isolate signals within devices. In
this case, the feedback “resistor” has a value of 0Ω – a wire. We also omit
the connection between the inverting input leg and the ground plane. This
resistor is effectively unnecessary since setting the value of Rf to 0 makes
the gain equation go immediately to 1. Changing the value of R1 will have
no effect on the gain, whether it’s infinite or finite, as long as it’s not 0Ω .
Omitting the R1 resistor makes the value infinity.

This circuit will have an output which is identical to the intput voltage,
therefore it is called a voltage follower (also known as a buffer) since it
follows the signal level. The question then is, “what use is it?” Well, it’s
very useful if you want to isolate a signal so that whatever you connect the
output of the circuit to has no effect on the circuit itself. We’ll go into this
a little farther in a later chapter.
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2.13.6 Leftovers

There is one of the three characteristics of op amps that we mentioned up
front that we haven’t talked about since. This is the output impedance,
which was stated to be 0 . Why is this important? The answer to this lies
in two places. The first is the simple voltage divider, the second is a block
diagram of an op amp. If you look at the diagram below, you’ll see that
the op amp contains what can be considered as a function generator which
outputs through an internal resistor (the output impedance) to the world.
If we add an external load to the output of the op amp then we create a
voltage divider. If the internal impedance of the op amp is anything other
than 0Ω, then the output voltage of the amplifier will drop whenever a load
is applied to it. For example, if the output impedance of the op amp was
100Ω, and we attached a 100Ω resistor to its output, then the voltage level
of the output would be cut in half.

Figure 2.65: A block diagram of the internal workings of an op amp.

2.13.7 Mixing Amplifier

How to build a mixer: take an inverting amplifier circuit and add a second
input (through a second resistor, of course...). In fact, you could add as
many extra inputs (each with its on resistor) as you wanted to. The current
flowing through each individual resistor to the virtual ground winds up at
the bottleneck and the total current flows through the feedback resistor.

The total voltage at the output of the circuit will be:

V out = −(V 1
Rf

R1
+ V 2

Rf

R2
+ ... + V n

Rf

Rn
) (2.94)
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Figure 2.66: An op amp in an inverting mixing amplifier configuration

As you can see, each input voltage is inverted in polarity (the negative
sign at the beginning of the right side of the equation looks after that) and
individually multiplied by its gain determined by the relationship between
its input resistor and the feedback resistor. This, of course, is a very sim-
ple mixing circuit (a Euphonix console it isn’t...) but it will work quite
effectively with a minimum of parts.

2.13.8 Differential Amplifier

The mixing circuit above adds a number of different signals and outputs
the result (albeit inverted in polarity and possibly with a little gain added
for flavour...). It may also be useful (for a number of reasons that we’ll
talk about later) to subtract signals instead. This, of course, could be done
by inverting a signal before adding them (adding a negative is the same as
subtracting...) but you could be a little more efficient by using the fact that
an op amp is a differential amplifier all by itself.

You will notice in the above diagram that there are two inputs to a single
op amp. The result of the circuit is the difference between the two inputs
as can be seen in the following equation. Usually the gain of the two inputs
of the amplifier are set to be equal because the usual use of this circuit is
for balanced inputs which we ll discuss in a later chapter.

2.13.9 Suggested Reading List
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Figure 2.67: An op amp in a simple differential amplifier configuration
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2.14 Op Amp Characteristics and Specifications

2.14.1 Introduction

If you get the technical information about an op amp (from the manufac-
turer’s datasheets or their website) you ll see a bunch of specifications that
tell you exactly what to expect from that particular device. Following is a
list of specs and explanations for some of the more important characteristics
that you should worry about.

I’ve taken most of these from book called the IC Op-Amp Cookbook
written by Walter G. Jung. It’s used to be published by SAMS, but now it’s
published by Prentice Hall (ISBN 0-13-889601-1) You should own a copy of
this book if you’re planning on doing anything with op amps.

2.14.2 Maximum Supply Voltage

The supply voltage is the maximum voltage which you can apply to the
power supply inputs of the op amp before it fails. Depending on who made
the amplifier and which model it is, this can vary from ±1 V to ±40 V.

2.14.3 Maximum Differential Input Voltage

In theory, there is no connection at all between the two inputs of an oper-
ational amplifier. If the difference in voltage between the two inputs of the
op amp is excessive (on the order of up to ±30 V) then things inside the op
amp break down and current starts to flow between the two inputs. This is
bad – and it happens when the difference in the voltages applied to the two
inputs is equal to the maxumim differential input voltage.

2.14.4 Output Short-Circuit Duration

If you make a direct connection between the output of the amplifier and
either the ground or one of the power supply rails, eventually the op amp
will fail. The amount of time this will take is called the output short-
circuit duration, and is different depending on where the connection is made.
(whether it’s to ground or one of the power suppy rails)

2.14.5 Input Resistance

If you connect one of the two input legs of the op amp to ground and then
measure the resistance between the other input leg and ground, you’ll find
that it’s not infinite as we said it would be in the previous chapter. In fact,
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it’ll be somewhere up around 1MΩ give or take. This value is known as the
“input resistance.”

2.14.6 Common Mode Rejection Ratio (CMRR)

In theory, if we send exactly the same signal to both input legs of an op
amp and look at the output, we should see a constant level of 0 V. This is
because the op amp is subtracting the signal from itself and giving you the
result (0 V) multiplied by some gain. In practice, however, you won’t see a
constant 0 V at the output – you’ll see an attenuated version of the signal
that you’re sending into the amplifier’s inputs. The ratio between the level
of the input signal and the level of the resulting output is a measurement
of how much the op amp is able to reject a common mode signal (in other
words, a signal which is common to both input legs). This is particularly
useful (as we’ll see later) in rejecting noise and other unwanted signals on a
transmission line.

The higher this number the better the rejection, and you should see
values in the area of about 100 dB. Be careful though – op amps have very
different CMRR’s for different frequencies (lower frequencies reject better)
so take a look at what frequency you’re talking about when you’re looking
at CMRR values.

2.14.7 Input Voltage Range (Operating Common-Mode Range)

This is simply the range of voltage that you can send to the input terminals
while ensuring that the op amp behaves as you expect it to. If you exceed
the input voltage range, the amplifier could do some unexpected things on
you.

2.14.8 Output Voltage Swing

The output voltage swing is the maximum peak voltage that the output can
produce before it starts clipping. This voltage is dependent on the voltage
supplied to the op amp – the higher the supply voltage the higher the output
voltage swing. A manufacturer’s datasheet will specify an output voltage
swing for a specific supply voltage – usually ±15 V for audio op amps.

2.14.9 Output Resistance

We said in the last chapter that one of the characteristics of op amps is that
they have an output impedance of 0Ω. This wasn’t really true... In fact,
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the output impedance of an op amp will vary from less than 100Ω to about
10kΩ. Usually, an op amp intended for audio purposes will have an output
impedance in the lower end of this scale – usually about 50Ω to 100Ω or so.
This measurement is taken without using a feedback loop on the op amp,
and with small signal levels above a few hundred Hz.

2.14.10 Open Loop Voltage Gain

Usually, we use op amps with a feedback loop. This is in order to control
what we said in the last chapter was the op amp’s infinite gain. In fact, an
op amps does not have an infinite gain – but it’s pretty high. The gain of
the op amp when no feedback look is connected is somewhere up around 100
dB. Of course, this is also dependent on the load that the output is driving,
the smaller the load, the smaller the output and therefore the smaller the
gain of the entire device.

The open loop voltage gain is a meaurement of the gain of the op amp
driving a specified load when there’s no feedback loop in place (hence the
“open loop”). 100 dB is a typical value for this specification. It’s value
doesn’t change much with changes in temperature (unlike some other spec-
ifications) but it does vary with frequency. As you go up in frequency, the
gain of the op amp decreases.

2.14.11 Gain Bandwidth Product (GBP)

Eventually, if you keep going up in frequency as you’re measuring the open-
loop voltage gain of the op amp, you’ll reach a frequency where the gain of
the system is 1. That is to say that the input is the same level as the output.
If we take the gain at that frequency (1) and multiply it by the frequency
(or bandwidth) we’ll get the Gain Bandwidth Product. This will then tell
you an important characteristic of the op amp, since the gain of the op amp
rolls off at a rate of 6 dB/octave. If you take a given frequency and divide
it by the GBP, you’ll find the open-loop gain at that frequency.

2.14.12 Slew Rate

In theory, an op amp is able to accurately and instantaneously output a
signal which is a copy of the input, with some amount of gain applied.
If, however, the resulting output signal is quite large, and there are very
fast, large changes in that value, the op amp simply won’t be able to de-
liver on time. For example, if we try to make the amplifier’s output swing
from -10 V to +10 V instantaneously, it can’t do it – not quite as fast as
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we’d like, anyway... The maximum rate at which the op amp is able to
change to a different voltage is called the “slew rate” because it’s the rate
at which the amplifier can slew to a different value. It’s usually expressed in
V/microsecond – the bigger the number, the faster the op amp. The faster
the op amp, the better it is able to accurately reflect transient changes in
the audio signal.

The slew rate of different op amps varies widely. Typically, you’ll want
to see about 5 V/microsec or more.

2.14.13 Suggested Reading List

IC Op-Amp Cookbook Walter G. Jung Prentice Hall ISBN 0-13-889601-1
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2.15 Practical Op Amp Applications

2.15.1 Introduction

2.15.2 Active Filters

Discussion of the advantages of an active filter instead of a passive
one.

Butterworth filters

emphWhy use a Butterworth instead of anything else? What’s the differ-
ence between different filters? Talk about phase responses and magnitude
responses.

Low Pass (First Order)

Figure 2.68: First order low-pass Butterworth filter

Equations:

GF = 1 +
RF

R1
(2.95)

fc =
1

2πRC
(2.96)

Where GF is the passband gain of the filter
fc is the cutoff frequency of the filter∣∣∣∣Vout

Vin

∣∣∣∣ = GF√
1 + (f/fc)2

(2.97)
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φ = −tan−1 f

fc
(2.98)

Where φ is the phase angle

High Pass (First Order)

Figure 2.69: First order high-pass Butterworth filter

Equations:

GF = 1 +
RF

R1
(2.99)

fc =
1

2πRC
(2.100)

Where GF is the passband gain of the filter
fc is the cutoff frequency of the filter∣∣∣∣Vout

Vin

∣∣∣∣ = GF (f/fc)√
1 + (f/fc)2

(2.101)

How to design a first-order high pass Butterworth filter:

Determine your cutoff frequency
Select a mylar or tantalum capacitor with a value of less than about 1uF.
Calculate the value of R using R = 1

2πfcC

Select values for R1 and R2 (on the order of 10kΩ or so) to deliver your
desired passband gain.
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Low Pass (Second Order)

Figure 2.70: Second order low-pass Butterworth filter

Equations:

GF = 1 +
RF

R1
(2.102)

fc =
1

2π
√

R2R3C2C3
(2.103)

Where GF is the passband gain of the filter
fc is the cutoff frequency of the filter∣∣∣∣Vout

Vin

∣∣∣∣ = GF√
1 + (f/fc)4

(2.104)

Equations:

GF = 1 +
RF

R1
(2.105)

Note: GF must equal 1.586 in order to have a true Butterworth response.

fc =
1

2π
√

R2R3C2C3
(2.106)

Where GF is the passband gain of the filter
fc is the cutoff frequency of the filter∣∣∣∣Vout

Vin

∣∣∣∣ = GF√
1 + (fc

f )4
(2.107)
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Figure 2.71: Second order high-pass Butterworth filter

How to design a second-order high pass Butterworth filter:

Determine your cutoff frequency
Make R2 = R3 = R and C2 = C3 = C
Select a mylar or tantalum capacitor with a value of less than about 1uF.
Calculate the value of R using R = 1

2πfcC

Choose a value of R1 that’s less than 100kΩ
Make Rf = 0.586 R1. Note that this makes your passband gain ap-

proximately equal to 1.586. This is necessary to guarantee a Butterworth
response.

2.15.3 Higher-order filters

In order to make higher-order filters, you simply have to connect the filters
that you want in series. For example, if you want a third-order filter, you just
take the output of a first-order filter and feed it into the input of a second-
order filter. For a fourth-order filter, you just cascade two second-order
filters and so on. This isn’t exactly as simple as it seems, however, because
you have to pay attention to the relationship of the cutoff frequencies and
passband gains of the various stages in order to make the total filter behave
properly. For more information on this, I’m afriad that you’ll have to look
elsewhere for now... However, if you’re not overly concerned with pinpoint
accuracy of the constructed filter to the theoretical calculated response, you
can just use what you already know and come pretty close to making a
workable high-order filter. Just don’t call it a “Butterworth” and don’t
expect it to be perfect.



2. Analog Electronics 149

2.15.4 Bandpass filters

Bandpass filters are those that permit a band of frequencies to pass through
the filter, while attenuating signals in frequency bands above and below the
passband. These types of filters should be sub-divided into two categories:
those with a wide passband, and those with a narrow passband.

If the passband of the bandpass filter is wide, then we can create it using
a high-pass filter in series with a low-pass filter. The result will be a signal
whose low-frequency content will be attenutated by the high-pass filter and
whose high-frequency content will be attenutated by the low-pass filter. The
result is that the band of frequencies bewteen the two cutoff frequencies will
be permitted to pass relatively unaffected. One of the nice aspects of this
design is that you can have different orders of filters for your high and low
pass (although if they are different, then you have a bit of a weird bandpass
filter...)

If the passband of the bandpass filter is narrow (if the Q is greater than
10), then you’ll have to build a different circuit that relies on the resonance
of the filter in order to work. Take a look at the book by Gayakwad in the
Reading List (or any decent book on op amp applications) to see how this
is done for now... I’ll come back to it some other day.

2.15.5 Suggested Reading List

Op-amps and Linear Integrated Circuit Technology Ramakant A. Gayakwad
1983 by Prentice-Hall Inc. ISBN 0-13-637355-0
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Chapter 3

Acoustics

3.1 Introduction

3.1.1 Pressure

If you listen to the radio in the mornings, they’ll give you the news, the
sports, the traffic and the weather. Part of the weather report is to tell
you that the barometric pressure is something around 100 kPa (kilopas-
cals). What does this mean? Well, the air particles around you are all
under pressure due to things like gravity and the weight of the air particles
above them and other meteorological things that are outside the scope of
this book. That pressure determines the amount of physical space between
molecules in the air. When there’s a higher barometric pressure, there’s less
space between the molecules than there is on a day with a lower barometric
pressure.

We call this the stasis pressure and abbreviate it ℘o.
When all of the particles in a gaseous medium (like air) in a given volume

(like a room) are at normal pressure, then the gas is said to be at its volume
density (also known as the constant equilibrium density), abbreviated ρo,
and measured in kg/m3. Remember that this is actually kilograms of air
per cubic metre – if you were able to trap a cubic metre and weigh it, you’d
find out that it is about XXX kg.

These molecules like to stay at the same pressure all over, so if you bunch
them up in one place in a room somehow, they’ll move around to try and
equalize the difference. This is kind of like when you pour a glass of water
into a bucket, the water level of the entire bucket equalizes and therefore
rises, rather than the water from the glass all bunching up in a little mound
of water where you poured it in...

151
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Let’s think of this as a practical example. We’ll hang the piece of paper
in front of a fan. If we turn on the fan, we’re essentially increasing the
pressure of the air particles in front of the blades. The fan does this by
removing air particles from the space behind it, thus reducing the pressure
of the particles behind the blades, and putting them in front. Since the
pressure in front of the fan is greater than any other place in the room, we
have a situation where there is a greater air pressure on one side of the piece
of paper than the other. The obvious result is that the paper moves away
from the fan.

This is a large-scale example of how you hear sound. Let’s say hypo-
thetically for a moment, that you are sitting alone in a sealed room on a
day when the barometric pressure is 100 kPa. Let’s also say that you have a
clarinet with you and that you play a concert A. What physically happens
to convert air coming out of your mouth into a concert A coming in your
ears?

To begin with, let’s pretend that a clarinet is just a tube with a hole in
each end. One of the holes has a springy piece of wood next to it which, if
you press on it, will close up the hole.

1. When you blow into the hole, you bunch up the air particles and create
a little area of high pressure inside the mouthpiece.

2. Blowing into the hole with the reed on it also has the effect of pushing
the reed against the hole and sealing it so that no more air can enter
the clarinet.

3. At that point the little high pressure area moves down the clarinet and
leaves a low pressure behind it.

4. Remember that the reed is springy, and it doesn’t like being pushed
up against the hole in the mouthpiece, so it bounces back and lets
more air in.

5. Now the cycle repeat and goes back to step 1 all over again.

6. In the meantime, all of those high and low pressure areas move down
the clarinet and radiate out the bell into the room like ripples on a
lake when you throw in a rock.

7. From there, they get to your ear and push your eardrum in and out
(high pressure pushes in, low pressure pulls out)
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Those little fluctuations in the air pressure are small variations in the
stasis pressure. They’re usually very small, never more than about ±1 Pa
(though we’ll elaborate on that later...). At any given moment at a specific
location, we can measure the the instantaneous pressure, ℘, which will be
close to the stasis pressure, but slightly different because there’s a sound
source causing it to change.

Once we know the stasis pressure and the instantaneous pressure, we can
use these to figure out the instantaneous amplitude of the sound level, (also
called the acoustic pressure or the excess pressure) abbreviated p, using
Equation 3.1.

p = ℘− ℘o (3.1)

To see an animation of what this looks like, check out www.gmi.edu/ drus-
sell/Demos/waves/wavemotion.html.

A sinusoidal oscillation of this pressure reaches a maximum peak pressure
P which determines the sound pressure level or SPL. In air, this level is
typically expressed in decibels as a logarithmic ratio of the effective pressure
Pe referenced to the threshold of hearing , the commonly-accepted lowest
sound pressure level audible by humans at 1 kHz, 20 microPascals, using
Equation 3.2 [Woram, 1989]. The intricacies of this equation have already
been discussed in Section 2.2 on decibels.

SPL = 20 log10

[
Pe

20 ∗ 10−6Pa

]
(3.2)

Note that, for sinusoidal waveforms, the effective pressure can be cal-
culated from the peak pressure using Equation 3.3. (If this doesn’t sound
familiar, it should – re-read Section 2.1.6 on RMS.)

Pe =
P√
2

(3.3)

3.1.2 Simple Harmonic Motion

Take a weight (a little one...) and hang it on the end of a Slinky which is
attached to the ceiling and wait for it to stop bouncing.

Measure the length of the Slinky. This length is determined by the
weight and the strength of the Slinky. If you use a bigger weight, the Slinky
will be longer – if the slinky is stronger, it will be better able to support the
weight and therefore be shorter.

This is the point where the “system” is at rest or stasis.
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Pull down on the weight a little bit and let go. The Slinky will pull the
weight up to the stasis point and pass it.

By the time the whole thing slows down, the weight will be too high and
will want to come back down to the stasis point, which it will do, stopping
at the point where we let it go in the first place (or almost anyway...)

If we attached a pen to the weight and ran piece of paper along by it
as it sat there bobbing up and down, the line it would draw a sinusoidal
waveform. The picture the weight would draw is a graph of the vertical
position of the weight (the y-axis) as it relates to time (the x-axis).

If the graph is a perfect sinusoidal shape, then we call the system (the
Slinky and the weight on the end) a simple harmonic oscillator.

3.1.3 Damping

Let’s look at that system I just described. We’ll put a weight hung on a
spring as is shown in Figure 3.1

sp
rin

g

mass

Figure 3.1: A mass supported by a spring.

If there was no such thing as air friction, and if the spring was perfect,
then, if you started the mass bobbing up and down, then it would continue
doing that forever. And, since, as we saw in the previous section, that this
is a simple harmonic oscillator, then if we graph its vertical displacement
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over time, then we get a perfect sinusoidal waveform as shown in Figure 3.2
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Figure 3.2: The vertical displacement of the mass versus time if there is no loss of energy due to
friction. Notice that the frequency and amplitude of the oscillation never change. The mass will
bob up and down exactly the same, forever.

In real life, however, there is friction. The mass pushes through the air
and loses energy on each bob up and down. Eventually, it loses so much
energy that it stops moving. An example of this behaviour is shown in
Figure 3.3

There is a technical term that describes the difference between these
two situations. The system with friction, shown in Figure 3.3 is called a
damped oscillator . Since the oscillator is damped, then it loses energy over
time. The higher the damping, the faster it loses energy. For example, if the
same mass and spring were put in water, the system would be more highly
damped than if it were in air. If they’re put in oil, the system is more highly
damped than it is in water.

Since a system with friction is said to be damped, then the system with-
out friction is therefore called an undamped oscillator .

3.1.4 Harmonics

If we go back to the clarinet example, it’s pretty obvious that the pressure
wave that comes out the bell won’t be a sine wave. This is because the clar-
inet reed is doing more than simply opening and closing – it’s also wiggling
and flapping a bit – on top of all that, the body of the clarinet is resonating
various frequencies as well (more on this topic later), so what comes out is
a bunch of different frequencies simultaneously.
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Figure 3.3: The vertical displacement of the mass versus time if there is loss of energy due to
friction. Notice that the fundamental frequency of the oscillation never changes, but that the
amplitude decays over time. Eventually, the mass will bob up and down so little that it can be
considered to be stopped.

We call these other frequencies harmonics which are mathematically
related to the bottom frequency (called the fundamental) by simple multi-
plication... The first harmonic is the fundamental. The second harmonic is
twice the frequency of the fundamental, the third harmonic is three times
the frequency of the fundamental and so on. (this is an oversimplification
which we’ll straighten out later...)

3.1.5 Overtones

Some people call the fundamental and its overtones overtones but you have
to be careful here. There is a common misconception that overtones are har-
monics and vice versa. In fact, in some books, you’ll see people saying that
the first overtone is the second harmonic, the second overtone is the third
harmonic and so on. This is not necessarily the case. A sound’s overtones
are the harmonics that it contains, which is not necessarily all harmonics.
As we’ll see later, not all instruments’ sounds contain all harmonics of the
fundamental. There are particular cases, for example, where an instrument’s
sound will only contain the odd harmonics of the fundamental. In this par-
ticular case, the first overtone is the third harmonic, the second overtone is
the fifth harmonic and so on.

In other words, harmonics are a mathematical idea – frequencies that
are related to a fundamental frequency whereas overtones are the frequencies
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that are produced by the sound source.
Another example showing that overtones are not harmonics occurs in

many percussion instruments such as bells where the overtones have no
harmonic relationship with the fundamental frequency – which is why these
overtones are said to be enharmonically related .

3.1.6 Longitudinal vs. Transverse Waves

There are basically three types of waves used to transmit energy through a
medium or substance.

1. Transverse

2. Longitudinal

3. Torsional

We’re only really concerned with the first two.
Transverse waves are the kind we see every day in ropes and puddles.

They’re the kind where the motion of the particles is perpendicular to the
direction of the wave propagation as can be seen in Figure 3.4. What does
this mean? It’s easy to see if we go fishing... A boat on the surface of
the ocean will sit there bobbing up and down as the waves roll past it. The
waves are travelling towards the shore along the surface of the water, but the
water itself only moves up and down, not sideways (we know this because
the boat would move sideways as well if the water was doing so...) So, as
the water molecules move vertically, the wave propagates horizontally.

Figure 3.4: A snapshot of a transverse wave on a string. Think of the wave as moving from left to
right – but remember that the string is really only moving up and down.
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Longitudinal waves are a little tougher to see. They involve the com-
pression (bunching together) and refraction (pulling apart) of the particles
in the medium such that the motion of the particles is parallel with the
direction of propagation of the wave. The easiest way to see a longitudinal
wave is to stretch out a Slinky between two people, squeeze together a small
section of it and let go. The compressed part will appear to move back and
forth bouncing between the two ends of the spring. This is essentially the
way sound travels through air particles.

Torsional waves don’t apply to anything we’re doing in this book, but
they’re wave in which the particles rotate around the axis along which the
wave propagates (like a twisting rod). This type of wave can be seen on a
Shive wave machine at physics demonstrations and science and technology
museums.

3.1.7 Displacement vs. Velocity

Think back to our original discussions concerning sound. We said that there
are really two things moving in a sound wave – the air molecules (which
are compressing and expanding) and the pressure wave which propogates
outwardly from the sound source. We compared this to a wave moving
along a rope. The rope moves up and down, but the wave moves in another
direction entirely.

Let’s now think of this difference in terms of displacement and velocity –
not of the sound wave itself (which is about 344 m/s at room temperature)
but of the air molecules.

When a sound wave goes by a bunch of molecules, they compress and
expand. In other words, they move closer together, then stop moving, them
move further apart, then stop moving, then move closer together and so on.
When the displacement is at its absolute maximum, the molecules are at the
point where they’re stopped and about to head back towards a low pressure.
When the displacement is 0 (and therefore at whatever barometric pressure
the radio said it was this morning) the molecules are moving as fast as they
can. If the displacement is at a maximum in the opposite direction, the
molecules are stopped again.

When pressure is 0, the particle velocity is at a maximum (or a minimum)
whereas when pressure is at a maximum (or a minimum) the particle velocity
is 0.

This is identical to swinging on a playground swing. When you’re at
the highest point off the ground, you’re stopped and about to head in the
direction from which you just came. Therefore at the point of maximum
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displacement, you have a velocity of 0. When you’re at the point closest
to the ground (where you started before you were moving) your velocity is
highest.

So, in addition to measurements like instantaneous pressure, we can also
talk about an instantaneous particle velocity , u. In addition, a sinusoidal
oscillation results in a peak particle velocity, U .

Always remember that the particle velocity is dependent on the change
in displacement, therefore it is equivalent to the instantaneous slope (or the
partial derivative) of the displacement function. As a result, the velocity
wave precedes the displacement wave by π

2 radians (90◦) as is shown in
Figure 3.5.
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Figure 3.5: The relationship between the displacement (in blue), the velocity (in red) and the
acceleration (in black) of a particle or a pendulum. Note that none of these is on any particular
scale – the important things to notice are the relationships between the zero, maximum and
minimum points on the two graphs as well as their relative instantaneous slopes.

One other important thing to note here is that the velocity is also related
to frequency (which is discussed below). If we maintain the same peak
pressure, the higher the frequency, the faster the particles have to move back
and forth, therefore the higher the peak velocity. So, remember that particle
velocity is proportional both to pressure (and therefore displacement) and
frequency.

3.1.8 Amplitude

The amplitude of a wave is simply an measurement of the height of the
wave if it’s transverse, or the amount of compression and refraction if it’s
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longitudinal. In terms of sound, it’s measured in Pascals, since sound waves
are variation in atmospheric pressure. If we were measuring waves on the
ocean, the unit of measurement would be metres.

There are a number of methods of defining the amplitude measurement
– we’ll be using three, and you have to be careful not to confuse them.

1. Peak Pressure – This is a measurement of the difference between the
maximum value of the wave and the point of equilibrium.

2. Peak to Peak Pressure – This is a measurement of the difference be-
tween the minimum and maximum values of the wave.

3. Effective Pressure – This is a measurement based on the amount of
power in the wave. It’s equivalent to 0.707 of the Peak value if the
signal is a sinusoidal wave. In other cases, the relationship between
the effective pressure and the Peak value is different (we’ve already
talked about this in Section 2.1.6 – except there, it’s called the RMS
value instead of the effective value).
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Figure 3.6: A sinusoidal pressure wave with a peak amplitude of 1, a peak-peak amplitude of 2 and
an effective pressure of 0.707.

3.1.9 Frequency and Period

Go back to the clarinet example. If we play a concert A, then it just so
happens that the reed is opening and closing at a rate of 440 time per
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second. This therefore means that there are 440 cycles between a high and
a low pressure coming out of the bell of the clarinet each second.

We normally use the term Hertz (indicated Hz ) to indicate the number
of cycles per second in sound waves. Therefore 440 cycles per second is more
commonly known as a frequency of 440 Hz.

In order to find the frequency of a note one octave above this pitch,
multiply by 2 (1 octave = twice the frequency). One octave below is one-
half of the frequency.

In order to find the frequency of a note one decade above this pitch,
multiply by 1 (1 octave = ten times the frequency). One decade below is
one-tenth of the frequency.

Always remember that a complete cycle consists of a high and a low
pressure. One cycle is measured from a point on the wave to the next
identical point on the wave (i.e. the positive-going zero crossing to the next
positive- going zero crossing or maximum to maximum...)

If we know the frequency of a sound wave (i.e. 440 Hz), then we can
calculate how long it takes a single cycle to exit the bell of the clarinet.
If there are 440 cycles each second, then it takes 1/440th of a second to
produce 1 cycle.

The usual equation for calculating this amount of time (known as the
period) is:

T =
1
f

(3.4)

where T is the period and f is the frequency

3.1.10 Angular frequency

For this section, it’s important to remember two things.

1. As we saw in Section 1.4, a sound wave is essentially just a “side
view” of a rotating wheel. Therefore the higher the frequency, the
more revolutions per second the wheel turns.

2. Angles can be measured in radians instead of degrees. Also, that this
means that we’re measuring the angle in terms of the radius of the
circle.

We now know that the frequency of a sinusoidal sound wave is a measure
of how many times a second the wave repeats itself. However, if we think of
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the wave as a rotating wheel, then this means that the wheel makes a full
revolution the same number of times per second.

We also know that one full revolution of the wheel is 360◦ or 2π radians.
Consequently, if we multiply the frequency of the sound wave by 2π, we

get the number of radians the wheel turns each second. This value is called
the angular frequency or the radian frequency and is abbreviated ω.

ω = 2πf (3.5)

The angular frequency can also be used to determine the phase of the
signal at any given moment in time. Let’s say for a moment that we have
a sine wave with a frequency of 1 Hz, therefore ω = 2π. If it’s really a
sine wave (meaning that it started out heading positive with a value of 0 at
time 0 or t = 0), then we know that the time in seconds, multiplied by the
angular frequency will give us the phase of the sine wave because we rotate
2π radians every second.

This is true for any frequency, so if we know the time t in seconds, then
we can find the instantaneous phase using Equation 3.6.

ϕ = ωt (3.6)

Usually, you’ll just see this notated as ωt as in sin(ωt).

3.1.11 Negative Frequency

Back in Section 1.4 we looked at how two wheels rotating at the same speed
(or frequency) but in opposite directions will look exactly the same if we
look at them from only one angle. This was our big excuse for getting
into the whole concept of complex numbers – without both the sine and
cosine components, we can only know the speed of rotation (frequency) and
diameter (amplitude) of the sine wave. In other words, we’ll never know the
direction of rotation.

As we walk through the world listening to sinusoidal waves, we only get
one signal for each sine wave – we don’t get a sine and cosine component, just
a pressure wave that changes in time. We can measure the frequency and the
amplitude, but not the direction of rotation. In other words, the frequency
that we’re looking at might be either positive or negative, depending on
which direction the imaginary wheel is turning.

Here’s another way to think of this. Take a Slinky, stretch it out, and look
at it from the side. If you didn’t have the benefit of perspective, you wouldn’t
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be able to tell if the Slinky was coiled clockwise or counterclockwise from
left to right. One is positive frequency, the other is the negative equivalent.

In the real world, this doesn’t really matter too much, but as we’ll see
later on, when you’re doing things like digital filtering, you need to worry
about such things.

3.1.12 Speed of Sound

Pay attention during any thunder and lightning storm and you’ll be able
to figure out that sound travels slower than light. Since the lightning and
the thunder occur simultaneously and since the light flash arrives at you
earlier than the clap of thunder (unless you’re extremely unlucky...) then
this must be true. In fact, the speed of sound, abbreviated c is around 344
m/s although it changes with temperature, pressure and humidity.

Note that we’re talking about the speed of the wavefront – not the veloc-
ity of the air molecules. This latter velocity is dependent on the waveform,
as well as its frequency and the amplitude.

The equation we normally use for c in metres per second is

c = 332 + (0.6 ∗ t) (3.7)

t is the temperature in ◦C
There is a small deviation of c with frequency shown in Table 3.1, though

this is small and therefore generally ignored

Frequency Deviation
100 (Hz) -30 ppm
200 (Hz) -10 ppm
400 (Hz) -3 ppm

1.25 (kHz) 0 ppm
4 (kHz) +5 ppm
10 (kHz) +10 ppm

Table 3.1: Deviation in the speed of sound with frequency. ??

Changes in humidity change the value of c as is seen in Table 3.2.
The difference at a humidity level of 100% of 0.33% is bordering on our

ability to detect a pitch shift.
Also – in case you were wondering, “ppm” stands for “parts per million.”

It’s just like “percent” really, except that you divide by 1000000 instead of
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Humidity Deviation
0% 0 ppm
20% +415 ppm
40% +1136 ppm
60% +1860 ppm
80% + 2590 ppm
100% +3320 ppm

Table 3.2: Deviation in the speed of sound with air humidity levels. ??

100 so it’s useful for really small numbers. Therefore 1000 ppm is 1000
1000000 =

0.001 = 0.1%.

3.1.13 Wavelength

Let’s say that you’re standing outside, whistling a perfect 1 kHz sine tone.
The moment you start whistling, the first wave – the wavefront – is moving
away from you at a speed of 344 m/s. This means that exactly one second
after you started whistling, the wavefront is 344 m away from you. At exactly
that same moment, you are starting to whistle your 1001st cycle (because
you’re whistling 1000 cycles per second). If we could stop time and look at
the sound wave in the air at that moment, we would see the 1000 cycles that
you just whistled sitting in the air taking up 344 m. Therefore you have
1000 cycles for every 344 m. Since we know this, we can calculate the length
of one wave by dividing the speed of sound by the frequency – in this case,
344/1000 = 34.4 cm per wave in the air. This is known as the wavelength

The wavelength (abbreviated λ) is the distance from a point on a periodic
(a fancy word meaning ‘repeating’) waveform to the next identical point.
(i.e. crest to crest, or positive zero-crossing to positive zero crossing)

Equation 3.8 is used to calculate the wavelength, measured in metres.

λ =
c

f
(3.8)

3.1.14 Acoustic Wavenumber

The wavelength of a sinusoidal acoustic wave is a measure of how many
metres long a single wave is. We could think of this relationship between
frequency and space in a different way. We can also measure the number
of radians our wheel turns in one metre – in other words, the amount of
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phase change of the waveform per metre. This value is called the acoustic
wavenumber of the sound wave and is abbreviated k0 or sometimes, just k.
It’s measured in radians per metre and is calculated using Equation 3.9.

k0 =
ω

c
(3.9)

Note that you will see this under a couple of different names – wave
number , wavenumber and acoustic wavenumber will show up in different
places to mean the same thing. The problem is that there are a couple
of different definitions of the term “wavenumber” so you’re best to use the
proper term “acoustic wavenumber.”

3.1.15 Wave Addition and Subtraction

Go throw a rock in the water on a really calm lake. The result will be a
bunch of high and low water levels that expand out from the point where
the rock landed. The highs are slightly above the water level that existed
before the rock hit, the lows are lower. This is analogous to the high and
low pressures that are coming out of a clarinet, being respectively higher
and lower than the equilibrium pressure that existed before the clarinet was
brought into the room.

Now go and do the same thing out on the ocean as the waves are rolling
past. The ripples that you create will cause the bigger wave to rise and fall
on a small scale. This is essentially the same as what was happening on the
calm lake, but now, the level of equilibrium is changing.

How do we find the final water level? We simply add the two levels
together, making sure to pay attention to whether we should be adding a
positive value (higher water level) or negative value (lower water level.)

Let’s put two small omnidirectional (that is, they radiate sound equally
in all directions) loudspeakers, about 34 cm apart in the front of a room.
Let’s also take a sine wave generator set to produce a 500 Hz sine wave and
send it to both speakers simultaneously. What happens in the room?

Constructive Interference

If you’re equidistant from the two speakers, then you’ll be receiving the same
part of the pressure wave at the same time. So, if you’re getting the high
point in the wave from one speaker, you’re getting a high pressure from the
second speaker as well.

Likewise, if you’re getting a low pressure from one speaker, you’re also
receiving a low pressure from the other.
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The end result of this overlap is that you get twice the pressure difference
between the high and low points in your wave. This is because the two waves
are interfering with each other constructively. This happens because the two
have a phase relationship of 0◦ at your position.

Essentially all we’re doing is adding two simultaneous points from the
first two graphs and winding up with the bottom graph.
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Figure 3.7: The top two plots are the individual signals from two loudspeakers in time measured at
a position equidistant to both loudspeakers. The bottom plot is the resulting summed signal.

Destructive Interference

What happens if you’re standing on a line with the two loudspeakers, so
that the more distant speaker is 34 cm farther away than the closer one.

Now, we have to consider the wavelength of the sound being produced.
A 500 Hz sine tone has a wavelength of roughly 68 cm. Therefore, half of a
wavelength is 34 cm, or the distance between the two loudspeakers.

This means that the sound from the farther loudspeaker is arriving at
your position 1/2 of a cycle late. In other words, you’re getting a high
pressure from the closer speaker as you get a low pressure from the farther
speaker.

The end result of this effect is that you hear nothing (this is not really
true for reasons that we’ll talk about later) because the two pressure levels
are always opposite each other.
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Figure 3.8: The top two plots are the individual signals from two loudspeakers in time measured
at a position where one loudspeaker is half a wavelength farther away than the other. The bottom
plot is the resulting summed signal.

Beating, Sum and Difference Tones

The discussion of constructive and destructive interference above assumed
that the tones coming out of the two loudspeakers have exactly matching
frequencies. What happens if this is not the case?

If the two frequencies (let’s call them f1 and f2 where f2 > f1) are differ-
ent then the resulting pressure looks like a periodic wave whose amplitude
is being modulated periodically as is shown in Figure 3.9.

The big question is: what does this sound like? The answer to this
question is “it depends on how far apart the frequencies are...”

If the frequencies are close together:
First and foremost, you’re going to hear the two sine waves of two fre-

quencies, f1 and f2.
Interestingly, you’ll also hear beats at a rate equal to the lower frequency

subtracted from the higher frequency. For example, if the two tones are at
440 and 444 Hz, you’ll hear the two notes beating 4 times per second (or
f2 − f1).

This is the way we tune instruments with each other. If we have two
flutes play two A 440’s at the same time (with no vibrato), then we should
hear no beating. If there’s beating, the flutes are out of tune.

If the frequencies are far apart:
First and foremost, you’re going to hear the two sine waves of two fre-

quencies f1 and f2.
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Figure 3.9: The top two plots are sinusoidal waves with slightly different frequencies, f1 and f2.
The bottom plot is the sum of the top two. Notice that the modulation in the amplitude of the
result is periodic with a “beat frequency” of f2 − f1

Secondly, you’ll hear a note whose frequency is equal to the difference
between the two frequencies being played, f2 − f1

Thirdly, you’ll hear other tones whose frequencies have the following
mathematical relationships with the two tones being played. Although there
is some argument between different people, the list below is in order of most
to least predominant apparent difference tones, resultant tones or combina-
tion tones.

2f2 − f1, 3f1 − f1, 2f1 − f2, 2f2 − 2f1, 3f2 − f1, f2 + f1, 2f2 + f1, and
so on...

This is a result of a number of effects.
If you’re doing an experiment using two tone generators and a loud-

speaker, then the effect is likely a product of the speaker called intermod-
ulation distortion. In this case, the combination tones are actually being
generated by the driver. We’ll talk about this later.

If you’re using two loudspeakers (or two instruments) then there is some
argument as to where the extra tones actually exist. Some arguments say
that the tones are in the air, some say that the tones are generated at the
eardrum. The most interesting arguments say that the tones are generated
in the brain. The proof for this lies in an experiment where different tones
are applied to each ear seperately (using headphones). In this case, some
listeners still hear the combination tones (this is an effect called binaural
beating).
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3.1.16 Time vs. Frequency

We said earlier that the upper harmonics of a periodic waveform are mul-
tiples of the first harmonic. Therefore, if I have a complex, but periodic
waveform, with a fundamental of 100 Hz, the actual harmonic content is
100 Hz, 200 Hz, 300 Hz, 400 Hz and so on up to ∞.

Let’s assume that the fundamental is lowered to 1 Hz – we’re now dealing
with an object that is being struck 1 time each second. The fundamental is
1 Hz, so the upper harmonics are 2 Hz, 3 Hz, 4 Hz, 5 Hz and so on up to
∞.

If we keep slowing down the fundamental to 1 single strike, then the
harmonic content is all frequencies up to infinity. Therefore it takes all
frequencies sounding simultaneously with the correct phase relationships to
create a single click.

If we were to graph this relationship, it would be Figure 3.10, where the
two graphs essentially show the same information.
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Figure 3.10: Two graphs showing exactly the same information. An infinitely short amplitude spike
in the time domain is equivalent of all frequencies being present at that moment in time.

3.1.17 Noise Spectra

The theory explained in Section 3.1.16 that the combination of all frequen-
cies results in a single click relies on an important point that we didn’t talk
about – relative phase. The click can only happen if all of the phases of the
harmonics are aligned properly – if not, then things tend to go awry... If we
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have all frequencies with random relative amplitude and phase, the result is
noise in its various incarnations.

There is an official document defining four types of noise. The spec-
ifications for white, pink, blue and black noise are all found in The Fed-
eral Standard 1037C Telecommunications: Glossary of Telecommunication
Terms. (I got the definitions from Rane’s online dictionary of audio terms
at http://www.rane.com.)

White Noise

White noise is defined as a noise that has equal amount of energy per fre-
quency. This means that if you could measure the amount of energy between
100 Hz and 200 Hz it would equal the amount of energy between 1000 Hz
and 1100 Hz. Because all frequencies have equal level, we call the noise
white – just like light that contains all frequencies (colours) equally is white
light.

This sounds “bright” to us because we hear pitch in octaves. 1 octave is
a doubling of frequency, therefore 100 Hz – 200 Hz is an octave, but 1000
Hz – 2000 Hz (not 1000 Hz – 1100 Hz) is also an octave. Since white noise
contains equal energy per Hz, there’s ten times a much energy in the 1 kHz
octave than in the 100 Hz octave.

Pink Noise

Pink noise is noise that has an equal amount of energy per octave. This
means that there is less energy per Hz as you go up in frequency (in fact,
there is a power loss of 50% (or a drop of 3.01 dB) each time you go up an
octave)

This is used because it sounds relatively “equal” in distribution across
frequency bands to us.

Another way of defining this noise is that the power of each frequency f
is proportional to 1

f .

Blue Noise

Blue noise is noise that is the opposite of pink noise in that it doubles the
amount of power each time you go up 1 octave. You’ll virtally never see it
(or hear it for that matter...).

Another way of defining this noise is that the power of each frequency f
is proportional to the frequency.
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Red Noise (aka Brown Noise or Popcorn Noise)

Red Noise is used when pink noise isn’t low-end-heavy enough for you. For
example, in cases where you want to use noise to simulate road noise in the
interior of a car, then you want a lot of low-frequency information. You’ll
also see it used in oceanography. In the case of red noise, there is a 6.02 dB
drop in power for every increase in frequency of 1 octave. (In other words,
the power is proportional to 1

f2 )

Purple Noise

Purple Noise is to blue noise as red noise is to pink. It increases in power
by 6.02 dB for every increase in frequency of 1 octave. (In other words, the
power is proportional to f2.)

Black Noise

This is an odd case. It is essentially silence with the occasional randomly-
spaced spike.

3.1.18 Amplitude vs. Distance

There is an obvious relationship between amplitude and distance – they are
inversly proportional. That is to say, the farther away you get, the lower
the amplitude. Why?

Let’s go back to throwing rocks into a lake. You throw in the rock
and it produces a wave in the water. This wave can be considered as a
manifestation of an energy transfer from the rock to the water. All of the
energy is given to the wave from the rock at the moment of impact – after
that, the wave maintains (theoretically) that energy.

The important thing to notice, though, is that the wave expands as it
travels out into the lake. Its circumference gets bigger as it travels horizon-
tally (as its radius gets bigger...) Therefore the wave is “longer” (if you’re
measuring around the circumference). The total amount of energy in the
wave, however, has not changed (actually it has gotten a little smaller due
to friction, but we’re ignoring that effect...) therefore the same amount of
energy has to be shared across a longer wavefront. This causes the height
(and depth) of the wave to shrink as it expands.

What’s the mathematical relationship between the increasing circumfer-
ence and the increasing radius? Well, the radius is travelling at the constant
speed, determined by the density of the water and gravity and other things
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like the colour of your left shoe... We know from high school that the cir-
cumference is equal to the radius multiplied by about 6.28 (also known as
2π). The graph in Figure 3.11 shows the relationship between the radius
and the circumference. You can see that the latter grows much more quickly
than the former. What this means is that as the radius slowly expands out
from the point of impact, the energy is getting shared between a “length”
of the wave that is growing far faster (note that, if we double the radius, we
double the circumference).
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Figure 3.11: The relationship between the circumference of a circle and its radius.

The same holds true with pressure waves expanding from a loudspeaker
into a room. The only real difference is that the energy is expanding into 3
dimensions rather than 2, so the surface area of the spherical wavefront (the
3-D version of the circumference of the circular wave on the lake...) increases
much more rapidly than the 2-dimensional counterpart. The equation used
to find the surface of a sphere is 4πR2 where R is the radius. As you can
see in Figure 3.12, the surface area of the sphere is already at 1200 units
squared when the radius has only expanded to 10 units. The result of this
in real life is that the energy appears to be dissipating at a rate of 6.02
dB per doubling of distance. (when we double the radius, we increase the
surface area of the sphere fourfold.) Of course, all of this assumes that the
wavefront doesn’t hit anything like a wall or the floor or you...

3.1.19 Free Field

Imagine that you’re suspended in infinite space with no walls, ceiling or floor
anywhere in sight. If you make a noise, the wavefront of the sound is free
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Figure 3.12: The relationship between the surface area of a sphere and its radius.

to move away from you forever, without ever encountering any surface. No
reflections or diffraction at all – forever. This space is a theoretical idea
known as a free field because the wavefront is free expand.

If you put a microphone in this free field, the wavefront from a single
sound source would come from a single direction. This seems obvious, but
I only mention it to compare with the next section.

For a visual analogy of what we’re talking about, imagine that you’re
floating in space and the only thing you can see is a single star. There are
at least three things that you’d notice about this odd situation. Firstly, the
star doesn’t appear to be very bright, because most of its energy is going in a
different direction than towards you. Secondly, you’d notice that everything
but the star is very, very dark. Finally, you’d notice that shadows are very
distinct and also very, very dark.

3.1.20 Diffuse Field

Now imagine that you’re in a space that is the most reverberant room you’ve
ever been in. You clap your hands and the reverb goes on until sometime
next Tuesday. (If you’d like to hear what such as space sounds like, run
out and buy a copy of the recording of Stuart Dempster and his crowd
of trombonists playing in the Sistern Chapel in Seattle.[Dempster, 1995])
Anyways, if you were able to keep a record of every reflection in the reverb
tail, keeping track of the direction it came from, you’d find that they come
from everywhere. They don’t come from everywhere simultaneously – but
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if you wait long enough, you’ll get a wavefront from every possible direction
at some time.

If we consider this in terms of probability, then we can say that, in this
theoretical space, sound waves have an equal probability of coming from any
direction at any given moment. This is essentially the definition of a diffuse
field.

For a visual example of this, look out the window of a plane as you’re fly-
ing through a cloud on a really sunny day. The light from the sun bounces off
of all the little particles in the cloud, so, from your perspective, it essentially
comes from everywhere. This causes a couple of weird sensations. Firstly,
there are no shadows – this is because the light is coming from everywhere
so nothing can shadow anything else. Secondly, you have a very difficult
time determining distance. Unless you can see the wing of the plane, you
have no idea how far away you’re actually able to see. This the same reason
why people have car accidents in blinding snowstorms. They drive because
they think they can see ahead much further than they’re really able to.

3.1.21 Acoustic Impedance

Before we look at how rooms behave when you make noise in them, we
have to begin by looking at the concept of acoustic impedance. Earlier, we
saw how sound is transmitted through air by moving molecules bumping
up against each other. One air molecule moves and therefore moves the
air molecules sitting next to it. In other words, we’re talking about energy
being transferred from one molecule to another. The ease with which this
energy is transferred between molecules is measured by the difference in the
acoustic impedances of the two molecules. I’ll explain.

We’ve already seen that sound is essentially a change in pressure over
time. If we have a static barometric pressure and then we apply a new pres-
sure to the air molecules, then we change their displacement (we move them)
and create a molecular velocity. So far, we’ve looked at the relationship be-
tween the displacement and the velocity of the air molecules, but we haven’t
looked at how both of these relate to the pressure applied to get the whole
thing moving. In the case of a pendulum (a weight hanging on the end of
a stick that’s free to swing back and forth), the greater the force applied to
it, the more it moves and the faster it will go – the higher the pressure, the
greater the displacement and the higher the velocity. The same is true of the
air molecules – the higher the pressure, the greater the displacement and the
higher the velocity. However, the one thing we’re ignoring is how hard it is
to get the pendulum (or the molecules) moving. If we apply the same force
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to two different pendulums, one light one and one heavy one, then we’ll get
two different maximum displacements and velocities as a result. Essentially,
the heavier pendulum is harder to move, so we don’t move it as far.

The issue that we’re now discussing is how much the pendulum impedes
your attempts to move it. The same is true of molecules moved by a sound
wave. Air molecules are like a light pendulum – they’re relatively easy
to move. On the other hand, if we were to put a loudspeaker in poured
concrete and play a tune, it would be much harder for the speaker to move
the concrete molecules – therefore they wouldn’t move as far with the same
pressure applied by the loudspeaker. There would still be a sound wave
going through the concrete (just as the heavy pendulum would move – just
not very much) but it wouldn’t be very loud.

The measurement of how much velocity results from a given amount of
pressure is an indication of how hard it is it move the molecules – in other
words, how much the molecules impede the transfer of energy. The higher
the impedance, the lower the velocity for a given amount of pressure. This
can be seen in Equation 3.10 which is true only for the free field situation.

z =
p

u
(3.10)

where z is the acoustic impedance in acoustic ohms (abbreviated Ω).
As you can see in this equation, z is proportional to p and inversely pro-

portional to u. This means that if the impedance goes up and the pressure
stays the same, then the velocity will go down.

In the specific case of unbounded plane waves (waves with a flat wave-
front – not curved like the ones we’re been discussing so far), this ratio is
also equal to the product of the volume density of the medium, ρo and the
speed of wave propogation c as is shown in Equation 3.11 [Olson, 1957].
This value zo is known as the specific acoustic impedance or characteristic
impedance of the medium.

zo = ρoc (3.11)

Acoustic Resistance and Reactance

Now, here’s where things get a little ugly... And I apologize in advance for
the mess I’m about to make of all this.

Acoustic impedance is actually the combination of two constituent com-
ponents called acoustic resistance and acoustic reactance (just like electrical
impedance is the combination of resistance and reactance). Let’s think back
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to the situation where you have a sound wave going through one medium
(say, air for example...) into another medium (like concrete). As we’ve al-
ready seen, the difference in the acoustic impedances of the two media will
determine how much of the sound wave gets reflected back into the air and
how much will be transmitted into the concrete. What we haven’t looked at
yet is whether or not there will be a phase change in the reflected and the
transmitted pressure waves. It’s important here to point out that I’m not
talking about a polarity change – I’m talking about a phase change.

Let’s just consider the transmitted pressure wave for a while. If there
is no change in the phase of the wave as a result of it hitting the second
medium, then we can say that the second medium has only an acoustic re-
sistance. If the acoustic impedance has no reactance component (remember
it only has two components) then there will be no phase shift between the
incident pressure wave and the transmitted pressure wave.

On the other hand, let’s say that there is suddenly a 90◦ delay in the
transmitted wave when compared to the incident wave (yes, this can happen
– particularly in cases where the second medium is flexible and bends when
the sound wave hits it). In this particular case, then the second medium has
only an acoustic reactance.

So, an acoustic resistance causes a 0◦ phase shift and an acoustic reac-
tance causes a 90◦ phase shift. By now, this should be reminding you of
Section 1.5.13. Remember from this chapter that a sinusoidal wave with
any magnitude and phase shift can be expressed using a real (0◦) and and
imaginary (90◦) component? The magnitude of the waveform depends on
the values of the real and the imaginary components, and the phase shift is
determined by the relative values of the two components.

This same system exists for impedance. In fact, you will often see books
saying that impedance is a complex value containing both a real and an
imaginary component. In other words, there will be a phase shift between
the incident wave and the transmitted and reflected waves. This phase shift
can be calculated if you know the relative balance of the real component (the
acoustic resistance) and the imaginary component (the acoustic reactance)
of the acoustic impedance.

If the concepts of acoustic impedance, resistance and reactance are a
little confusing, don’t worry for now. Go back and read Sections 2.1 and
2.4. If it still doesn’t make sense after that, then you can worry. To quote
Telly Monster from Sesame Street, “Don’t worry, be happy. Or worry, and
then be happy.”
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3.1.22 Power

So far, we’ve looked at a number of different ways to measure the level of a
sound. We’ve seen the pressure, the particle displacement and velocity and
some associated measurements like the SPL. These are all good ways to get
an idea of how loud a sound is at a specific point in space, but they are all
limited to that one point. All of these measurements tell you how loud a
sound is at the point of the receiver, but they don’t tell you much about how
loud the sound source itself is. If this doesn’t sound logical, think about the
light radiated from a light bulb – if you measure that light from a distance,
you can only tell how bright the light is where you measure it, you can’t tell
the wattage of the bulb (a measure of how powerful it is).

We’ve already seen that the particle velocity is proportional to the pres-
sure applied to the particles by the sound source. The higher the pressure,
the greater the velocity. However, we’ve also seen that, the greater the
acoustic impedance, the lower the particle velocity for the same amount of
pressure. This means that, if we have a medium with a higher acoustic
impedance, we’ll have to apply more pressure to get the same particle ve-
locity as we would with a lower impedance. Think about the pendulums
again – if we have a heavy and a light one and we want them to have the
same velocity, we’ll have to push harder on the heavy one to get it to move
as fast as the light one. In other words, we’ll have to do more work to get
the heavy one to move as fast.

Scientists typically don’t like work – otherwise they would have gotten
a job in construction instead... As a result, they even use a different word
to express work – specifically, they talk about how much work can be done
using power . The more power you have in a device, the more work it can
do. This can be seen from day to day in the way light bulbs are rated.
The amount of work that they do (how much light and heat they give off)
is expressed in how much power they use when they’re turned on. This
electrical power rating (expressed in Watts) will be discussed in Section
2.1.4.

In the case of acoustics, the amount of work that is done by the sound
source is proportional to the pressure and the particle velocity – the more
pressure and/or the more velocity, the more work you had to do to achieve
it. Therefore the acoustic power measured at a specific point in space can
be calculated using Equation ??. Remember that the change in pressure is
a result of the work that is done – you put power into the system and you
get a change in power as an output.

PUT ACOUSTIC POWER EQUATION HERE
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This equation is moderately useful in that it tells us how much work is
being done to move out measurement device (a microphone diaphragm), but
it still has a couple of problems. Firstly, it is still a measurement of a single
point in space, so we can only see the power received, not the total power
radiated by the sound source. Another problem with power measurements
is that they can’t give you a negative value. This is because a positive
pressure produces a positive velocity and when the two are multiplied we
get a positive power. A negative pressure multiplied by a negative velocity
also equals a positive power. This really makes intuitive sense since it’s
impossible to have a negative amount of work, which is why we need power
and pressure measurements in many cases – we need the latter to find out
what’s going on on the negative side of the stasis pressure.

3.1.23 Intensity

In theory, we can think of the sound power at a single point in space as we
did in the previous section. In reality, we cannot measure this, because we
don’t have any microphones to measure a point that small. Microphones for
measuring acoustic fields are pretty small, with diameters on the order of
millimeters, but they’re not infinitely small. As a result, if we oversimplify a
little bit for now, the microphone is giving us an output which is essentially
the sum of all of the pressures applied to its diaphragm. If the face of the
diaphragm is perpendicular to the direction of travel of the wavefront, then
we can say that the microphone is giving us an indication of the intensity
of the sound wave. Huh?

Well, the intensity of a sound wave is the measure of all of the sound
power distributed over a given area normal (perpendicular) to the direction
of propagation. For example, let’s think about a sound wave as a sphere
expanding outwards from the sound source. When the sphere is at the sound
source, it has the same amount of power as was radiated by the source, all
packed into a small surface area. If we ignore any absorption in the air,
as the sphere expands (because the wavefront moves away from the sound
source in all directions) the same power is contained in the bigger surface
area. Although the sphere gets bigger over time, the total power contained
in it never changes.

If we did the same thought experiment, but only considered an angular
slice of the sphere - say 45◦ by 45◦, then the same rule would hold true. As
the sphere expands, the amount of power contained in the 45◦ by 45◦ slice
would remain the same, even though its total surface area would increase.

Now, let’s think of it a different way. Instead of thinking of the whole
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sphere, or an angular slice of it, let’s think about a fixed surface area such
as 1 cm2 on the sphere. As the wavefront moves away from the sound
source and the sphere expands, the fixed surface area becomes a smaller
and smaller component of the total surface area of the sphere. Since the
total power distributed over the sphere doesn’t change, then the amount of
power contained in our little 1 cm2 gets less and less, proportional to the
ratio of the area to the total surface area of the sphere.

If the surface area that we’re talking about is part of the sphere ex-
panding from the sound source (in other words, if it’s perpendicular to the
direction of propagation of the wavefront) then the total sum of power in
the area is what is called the sound intensity.

This is why sound appears to get quieter as we move further away from
the sound source. Since your eardrum doesn’t change in surface area, as
you get further from a sound source, it has less intensity – there is less total
sound power on the surface of your eardrum because your eardrum is smaller
compared to the size of the sphere radiating from the source.
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3.2 Acoustic Reflection and Absorption

Imagine that you’re an air molecule – and that all of your friends are as
well. You all stand in single file front to back and each of you puts your
hands on the shoulders of the person in front of you. You’re at the back
of the line. If you push the person in front of you forwards, then he’ll fall
forwards, pushing the person in front of him who falls forward and pushes
the person in front of her and so on and so on to the front of the line. Now,
imagine that the person at the front of the line has his hands on a concrete
wall. When the person behind him pushes him forward, he pushes the wall
and winds up pushing back on the person who pushed him. That person
now falls backwards, pushing the person behind who does the same and so
on and so on. In the long run, you push someone forward, this causes a
chain reaction that ends in you getting pushed.

Imagine the same scenario, but this time, the person at the front of the
line is not in front of a concrete wall. You push the guy in front of you...
the chain reaction happens and eventually, the person in the front of the
line falls forward on his face. This now pulls the person behind him who
falls forward and pulls the person behind her and so on and so on. As you
can see, the eventual effect of the initial cause is now different. You push
someone forward, a chain reaction happens that ends in you getting pulled.

Remembering that you and your friends are all air molecules, the analogy
extends further. The difficulty you have pushing the person in front of you
is the acoustic impedance. If you are as easy to push as the person in front,
then the difference in impedance between you is 0, therefore there is no
reflection. The same is true in air molecules – two air molecules side by side
have the same impedance, so there is no reflection from the second one.

The person at the front of the line has a very difficult time pushing the
concrete wall just like an air molecule can’t push a concrete wall because
the acoustic impedance of concrete is higher than that of air. Therefore, if
you send a high pressure wave at a reflecting surface with a higher acoustic
impedance than the transmission medium, you get a high pressure wave
back. You push, and eventually, you get pushed.

When the person at the front of the line has nothing to push, it’s the
same as an air molecule on a reflecting surface that has a lower acoustic
impedance than the transmission medium. If you send a high pressure wave
at that reflecting surface, you will get a low pressure wave back. You push,
and eventually you get pulled. Of course, the only question that is probably
remaining is “how can you have a lower acoustic impedance than air?” We’ll
get to that in a later section.



3. Acoustics 181

3.2.1 Impedance Boundaries

We normally think of sound waves as bouncing off of walls in the same way
that balls bounce off the cushions on a pool table. This works for the most
simple of cases, where you have only one wall and it’s made of perfectly flat,
polished concrete or marble, but in all other situations, it’s best to know a
little more about what’s going on.

In order to look at this, we have to look at the pressure wave in a slightly
different way. So far we’ve been saying that a compression is a positive (or
high) pressure and a refraction is a negative (or low) pressure. What we
haven’t been considering is the direction of the movement of the molecules.
For example, in the previous section, we looked at the analogy of a bunch of
your friends pushing each other around. One of the little things we skipped
over was the details around when you’re pushed and when you’re pulled...
Hopefully, you didn’t notice this at the time, but now it’s time to deal with
the confusion.

Very early in this chapter, we looked at the displacement of the air
molecules from their stasis position. Since the molecules move back and
forth, the displacement can be a positive or negative number.

We’ve also looked at the instantaneous excess pressure, p and the peak
maximum pressure, P . These two measurements are indications of the dis-
tance between the air molecules.

One of the things to note here is that the polarities of the pressure and
the displacement are independent. For example, you can have a negative
displacement with a positive or a negative pressure. In other words, the
molecules can move towards you and either bunch together or pull apart.
Using the analogy above, a high pressure means that you are closer to your
adjacent friend, regardless of the direction that you moved to get closer...

So, let’s create a
EXPLAIN THE CONCEPT OF p INSTEAD OF P.

p = Pei(ωt+kx) (3.12)

MORE EXPLANATION

p = P (cos(ωt + kx) + isin(ωt + kx)) (3.13)

MORE EXPLANATION HERE
A sound wave propagates through a medium such as air until it meets

a change in acoustic impedance. This change in impedance could be the
result of a new medium like a concrete wall, or it might be a less obvious
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reason such as a change in air temperature or a change in room shape. We’ll
look at the more obscure instances a little later. When the wavefront of a
propagating sound encounters a change in the propagation medium and the
direction of wave propagation is perpendicular to the boundary of the two
media, the pressure in the wave is divided between two resulting wavefronts
thetransmitted sound, which passes into the new medium, and the reflected
sound, which is transmitted back into its medium of origin as is shown in
Figure ?? and expressed in Equation 3.14 ??.

p
i

p
r

p
t

Figure 3.13: The relationship between the incident, transmitted and reflected pressure waves as-
suming that all rays are perpendicular to the boundary.

pt = pi + pr (3.14)

where pi is the incident pressure in the first medium, pr is the reflected
pressure in the first medium and pt is the pressure transmitted into the
second medium, all measured at the boundary of the two media.

This equation should look a little weird at first – intuition says that the
energy in the incident pressure should be equal to the sum of the reflected
and transmitted pressures, and you’d be right if you thought this. Notice,
however, that Equation 3.14 uses small p’s instead of capitals.

FINISH THIS OFF!!
Similar to Equation 3.14, the difference between the incident and re-

flected particle velocities equals the transmitted particle velocity as is shown
in Equation 3.15 [Kinsler and Frey;, 1982].

ut = ui − ur (3.15)

As a result, we can combine Equations 3.10, 3.14 and 3.15 to produce
Equation 3.16 [Kinsler and Frey;, 1982].
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zt =
pi + pr

ui − ur
=

pt

ut
(3.16)

where zt is the acoustic impedance of the second medium.

3.2.2 Reflection and Transmission Coefficients

The ratios of reflected and transmitted pressures to the incident pressure are
frequently expressed as the pressure reflection coefficient , R , and pressure
transmission coefficient , T , shown in Equations 3.17 and 3.18 [Kinsler and Frey;, 1982].

R =
Pr

Pi
(3.17)

T =
Pt

Pi
(3.18)

What use are these? Well, let’s say that you have a sound wave hitting
a wall with a reflection coefficient of R = 1. This then means that Pr = Pi,
which is a mathematical way of saying that all of the sound will bounce back
off the wall. Also because of Equation 3.14, this also means that none of
the sound will be transmitted into the wall (because Pr = 0 and therefore
T = 0), so you don’t get angry neighbours. On the other hand, if R = 0.5,
then Pr = Pi

2 which in turn means that Pr = Pi
2 (and therefore that

T = 0.5) and you might be sending some sound next door... although we
would have to do a little more math to really decide whether that was indeed
the case.

Note that the pressure reflection coefficient can either be a positive num-
ber of a negative number. If R is a positive number then the pressure of the
reflection will have the same polarity as the incident wave, however, if R
is negative, then the pressures of the incident and reflected waves will have
opposite polarities. THINK BACK TO THE EXAMPLE WITH YOUR
FRIENDS...

3.2.3 Absorption Coefficient

So far we have assumed that the media we’re talking about that are being
used to transmit the sound, whether air or something else, are adiabatic.
This is a fancy word that means that they don’t convert any of the sound
power into heat. This, unfortunately is not the case for any substance. All
sound transmission media will cause some of the energy in the sound wave
to be converted into heat, and therefore it will appear that the substance
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has absorbed some of the sound. The amount of absorption depends on the
characteristics of the material, but a good rule of thumb is that when the
material is made of a lot of changes in density, then you’re going to get more
absorption than in a material with a constant density. For example, air has
pretty much the same density all over a room, therefore you don’t get much
sound energy absorbed by air. Fibreglas insulation, on the other hand is
made up of millions of bits of glass and pockets of air, resulting in a large
number of big changes in acoustic impedance through the material. The
result is that the insulation converts most of the sound energy into heat. A
good illustration of this is a rumour that I once heard about an experiment
that was done in Sweden some years ago. Apparently, someone tried to
measure the sound pressure level of a jet engine in a large anechoic chamber
which is a room that is covered in absorbent material so that there are no
reflections off any of the walls. Of course, since the walls are absorbent, then
this means that they convert sound into heat. The sound of the jet engine
was so loud that it caused the absorptive panels to melt! Remember that
this was not because the engine made heat, but that it made noise.

Usually, a material’s absorption coefficient , α is found by measuring the
amount of energy reflected off it.

CHECK THIS AND FINISH IT OFF

α =
absorbedenergy

incidentenergy
(3.19)

Air Absorption

In practice, for lower frequencies, no energy will be lost in the propagation
through air. However, for shorter wavelengths, there is an increasing at-
tenuation due to viscothermal losses (meaning losses due to energy being
converted into heat) in the medium. These losses in air are on the order of
0.1 dB per metre at 10 kHz as is shown in Figure 3.14.

Usually, we can ignore this effect, since we’re usually pretty close to
sound sources. The only times that you might want to consider this is
when the sound has travelled a very long distance which, in practice, means
either a sound source that’s really far away outdoors, or a reflection that
has bounced around a big room a lot before it finally gets to the listening
position.

3.2.4 Comb Filtering Caused by a Specular Reflection

NOT YET WRITTEN
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Figure 3.14: Attenuation resulting from air absorption due to propagation distance vs. frequency
for various relative humidity levels (a) 20 %; (b) 40 %; (c) 80 % [Kutruff, 1991]
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3.2.5 Huygen’s Wave Theory

NOT YET WRITTEN

Figure 3.15: The top diagram is a simplified representation of a plane wave travelling from top to
bottom of the page. The bottom diagram shows a large number of closely-spaced point sources
emitting the same frequency. Notice that the interference pattern of the multiple sources looks
very similar to the plane wave. In fact, the more sources you have, and the closer together they
are, the closer the more the two results will be.
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3.3 Specular and Diffused Reflections

For this section, you will have to imagine a very strange thing – a single
reflecting surface in a free field. Imagine that you’re floating in space (except
that space is full of air so that you can breathe and sound can be transmitted)
next to a wall that extends out to infinity in all directions. It may be easier
to think of you standing outdoors on a concrete floor that goes out to infinity
in all directions. Just remember – we’re not talking about a wall inside a
room yet... just the wall itself. Room acoustics comes later.

3.3.1 Specular Reflections

The discussion in Section 3.2.1 assumes that the wave propagation is normal,
or perpendicular, to the surface boundary. In most instances, however, the
angle of incidence – an angle subtended by a normal to the boundary (a
line perpendicular to the surface and intersecting the point of reflection)
and the incident sound ray – is an oblique angle. If the reflective surface
is large and flat relative to the wavelength of the reflected sound, there
exists a simple relationship between the angle of incidence and the angle of
reflection, subtended by the reflected ray of sound and the normal to the
reflective surface. Snells law describes this relationship as is shown in Figure
3.16 and Equation 3.20 [Isaacs, 1990].

sin(ϑi) = sin(ϑr) (3.20)

and therefore, in most cases:

ϑi = ϑr (3.21)

This is exactly the same as the light that bounces off a mirror. The
light hits the mirror and then is reflected off at an angle that is equal to the
angle of incidence. As a result, the reflections looks like a light bulb that
appears to be behind the mirror. There is one interesting thing to note here
– the point on the mirror where the light is reflected is dependent on the
locations of the light, the mirror and the viewer. If the viewer moves, then
the location of the reflection does as well. If you don’t believe me, go get a
light and a mirror and see for yourself.

Since this type of reflection is most commonly investigated as it applies
to visual media and thus reflected light, it is usually considered only in the
spatial domain as is shown in the above diagram. The study of specular
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rϑ

iϑ

Figure 3.16: Relationship between the angles of incidence and reflection in the case of a specular
reflector.

reflections in acoustic environments also requires that we consider the re-
sponse in the time domain as well. This is not an issue in visual media since
the speed of light is effectively infinite in human perception. If the surface
is a perfect specular reflector with an infinite impedance, then the reflected
pressure wave is an exact copy of the incident pressure wave. As a result,
its impulse response is equivalent to a simple delay with an attenuation de-
termined by the propagation distance of the reflection as is shown in Figure
3.17.

3.3.2 Diffused Reflections

If the surface is irregular, then Snells Law as stated above does not apply.
Instead of acting as a perfect mirror, be it for light or sound, the surface
scatters the incident pressure in multiple directions. If we use the example
of a light bulb placed close to a white painted wall, the brightest point on
the reflecting surface is independent of the location of the viewer. This is
substantially different from the case of a specular reflector such as a polished
mirror in which the brightest point, the location of the reflection of the light
bulb, would move along the mirrors surface with movements of the viewer.
Lamberts Law describes this relationship and states that, in a perfectly
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Figure 3.17: Impulse response of direct sound and specular reflection. Note that the Time is
referenced to the moment when the impulse is emitted by the sound source, hence the delay in the
time of arrival of the initial direct sound.

diffusing reflector, the intensity is proportional to the cosine of the angle of
incidence as is shown in Figure 3.18 and Equation 3.22 [Isaacs, 1990].

Figure 3.18: Relationship between the angles of incidence and reflection in the case of a diffusive
reflector.

Ir ∝ Ii cos(ϑi) (3.22)

where Ir and Ii are the intensities of the reflected and incident sound
waves respectively.

Note that, in this case of a perfectly diffusing reflector, the “bright point”



3. Acoustics 190

is the point on the surface of the reflector where the wavefront hits perpen-
dicular to the surface. This means that it is irrelevant where the viewer is
located. This can be seen in Figure 3.19 which shows a reflecting surface
that is partly diffuse and specular. In this case, if the viewer were to move,
the smaller specular reflection would move, but the diffuse reflection would
not.

Figure 3.19: Photograph of a wall surface which exhibits both specular and diffusive reflective
properties. Note that there are two bright spots. The small area on the right is the specular
reflection, the larger area in the centre is the diffuse component.

There are a number of physical characteristics of diffused reflections that
differ substantially from their specular counterparts. This is due to the fact
that, whereas the received reflection from a specular reflector originates
from a single point on the surface, the reflection from a diffusive reflector is
distributed over a larger area as is shown in Figure 3.20.

Dalenbäck [Svensson, 1994] lists the results of this distribution in the
spatial, temporal and frequency domains as the following:

1. Non-specular regions are covered

2. temporal smearing and amplitude smoothing

3. reception angle smear

4. directivity smear

5. frequency content in reflection is affected

6. creation of a more uniform reverberant field
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Figure 3.20: Diffused reflection showing spatial distribution of the reflected power for a single
receiver.
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The first issue will be discussed below. The second, third and fourth
points are the product of the fact that the received reflection is distributed
over the surface of the reflector. This results in multiple propagation dis-
tances for a single reflection as well as multiple angles and reflection loca-
tions. Since the reflection is distributed over both space and time at the
listening position, there is an effect on the frequency content. Whereas,
in the case of a perfect specular reflector, the frequency components of the
resulting reflection form an identical copy of the original sound source, a dif-
fusive reflector will modify those frequency characteristics according to the
particular geometry of the surface. Finally, since the reflections are more
widely distributed over the surfaces of the enclosure, the reverberant field
approaches a perfectly diffuse field more rapidly.

Figure 3.21: Impulse response of direct sound as well as the specular and simplified diffused reflec-
tion components. Note that the Time is referenced to the moment when the impulse is emitted
by the sound source, hence the delay in the time of arrival of the initial direct sound.

Surface Types

The relative balance of the specular and diffused components of a reflec-
tion off a given surface are determined by the characteristics of that surface
on a physical scale on the order of the wavelength of the acoustic signal.
Although a specular reflection is the result of a wave reflecting off a flat,
non-absorptive material, a non-specular reflection can be caused by a num-
ber of surface characteristics such as irregularities in the shape or absorption
coefficient (and therefore acoustic impedance). In order to evaluate the spe-
cific qualities of assorted diffusion properties, various surface characteristics
are discussed.

Irregular Surfaces
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The natural world is comprised of very few specular reflectors for light
waves even fewer for acoustic signals. Until the development of artificial
structures, reflecting surfaces were, in almost all cases, irregularly-shaped
(with the possible exception of the surface of a very calm body of water).
As a result, natural acoustic reflections are almost always diffused to some
extent. Early structures were built using simple construction techniques and
resulted in flat surfaces and therefore specular reflections.

For approximately 3000 years, and up until the turn of the 20th century,
architectural trends tended to favour florid styles, including widespread use
of various structural and decorative elements such as fluted pillars, entab-
latures, mouldings, and carvings. These random and periodic surface irreg-
ularities resulted in more diffused reflections according to the size, shape
and absorptive characteristics of the various surfaces. The rise of the In-
ternational Style in the early 1900s [Nuttgens, 1997] saw the disappearance
of these largely irregular surfaces and the increasing use of expansive, flat
surfaces of concrete, glass and other acoustically reflective materials. This
stylistic move was later reinforced by the economic advantages of these de-
sign and construction techniques.

Maximum length sequence diffusers
The link between diffused reflections and better-sounding acoustics has

resulted in much research in the past 30 years on how to construct diffusive
surfaces with predictable results. This continues to be an extremely popular
topic at current conferences in audio and acoustics with a great deal of the
work continuing on the breakthroughs of Schroeder.

In his 1975 paper, Schroeder outlined a method of designing surface
irregularities based on maximum length sequences (MLS) [Golomb, 1967]
which result in the diffusion of a specific frequency band. This method relies
on the creation of a surface comprised of a series of reflection coefficients
alternating between +1 and -1 in a predetermined periodic pattern.

Consider a sound wave entering the mouth of a well cut into the wall
from the concert hall as shown in Figure 3.22.

Assuming that the bottom of the well has a reflection coefficient of 1,
the reflection returns to the entrance of the well having propagated a dis-
tance equalling twice its depth dn, and therefore undergoing a shift in phase
relative to the sound entering the well. The magnitude of this shift is depen-
dent on the relationship between the wavelength and the depth according
to Equation 3.23.

ϕ = 4π
dn

λ
(3.23)



3. Acoustics 194

Figure 3.22: Pressure wave incident upon the mouth of a well.

where ϕ is the phase shift in radians, dn is the depth of the well and λ
is the wavelength of the incident sound wave.

Therefore, if λ = 4dn, then the reflection will exit the well having un-
dergone a phase shift of π radians. According to Schroeder, this implies
that the well can be considered to have a reflective coefficient of -1 for that
particular frequency, however this assumption will be expanded to include
other frequencies in the following section.

Using an MLS, the particular required sequence of positive and negative
reflection coefficients can be calculated, resulting in a sequence such as the
following, for N=15:

+ + + - - - + - - + + - + - +
This is then implemented as a series of individually separated wells cut

into the reflecting surface as is shown in Figure 3.23. Although the depth
of the wells is dependent on a single so-called design wavelength denoted
λo, in practice it has been found that the bandwidth of diffused frequencies
ranges from one-half octave below to one half octave above this frequency
[Schroeder, 1975]. For frequencies far below this bandwidth, the signal is
typically assumed to be unaffected. For example, consider a case where
the depth of the wells is equal to one half the wavelength of the incident
sound wave. In this case, the wells now exhibit a reflective coefficient of +1;
exactly the opposite of their intended effect, rendering the surface a flat and
therefore specular reflector.

The advantage of using a diffusive surface geometry based on maximum
length sequences lies in the fact that the power spectrum of the sequence is
flat except for a minor dip at DC [Schroeder, 1975]. This permits the acous-
tical designer to specify a surface that maintains the sound energy in the
room through reflection while maintaining a low interaural cross correlation
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+ + + - - - + - - + + - + - + + + + -+ - +

room

Figure 3.23: MLS Diffuser showing the relationship between the individual wells cut into the wall
and the MLS sequence.

(IACC) through predictable diffusion characteristics which do not impose
a resonant characteristic on the reflection. The principal disadvantage of
the MLS-based diffusion scheme is that it is specific to a relatively narrow
frequency band, thus making it impractical for wide-band diffusion.

Schroeder Diffusers
The goal became to find a surface geometry which would permit designers

the predictability of diffusion from MLS diffusers with a wider bandwidth.
The new system was again introduced by Schroeder in 1979 in a paper de-
scribing the implementation of the quadratic residue diffuser or Schroeder
diffuser [Schroeder, 1979] – a device which has since been widely accepted
as one of the de facto standards for easily creating diffusive surfaces. Rather
than relying on alternating reflecting coefficient patterns, this method con-
siders the wall to be a flat surface with varying impedance according to
location. This is accomplished using wells of various specific depths ar-
ranged in a periodic sequence based on residues of a quadratic function as
in Equation 3.24 [Schroeder, 1979].

sn = n2,mod(N) (3.24)

where sn is the sequence of relative depths of the wells, n is a number
in the sequence of non-negative consecutive integers (0, 1, 2, 3 ...) denoting
the well number, and N is a non-negative odd prime number.

If you’re uncomfortable with the concept of the modulo function, just
think of it as the remainder. For example, 5,mod(3) = 2 because 5

3 = 1
with a remainder of 2. It’s the remainder that we’re looking for.

For example, for modulo 17, the series is
0, 1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1, 0, 1, 4, 9, 16, 8, 2, 15
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...
As may be evident from the representation of this series in Figure 3.24,

the pattern is repeating and symmetrical around n = 0 and N
2 .

Figure 3.24: Schroeder diffuser for N = 17 following the relative depths listed above. Note that
this diagram shows 3 repetitions of the period of the sequence.

The actual depths of the wells are dependent on the design wavelength of
the diffuser. In order to calculate these depths, Schroeder suggests Equation
3.25.

dn = sn
λo

2N
(3.25)

where dn is the depth of well n and λo is the design wavelength [Schroeder, 1979].
The widths of these wells w should be constant (meaning that they

should all be the same) and small compared to the design wavelength (no
greater than λo

2 ; Schroeder suggests 0.137λo). Note that the result of Equa-
tion 3.25 is to make the median well depth equal to one-quarter of the design
wavelength. Since this arrangement has wells of varying depths, the result-
ing bandwidth of diffused sound is increased substantially over the MLS
diffuser, ranging approximately from one-half octave below the design fre-
quency up to a limit imposed by λ > λo

N and, more significantly, λ > 2w
[Schroeder, 1979].

The result of this sequence of wells is an apparently flat reflecting surface
with a varying and periodic impedance corresponding to the impedance at
the mouth of each well. This surface has the interesting property that, for
the frequency band mentioned above, the reflections will be scattered to
propagate along predictable angles with very small differences in relative
amplitude.

3.3.3 Reading List
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3.4 Diffraction of Sound Waves

NOT YET WRITTEN

Figure 3.25: An overly-simplified diagram showing how an obstruction (the red block) will shadow
a plane wave on one side. Also shown is an overly-simplified example of diffraction, shown as the
waves centered at the corners of the obstruction. Omitted are the reflections off the obstruction,
and the diffraction off the top two corners.

3.4.1 Reading List
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3.5 Struck and Plucked Strings

3.5.1 Travelling waves and reflections

Go find a long piece of rope, tie one end of it to a solid object like a fence
rail and pull it tight so that you look something like Figure 3.26

Figure 3.26: You, a rope and a fence post before anything happens.

Then, with a flick of your wrist, you quickly move your end of the rope
up and back down to where you started. If you did this properly, then the
rope will have a bump in it as is shown in Figure 3.27. This bump will move
quickly down the rope towards the other end.

Figure 3.27: You, a rope and a fence post just after you have flicked your wrist to put a bump in
the rope.

When the bump hits the fence post, it can’t move it because fence posts
are harder to move than rope molecules. Since the fence post is at the end
of the rope, we say that it terminates the rope. The word termination is
one that we use a lot in this book, both in terms of acoustic as well as
electronics. All it means is the end of the system – the rope, the air, the
wire... whatever the “system” is. So, an acoustician would say that the rope
is terminated with a high impedance at the fence post end.

Remember back to the analogy in Section 3.2.2 where the person in the
front was pushing on a concrete wall. You pushed the person ahead of you
and you wound up getting pushed in the opposite direction that you pushed
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in the first place. The same is true here. When the wave on the rope refelects
off a higher impedance, then the reflected wave does the same thing. You
pull the rope up, and the reflection pulls you down. This end result is shown
in Figure 3.28.

Figure 3.28: You, a rope and a fence post just after the wave has reflected off the fence post (the
high impedance termination).

3.5.2 Standing waves (aka Resonant Frequencies)

Take a look at a guitar string from the side as is shown in the top diagram
in Figure 3.29. It’s a long, thin piece of metal that’s pulled tight and, on
each end it’s held up by a piece of plastic called the bridge at the bottom
and the nut at the top. Since the nut and the bridge are firmly attached to
heavy guitar bits, they’re harder to move than the string, therefore we can
say that the string is terminated at both ends with a high impedance.

Let’s look at what happens when you pluck a perfect string from the the
centre point in slow motion. Before you pluck the string, it’s sitting at the
equilibrium position as shown in the top diagram in Figure 3.29.

You grab a point on the string, and pull it up so that it looks like the
second diagram in Figure 3.29. Then you let go...

One way to think of this is as follows: The string wants to get back
to its equilibrium position, so it tries to flatten out. When it does get to
the equilibrium position, however, it has some momentum, so it passes that
point and keeps going in the opposite direction until it winds up on the other
side as far as it was pulled in the first place. If we think of a single molecule
at the centre of the string where you plucked, then the behaviour is exactly
like a simple pendulum. At any other point on the string, the molecules
were moved by the adjacent molecules, so they also behave like pendulums
that weren’t pulled as far away from equilibrium as the centre one.

So, in total, the string can be seen as an infinite number of pendulums,
all connected together in a line, just as is explained in Huygens theory.



3. Acoustics 200

Figure 3.29: A frame-by-frame diagram showing what happens to a guitar string when you pluck
it.

If we were to pluck the string and wait a bit, then it would settle down
into a pretty predictable and regular motion, swinging back and forth looking
a bit like a skipping rope being turned by a couple of kids. If we were to
make a move of this movement, and look at a bunch of frames of the film
all at the same time, they might look something like Figure 3.30.

In Figure 3.30, we can see that the string swings back and forth, with
the point of largest displacement being in the centre of the string, halfway
between the two anchored points at either end. Depending on the length,
the tension and the mass of the string, it will swing back and forth at
some speed (we’ll look at how to calculate this a little later...) which will
determine the number of times per second it oscillates. That frequency is
called the fundamental resonant frequency of the string. If it’s in the right
range (between 20 Hz and 20,000 Hz) then you’ll hear this frequency as a
musical pitch.

In reality, this is a bit of an oversimplification. The string actually
resonates at other frequencies. For example, if you look at Figure 3.31,
you’ll see a different mode of oscillation. Notice that the string still can’t
move at the two anchored end points, but it now also does not move in the
centre. In fact, if you get a skipping rope or a telephone cord and wiggle it
back and forth regularly at the right speed, you can get it to do exactly this
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Figure 3.30: The first mode of vibration of a string anchored on both ends. This will vibrate at a
frequency f .

pattern. I would highly recommend trying.
A short word here about technical terms. The point on the string that

doesn’t move is called a node. You can have more than one node on a string
as we’ll see below. The point on the string that has the highest amplitude of
movement is called the antinode, because it’s the evil opposite of the node,
I suppose...

Figure 3.31: The second mode of vibration of a string anchored on both ends. This will vibrate at
a frequency 2f .

One of the interesting things about the mode shown in Figure 3.31 is
that its wavelength on the string is exactly half the wavelength of the mode
shown in Figure 3.30. As a result, it vibrates back and forth twice as fast and
therefore has twice the frequency. Consequently, the pitch of this vibration
is exactly one octave higher than the first.
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This pattern continues upwards. For example, we have seen modes of
vibration with one and with two “bumps” on the string, but we could also
have three as is shown in Figure 3.32. The frequency of this mode would be
three times the first. This trend continues upwards with an integer number
of bumps on the string until you get to infinity.

Figure 3.32: The third mode of vibration of a string anchored on both ends. This will vibrate at a
frequency 3f .

Since the string is actually vibrating with all of these modes at the
same time, with some relative balance between them, we wind up hearing a
fundamental frequency with a number of harmonics. The combined timbre
(or sound colour) of the sound of the string is determined by the relative
levels of each of these harmonics as they evolve over time. For example,
if you listen to the sound of a guitar string, you might notice that it has a
very bright sound immediately after it has been plucked, and that the sound
gets darker over time. This is because at the start of the sound, there is a
relatively high amount of energy in the upper harmonics, but these decay
more quickly than the lower ones and the fundamental. Therefore, at the
end of the sound, you get only the lowest harmonics and fundamental of the
string, and therefore a darker sound quality.

It might be a little difficult to think that the string is moving at a
maximum in the middle for some modes of vibration in exactly the same
place as it’s not moving at all for other modes. If this is confusing, don’t
worry, you’re completely normal. Take a look at Figure 3.33 which might
help to alleviate the confusion. Each mode is an independent component
that can be considered on its own, but the total movement of the string is
the result of the sum of all of them.

One of the neat tricks that you can do on a stringed instrument such as
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Figure 3.33: The sum of the three first modes of vibration of a string. The top three plots show
the first, second and third modes of vibration with relative amplitudes 1, 0.5 and 0.25 respectively.
The bottom plot is the sum of the top three.

a violin or guitar is to play these modes selectively. For example, the normal
way to play a violin is to clamp the string down to the fingerboard of the
instrument with your finger to effectively shorten it. This will produce a
higher note if the string is plucked or bowed. However, you could gently
touch the string at exactly the halfway point and play. In this case, the
string still has the same length as when you’re not touching it. However,
your finger is preventing the string from moving at one particular point.
That point (if your finger is halfway up the string) is supposed to be the
point of maximum movement for all of the odd harmonics (which include the
fundamental – the 1st harmonic). Since your finger is there, these harmonics
can’t vibrate at all, so the only modes of vibration that work are the even-
numbered harmonics. This means that the second harmonic of the string
is the lowest one that’s vibrating, and therefore you hear a note an octave
higher than normal. If you know any string players, get them to show you
this effect. It’s particularly good on a cell or double bass because you can
actually see the harmonics as a shape of the string.

3.5.3 Impulse Response vs. Resonance

Think back to the beginning of this section when you were playing with the
skipping rope. Let’s take the same rope and attach it to two fence posts,
pulling it tight. In our previous example, you flicked the rope with your
wrist, making a bump in it that travelled along the rope and reflected off
the opposite end. In our new setup, what we’ll do is to tap the rope and
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watch what happens. What you’ll (hopefully) be able to see is that the
bump you created by tapping travels in two opposite directions to the two
ends of the rope. These two bumps reflect and return, meeting each other at
some point, crossing each other and so on. This process is shown in Figures
3.34 through 3.37.

striking 
point

probe

Figure 3.34: A rope tied to two fence posts just after you have tapped it.

striking 
point

probe

Figure 3.35: A rope tied to two fence posts a little later. Note that the bump you created is
travelling in two directions, and each of the two resulting bumps is smaller than the original. The
bump on the left has already reflected off the left end of the rope.

striking 
point

probe

Figure 3.36: The two bumps after they have reflected off the high impedance terminations (the
fence posts). When the two bumps meet each other, they appear for an instant to be one bump

Let’s assume that you are able to make the bump in the rope infinitely
narrow, so that it appears as a spike or an impulse. Let’s also put a theoret-
ical probe on the rope that measures its vertical movement at a single point
over time. We’ll also, for the sake of simplicity, put the probe the same
distance from one of the fence posts as you are from the other post. This
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striking 
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probe

Figure 3.37: After the two reflections have met each other, they continue on in opposite directions.
(The right bump has reflected off the right end of the rope.) The process then repeats itself
indefinitely, assuming that there are no losses of energy in the system due to things like friction.

is to ensure that the probe is at the point where the two little spikes meet
each other to make one big spike. If we graphed the output of the probe
over time, it would look like Figure 3.38.
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Figure 3.38: The output of the probe showing the vertical movement of the rope over time. This
response corresponds directly to Figures 3.34 to 3.37

This graph shows how the rope responds in time when the impulse (an
instantaneous change in displacement or pressure which instantaneous) is
applied to it. Consequently we call it the impulse response of the system.
Note that the graph in Figure 3.38 corresponds directly to Figures 3.35 to
3.37 so that you can see the relationship between the displacement at the
point where the probe is located on the string and passing time. Note that
only the first three spikes correspond to the pictures – after those three have
gone by, the whole thing repeats over and over.

As we’ll see later in Section 8.2, we are able to do some math on this
impulse response to find out what the frequency content of the signal is –
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in other words, the harmonic content of the signal. The results of this is
shown in Figure 3.39.
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Figure 3.39: The frequency content of the string’s vibrations at the location of the probe.

This graph shows us that we have the fundamental frequency and all
its harmonics at various levels up to ∞ Hz. The differences in the levels of
the harmonics is due to the relative locations of the striking point and the
probe on the string. If we were to move either or both of these locations, then
the relative times of arrival of the impulses would change and the balance
of the harmonics would change as well. Note that the actual frequencies
shown in the graph are completely arbitrary. These will change with the
characteristics of the string as we’ll see below in Section 3.5.4.

“So what?” I hear you cry. Well, this tells us the resonant frequencies of
the string. Basically, Figure 3.39 (which is a frequency content plot based on
the impulse response in time) is the same as the description of the standing
wave in Section 3.5.2. Each spike in the graph corresponds to a frequency
in the standing wave series.

3.5.4 Tuning the string

If we weren’t able to change the pitch of a string, then many of our musi-
cal instruments would sound pretty horrid and we would have very boring
music... Luckily, we can change the frequency of the modes of vibration of
a string using any combination of three variables.
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String Mass

The reason a string vibrates in the first place is because, when you pull
it back and let go, it doesn’t just swing back to the equilibrium position
and stop dead in its tracks. It has momentum and therefore passes where
it wants to be, then turns around and swings back again. The heavier the
string is, the more momentum it has, so the harder it is to stop. Therefore,
it will move slower. (I could make an analogy here about people, but I’ll
behave...) If it moves slower, then it doesn’t vibrate as many times per
second, therefore heavier strings vibrate at lower frequencies.

This is why the lower strings on a guitar or a piano have a bigger diam-
eter. This makes them heavier per metre, therefore they vibrate at a lower
frequency than a lighter string of the same length. As a result, your piano
doesn’t have to be hundred of metres long...

String Length

The fundamental mode of vibration of a string results in the string looking
like a half-wavelength of a sound wave. In fact, this half-wavelength is
exactly that, but the medium is the string itself, not the air. If we make the
wavelength longer by lengthening the string, then the frequency is lowered,
just as a longer wavelength in air corresponds to a lower frequency.

String Tension

As we saw earlier, the reason the string vibrates is because it’s trying to get
back to the equilibrium position. The tension on the string – how much its
being stretched – is the force that’s trying to pull it back into position. The
more you pull (therefore the higher the tension) the faster the string will
move, therefore this higher the pitch.

QUESTION TO SELF: IS THERE A SIMPLE EQUATION FOR PRE-
DICTING THE FUNDAMENTAL RESONANT FREQUENCY OF THE
STRING?

3.5.5 Harmonics in the real-world

While it’s nice to think of resonating strings in this way, that’s not really
the way things work in the real world, but it’s pretty close. If you look at
the plots above that show the modes of vibration of a string, you’ll notice
that the ends start at the correct slope. This is a nice, theoretical model,
but it really doesn’t reflect the way things really behave. If we zoom in at
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the point where the string is terminated (or anchored) on one end, we can
see a different story. Take a look at Figure 3.40. The top plot shows the
way we’ve been thinking up to now. The perfect string is securely anchored
by a bridge or clamp, and inside the clamp it is free to bend as if it were
hinged by a single molecule. of course, this is not the case, particularly with
metal strings as we find on most instruments.

The bottom diagram tells a more realistic story. Notice that the string
continues on a straight line out of the clamp and then gradually bends into
the desired position – there is no fixed point where the bend occurs at an
extreme angle.

Figure 3.40: Theory vs. reality on a string termination. The top diagram shows the theoretical bend
of a string at the anchor point. The bottom diagram shows a more realistic behaviour, particularly
for stiff strings as in a piano.

Now think back to the slopes of the string at the anchor point for the
various modes of vibration. The higher the frequency of the mode, the
shorter the wavelength on the string, and the steeper the slope at the string
termination. This means that higher harmonics are trying to bend the string
more at the ends, yet there is a small conflict here... there is typically less
energy in the higher harmonics, so it’s more difficult for them to move the
string, let alone bending it more than the fundamental. As a result, we get
a strange behaviour as is shown in Figure 3.41

As you can see in this diagram, the lower harmonic is able to bend the
string more, closer to the termination than the higher harmonic. This means
that the effective length of the string is shorter for higher harmonics than
for lower ones. As a result, the higher the harmonic, the more incorrect it
is mathematically, and the sharper it is musically speaking. Essentially, the
higher the harmonic, the sharper it gets.
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Figure 3.41: High and low harmonics on a stiff string. Note that the lower mode (represented as
a blue line) has a longer effective length than the higher mode (the red line).

This is why good piano tuners tune by ear rather than using a machine.
Let’s say you want a Middle C on a piano to sound in tune with the C one
octave above it. The fundamental of the higher C is theoretically the same
frequency as the second harmonic of the lower one. But, we now know that
the harmonic of the lower one is sharper than it should be, mathematically
speaking. Therefore, in order to sound in tune, the higher C has to be a
little higher than its theoretically correct tuning. If you tune the strings
using a tuner, then they will have the correct frequencies for the theoretical
world, but not for your piano. You will have to tune the various frequencies
a little to high for higher pitches in order to sound correct.

3.5.6 Reading List

The Physics of the Piano Blackham, E. D. Scientific American December
1965

Normal Vibration Frequencies of a Stiff Piano String Fletcher, H. JASA
Vol 36, No 1 Jan 1964

Quality of Piano Tones Fletcher H. et al JASA Vol 34 No 6 June 1962
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3.6 Waves in a Tube (Woodwind Instruments)

Imagine that you’re very, very small and that you’re standing at the end of
the inside a pipe that is capped at both ends. (Essentially, this is exactly
the same as if you were standing at one end of a hallway without doors.)
Now, clap your hands. If we were in a free field (described in Section 3.1.19)
then the power in your hand clap would be contained in a forever-expanding
spherical wavefront, so it would get quieter and quieter as it moves away.
However, you’re not in a free field, you’re trapped in a pipe. As a result,
the wave can only expand in one direction – down the pipe. The result
of this is that the sound power in your hand clap is trapped, and so, as
the wavefront moves down the pipe, it doesn’t get any quieter because the
wavefront doesn’t expand – it’s only moving forward.

3.6.1 Waveguides

In theory, if there was no friction against the pipe walls, and there was no
absorption in the air, even if pipe were hundreds of kilometers long, the
sound of your handclap would be as loud at the other end as it was 1 m
down the pipe... (In fact, back in the early days of audio effects units, people
used long pieces of hose as delay lines.)

One other thing – as you get further away from the sound source in the
pipe, the wavefront becomes flatter and flatter. In fact, in not very much
distance at all, it becomes a planewave. This means that if you look at the
pressure wave across the pipe, you would see that it is perpendicular with
the walls of the pipe. When this happens, the pipe is guiding the wave down
its length, so we call the pipe a waveguide.

3.6.2 Resonance in a closed pipe

When the pressure wave hits the capped end of the pipe, it reflects off the
wall and bounces back in the direction it came in. If we sent a high-pressure
wave down the pipe, since the cap has a higher acoustic impedance than
the air in the pipe, the reflection will also be a high-pressure wave. This
wavefront will travel back down the waveguide (the pipe) until it hits the
opposite capped end, and the whole process repeats. This process is shown
in Figures 3.42 through 3.45.

If we assume that the change in pressure is instantaneous and that it
returns to the equilibrium pressure instantaneously then we are creating an
impulse. The response at the microphone over time, therefore, is the impulse
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Figure 3.42: A pipe that is closed with a high-impedance cap at both ends. There is a loudspeaker
and a microphone inside the pipe at the shown locations. The black level of the diagram shows the
pressure inside the pipe – the darker the higher the pressure.
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Figure 3.43: The same pipe a little later. Note that the high pressure wave is travelling in two
directions, and each of the two resulting bumps is smaller than the original. The wave on the left
has already reflected off the left end of the pipe.
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Figure 3.44: The two waves after they have reflected off the high impedance terminations (the
pipe caps). When the two waves meet each other, they appear for an instant to be one wave.
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Figure 3.45: After the two reflections have met each other, they continue on in opposite directions.
(The right wave has reflected off the right end of the pipe.) The process then repeats itself
indefinitely, assuming that there are no losses of energy in the system due to things like friction on
the pipe walls or losses in the caps.

response of the closed pipe shown like Figure 3.46. Note that this impulse
response corresponds directly to Figures 3.34 through 3.37. Also note that,
unlike the struck rope, all pressure wave is always positive if we create a
positive pressure to begin with. This is, in part, because we are now looking
at air pressure whereas, in the case of the string, we were monitoring vertical
displacement. In fact, if we were graphing the molecules displacements in
the pipe, we would see the values alternating between positive and negative
just as in the impulse response for the string.

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.5

0

0.5

1

Time

P
re

ss
ur

e

Figure 3.46: The impulse response of a pipe that has a cap with an infinite acoustic impedance at
both ends. The sound source that produced the impulse is assumed to be at one of the ends of
the pipe, so we only see a single reflection. Note that the impulse does not decay over time since
all of the acoutic power is trapped inside the pipe. The first three spikes in this impulse response
corresponds directly to Figures 3.35 through 3.37.
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Just as with the example of the vibrating string in the previous Chap-
ter, we can convert the impulse response in Figure 3.46 into a plot of the
frequency content of the signal as is shown in Figure 3.47. Note that this
response is only true at the location of the microphone. If it or the loud-
speaker’s position were changed, so would the relative balances of the har-
monics. However, the frequencies of the harmonics would not change – these
are determined by the length of the pipe and the speed of sound as we’ll see
below.
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Figure 3.47: The frequency content of the pressure waves in the air inside the pipe at the location
of the microphone.

Figure 3.47 tells us that the signal inside the pipe can be decomposed
into a series of harmonics, just like we saw on the string in the previous
section. The only problem here is that they’re a little more difficult to
imagine because we’re talking about longitudinal waves instead of transverse
waves.

FINISH OFF THIS SECTION ON LONGITUDINAL STANDING WAVES
INCLUDE ANIMATION
It is important to note that, in almost every way, this system is identical

to a guitar string. The only big difference is that the wave on the guitar
sting is a transverse wave whereas the pipe has a longitudinal wave, but
their basic behaviours are the same.

Of course, it’s not very useful to have a musical instrument that is a
completely closed pipe – since none of the sound gets out, you probably
won’t get very large audiences. Then again, you might wind up with the
perfect instrument for playing John Cage’s 4’33”...
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So, let’s let a little sound out of the pipe. We won’t change the caps
on the two ends, we’ll just cut a small rectangular hole in the side of the
pipe at one end. To get an idea of what this would look like, take a look at
Figure 3.48.

Cross 
Section

Perspective

Figure 3.48: A cross section and perspective drawing of a closed organ pipe.

Let’s think about what’s happening here in slow motion. Air comes into
the pipe from the bottom through the small section on the left. It’s at a
higher pressure than the air inside the pipe, so when it reaches the bottom
of the pipe, it sends a high pressure wavefront up to the other end of the
pipe. While that’s happening, there’s still air coming into the pipe. The
high pressure wavefront bounces back down the pipe and gets back to where
it started, meeting the new air that’s coming into the bottom. These two
collide and the result is that air gets pushed out the hole on the side of the
pipe. This, however, causes a negative pressure wavefront which travels up
the pipe, bounces back down and arrives where it started where it sucks air
into the hole in the side of the pipe. This causes a high pressure wavefront,
etc etc... This whole process repeats itself so many times a second, that we
can measure it as an oscillation using a microphone (if the pipe is the right
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length – more on this in the next section).
Consider the description above as an observer standing on the outside

of the pipe. We just see that there is air getting pushed out and sucked into
the hole on the side of the pipe a bunch of times a second. This results in
high and low pressure wavefronts radiating outwards from the hole and we
hear sound.

Overtone series in a closed pipe

TO BE WRITTEN
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Figure 3.49: The relationship between the position of the probe in a closed pipe (the horizontal
axis) and the particle velocity maximum and minimum (in black) as well as the pressure maximum
and minimum (in red). This diagram shows the fundamental resonance of the pipe.
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Figure 3.50: The relationship between the position of the probe in a closed pipe (the horizontal
axis) and the particle velocity maximum and minimum (in black) as well as the pressure maximum
and minimum (in red). This diagram shows the first overtone in the pipe – half the wavelength
and therefore twice the frequency of the fundamental.
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Figure 3.51: The relationship between the position of the probe in a closed pipe (the horizontal axis)
and the particle velocity maximum and minimum (in black) as well as the pressure maximum and
minimum (in red). This diagram shows the second overtone in the pipe – one third the wavelength
and therefore three times the frequency of the fundamental.
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Tuning a closed pipe

So, if we know the length of pipe, how can we calculate the resonant fre-
quency? This might seem like an arbitrary question, but it’s really important
if you’ve been hired to build a pipe organ. You want to build the pipes the
right length in order to provide the correct pitch.

Take a look back at the example of an impulse response of a closed
pipe, shown in Figure 3.46. As you can see, the sequence shown consists
of three spikes and that sequence is repeated over and over forever (if it’s
an undamped system). The time it takes for the sequence to repeat itself
is the time it takes for the impulse to travel down the length of the pipe,
bounce off one end, come all the way back up the pipe, bounce off the other
end and to get back to where it started. Therefore the wavelength of the
fundamental resonant frequency of a closed pipe is equal to two times the
length of the pipe, as is shown in Equation 3.26. Note that this equation is
a general one for calculating the wavelengths of all resonant frequencies of
the pipe. If you want to find the wavelength of the fundamental, set n to
equal 1.

λn =
2L

n
(3.26)

where λn is the wavelength of the nth resonant frequency of the closed
pipe of length L.

Since the wavelength of the fundamental resonant frequency of a closed
pipe is twice the length of the pipe, you’ll often hear closed pipes called half-
wavelength resonators. This is a just geeky way of saying that it’s closed at
both ends.

If you’d like to calculate the actual frequency that the pipe resonates,
then you can just calculate it from the wavelength and the speed of sound
using Equation 3.8. What you would wind up with would look like Equation
3.27.

fn = n
c

2L
(3.27)

3.6.3 Open Pipes

NOT YET WRITTEN

Overtone series in a closed pipe

TO BE WRITTEN
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Figure 3.52: The relationship between the position of the probe in a open pipe (the horizontal axis)
and the particle velocity maximum and minimum (in black) as well as the pressure maximum and
minimum (in red). This diagram shows the fundamental resonance of the pipe.
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Figure 3.53: The relationship between the position of the probe in a open pipe (the horizontal axis)
and the particle velocity maximum and minimum (in black) as well as the pressure maximum and
minimum (in red). This diagram shows the first overtone in the pipe – one third the wavelength
and therefore three times the frequency of the fundamental.
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Figure 3.54: The relationship between the position of the probe in a closed pipe (the horizontal axis)
and the particle velocity maximum and minimum (in black) as well as the pressure maximum and
minimum (in red). This diagram shows the second overtone in the pipe – one fifth the wavelength
and therefore five times the frequency of the fundamental.
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Tuning a closed pipe

Effective vs. actual length

3.6.4 Reading List

The Physics of Woodwinds Benade, A. H. Scientific American October 1960
The Acoustics of Orchestral Instruments and of the Organ Richardson,

E. G. Arnold and Co. (1929)
Horns, Strings and Harmony Benade, A. H. Doubleday and Co., Inc.

(1960)
On Woodwind Instrument Bores Benade, A. H. JASA Vol 31 No 2 Feb

1959
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3.7 Helmholtz Resonators

Back in Section 3.1.2 we looked at a type of simple harmonic oscillator. This
was comprised of a mass on the end of a spring. As we saw, if there is no
such thing as friction, if you lift up the mass, it will bounce up and down
forever. Also, if we graphed the displacement of the mass over time, we’d
see a sinusoidal waveform. If there is such as things as friction (such as air
friction), then some of the energy is lost from the system as heat and the
oscillator is said to be damped. This means that, eventually, it will stop
bouncing.

We could make a similar system using only moving air instead of a
mass on a spring. Go find a wine bottle. If it’s not empty, then you’ll
have to empty it (I’ll leave it to you to decide exactly how this should be
accomplished). If we simplify the shape of the bottle a little bit, it is a tank
with an opening into a long neck. The top of the neck is open to the outside
world.

There is air in the tank (the bottle) whose pressure can be changed (we
can make it higher or lower than the outside pressure) but if we do change
it, it will want to get back to the normal pressure. This is essentially the
same as the compression of the spring. If we compress the spring, it pushes
back to try to be normal. If we pull the spring, it pulls against us to try to
be normal. If we compress the air in the bottle, it pushes back to try to be
the same as the outside pressure. If we decompress the air, it will pull back,
trying to normalize. So, the tank is the spring.

As we saw in Section 3.6.1 on waveguides, if air goes into one end of
a tube, then it will push air out the other end. In essence, the air in the
tube is one complete thing that can move back and forth inside the tube.
Remember that the air in the tube has some mass (just like the mass on the
end of the spring) and that one end is connected to the tank (the spring).

Therefore, a wine bottle can be considered to be a simple harmonic
oscillator. All we need to do is to get the mass moving back and forth inside
the neck of the bottle. We already know how do do this – you blow across
the top of the bottle and you’ll hear a note.

We can even take the analogy one step further. The system is a damped
oscillator (good thing too... otherwise every bottle that you ever blew across
would still be making sound... and that would be pretty annoying) because
there is friction in the system. The air mass inside the neck of the bottle
rubs against the inside of the neck as it moves back and forth. This resulting
friction between the air and the neck causes losses in the system, however
the wider the neck of the bottle, the less friction per mass, as we’ll see in
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Figure 3.55: A diagram showing two equivalent systems. On the left is a mass supported by a
spring, whose osciallation is damped by resistance to its movement caused by air friction. On the
right is a mass of air in a tube (the neck of the bottle) pushing and pulling against a spring (the of
air in the bottle) with the system oscillation damped by the air friction in the bottle neck.

the math later.
This thing that we’ve been looking at is called a wine bottle, but an

acoustician would call it a Helmholtz resonator named after H. L. F. von
Helmholtz. FIND SOME INFORMATION ABOUT HELMHOLTZ AND
PUT IT HERE.

What’s so interesting about this device that it warrants its own name
other than “wine bottle?” Well, if we were to assume (incorrectly) that
a wine bottle was a quarter-wavelength resonator (hey, it’s just a funny-
shaped pipe that’s closed on one end, right?) and we were to calculate
its fundamental resonant frequency, we’d find that we’d calculate a really
wrong number. This is because a Helmholtz resonator doesn’t behave like
a quarter-wavelength resonator, it has a much lower fundamental resonant
frequency. Also, it’s a lot more stable – it’s pretty easy to get a quarter-
wavelength resonator to fluke up to one of its harmonics just by plowing
a little harder. If this wasn’t true, flute music would be really boring (or
flutists would need more fingers). It’s much more difficult to get a beer
bottle to give you a large range of notes just by blowing harder.

How do we calculate the fundamental resonant frequency of a Helmholtz
resonator? (I knew you were just dying to find out...) This is shown in
Equation 3.28

ω0 = c

√
S

L′V
(3.28)
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where ω0 is the fundamental resonant frequency of the resonator in radi-
ans per second (to convert to Hz, see Equation 3.5), c is the speed of sound
in m/s, S is the cross-sectional area of the neck of the bottle, L′ is the ef-
fective length of the neck (see below for more information on this) and V is
the volume of the bottle (not including the neck) [Kinsler and Frey;, 1982].

So, as you can see, this isn’t too bad to calculate except for the bit about
the “effective length” of the neck. How does the effective length compare
to the actual length of the neck of the bottle? As we saw in the previous
chapter, the acoustical length of an open pipe is not the same as it’s real
measurable length. In fact, it’s a bit longer, and the amount by which it’s
longer is dependent on the frequency and the cross-sectional area of the pipe.
This is also true for the neck of a Helmholtz resonator, since it’s open to the
world on one end.

If the pipe is unflanged (meaning that it doesn’t flare out and get bigger
on the end like a horn), then you can calculate the effective length using
Equation 3.29.

L′ = L + 1.5a (3.29)

where L is the actual length of the pipe, and a is the inside radius of the
neck [Kinsler and Frey;, 1982].

If the pipe is flanged (meaning that it does flare out like a horn), then the
effective length is calculated using Equation 3.30[Kinsler and Frey;, 1982]

L′ = L + 1.7a (3.30)

Please note that these equations won’t give you exactly the right answer,
but they’ll put you in the ballpark. Things like the actual shape of the
bottle and the neck, how the flange is shaped, how the neck meets the
bottle... many things will have a contribution to the actual frequency of the
resonator.

Is this useful information? Well, consider that you now know that the
oscillation frequency is dependent on the mass of the air inside the neck
of the bottle. If you make the mass smaller, then the frequency of the
oscillation will go up. Therefore, if you stick your finger into the top of a
beer bottle and blow across it, you’ll get a higher pitch than if your finger
wasn’t there. The further you stick your finger in, the higher the pitch.
I once saw a woman in a bar in Montreal win money in a talent contest
by playing “Girl From Ipanema” on a single beer bottle in this manner.
Therefore, yes. It is useful information.
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3.7.1 Reading List
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3.8 Characteristics of a Vibrating Surface

NOT YET WRITTEN
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Figure 3.56: The first mode of vibration along the length of a rectangular plate. Note that there
is no vibration across its width.
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Figure 3.57: The first mode of vibration across the width of a rectangular plate. Note that there
is no vibration along its length.

3.8.1 Reading List
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Figure 3.58: The first modes of vibration along the length and width of a rectangular plate.
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Figure 3.59: The second mode of vibration along the length and the first mode of vibration across
the width of a rectangular plate.
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3.9 Woodwind Instruments

NOT YET WRITTEN

3.9.1 Reading List
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3.10 Brass Instruments

NOT YET WRITTEN

3.10.1 Reading List

The Physics of Brasses Benade, A. H. Scientific American July 1973
Horns, Strings and Harmony Benade, A. H. Doubleday and Co. Inc.

(1960)
The Trumpet and the Trombone Bate, P. W. W. Norton and Co., Inc.

(1966)
Complete Solutions of the “Webster” Horn Equation Eisner, E. JASA

Vol 41 No 4 Pt 2 April 1967
On Plane and Spherical Waves in Horns of Non-uniform Flare Jansson,

E. V. and Benade, A. H. Technical Report, Speech Transmission Laboratory,
Royal Institute of Technology, Stockholm March 15, 1973



3. Acoustics 227

3.11 Bowed Strings

We’ve already got most of the work done when it comes to bowed strings.
The string itself behaves pretty much the same way it does when it’s struck.
That is to say that it tends to prefer to vibrate at its resonant modal fre-
quencies. The only real question then is: how does the bow transfer what
appears to be continuous energy into the string to keep vibrating?

Think of pushing a person on a swing. They’re sitting there, stopped,
and you give them a little push. This moves them away, then they come
back towards you, and just when they’re starting to head away from you
again, you give them another little push. Every time they get close, you
push them away once they’ve started moving away. Using this technique,
you can use just a little energy on each push, in synch with the resonant
frequency of the person on the swing to get them going quite high in the
air. The trick here is that you’re pushing at the right time. You have to
add energy to the system when they’re not moving too fast (at the bottom
of the swing) because that would mean that you have to work hard, but at
a time when you’re pushing in the same direction that they’re moving.

This is basically the way a bow works. Think of the string as the swing
and the bow as you. In between the two is a mysterious substance called
rosin which is essentially just dried tree sap (actually, it’s dried turpentine
from pine wood as far as I’ve been able to find out). The important thing
about rosin is that it is a substance with a very high static friction coefficient ,
but a very low dynamic friction coefficient.

Huh? Well, first let’s define what a friction coefficient is. Put a book
on a table and then push it so that it slides – then stop pushing. The book
stops moving. The reason is friction – the book really doesn’t want to move
across the table because friction is preventing it from doing so. The amount
of friction that’s pushing back against you is determined by a bunch of things
including the mass of the book, and the smoothness of the two surfaces (the
book cover and the table top). This amount of friction is called the friction
coefficient. The higher the coefficient, the more friction there is and the
harder it is to move the book – in essence the more the book “sticks” to the
table.

Now we have to look at two different types of friction coefficients – static
and dynamic. Just before you start to push the book across the table, it’s
just sitting there, stopped (in other words, it’s static – i.e. it’s not moving).
After you’ve started pushing the book, and it’s moving across the table, it’s
probably easier to keep it going than it was to get it started. Therefore the
dynamic friction coefficient (the amount of friction there is when the object
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is moving) is lower than the static friction coefficient (the amount of friction
there is when the object is stopped).

So, going back to the statement that rosin has a very high static friction
coefficient, but a very low dynamic friction coefficient, think about what
happens when you start bowing a string.

1. You put the bow on the string and nothing is moving yet.

2. You push the bow, but it has rosin on it which has a very high static
friction coefficient – it sticks to the string, so it pulls the string along
with it.

3. The string, however, is under tension, and it wants to return to the
place where it started. As it gets pulled further and further away, it
is pulling back more and more.

4. Finally, we reach a point where the tension on the string is pulling
back more than the rosin can hold, so the string lets go and starts to
slide back. This sliding happens very easily because rosin has a very
low dynamic friction coefficient.

5. So, the string slides back to where it came from in the opposite di-
rection to that in which the bow is moving. It passes the equilibrium
position and moves back too far and therefore starts to slow down.

6. Once it gets back as far as it’s going to go, it turns around and heads
back towards the equilibrium position, in the same direction of travel
as the bow...

7. At some point a moment later, the string and the bow are moving
at the same speed in the same direction, therefore they’re stopped
relative to each other. Remember that the rosin has a high static
friction coefficient, so the string sticks to the bow and the whole process
repeats itself.

In many ways this system is exactly the same as pushing a person on a
swing. You feed a little energy into the oscillation on every cycle and there-
fore keep the whole thing going with only a minimum of energy expended.
The ultimate reason so little energy is expended is because you are smart
about when you inject it into the system. In the case of the bow and the
string, the timing of the injection looks after itself.
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3.11.1 Reading List

The Physics of Violins Hutchins, C. M. Scientific American November 1962
The Mechanical Action of Violins Saunders, F. A. JASA Vol 9 No 2 Oct

1937
Regarding the Sound Quality of Violins and a Scientific Basis for Violin

Construction Meinel, H. JASA Vol 29 No 7 July 1957
Subharmonics and Plate Tap Tones in Violin Acoustics Hutchins, C. M.

et al JASA Vol 32 No 11 Nov 1960
On the Mechanical Theory of Vibrations of Bowed Strings and of Musical

Instruments of the Violin Family Raman, C. V. Indian Association for the
Cultivation of Science (1918)

The Bowed String and the Player Schelleng, J. C. JASA Vol 53 No 1
Jan 1973

The Physics of the Bowed String Schelleng, J. C. Scientific American
January 1974
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3.12 Percussion Instruments

NOT YET WRITTEN

3.12.1 Reading List
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3.13 Vocal Sound Production

NOT YET WRITTEN

3.13.1 Reading List

The Acoustics of the Singing Voice Sundberg, J. Scientific American March
1977

Singing : The Mechanism and the Technic Vannard, W. Carl Fischer,
Inc. (1967)

Towards an Integrated Physiologic-Acoustic Theory of Vocal Registers
Large, J. NATS Bulletin Vol 28, No. 3 Feb/Mar 1972

Articulatory Interpretation of the “Singing Formant” Sundberg, J. JASA
Vol 55, No 4 April 1974
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3.14 Directional Characteristics of Instruments

NOT YET WRITTEN

3.14.1 Reading List
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3.15 Pitch and Tuning Systems

3.15.1 Introduction

Go back – way back to a time just before harmony. when we had only a
melody line, people would sing a tune made up of notes that were probably
taught to them by someone else singing. Then people thought that it would
be a really neat idea to add more notes at the same time – harmony! The
problem was deciding which notes sounded good together (consonant) and
which sounded bad (dissonant). Some people sat down and decided mathe-
matically that some sounds ought to be consonant or dissonant while other
people decided that they ought to use their ears.

For the most part, they both won. It turns out that, if you play two
freqencies at the same time, you’ll like the combinations that have mathe-
matically simple relationships – and there’s a reason which we talked about
in a previous chapter – beating.

If I play an “A” below Middle C on a piano, the sound includes the
fundamental 220 Hz, as well as all of the upper harmonics at various ampli-
tudes. So we’re hearing 220 Hz, 440 Hz, 660 Hz, 880 Hz, 1100 Hz, 1320 Hz,
and so on up to infinity. (Actually, the exact frequencies are a little different
as we saw in Section 3.5.5.)

If I play another note which has a frequency that is relatively close to
the fundamental of the 220 Hz I hear beating between the two fundamentals
at a rate of f1 − f2. The same thing will happen if I play a note with a
fundamental which is close to one of the harmonics of the 220 Hz (hence
2f1 − f2 and 3f1 − f2 and so on...).

For example, if I play a 220 Hz tone and a 445 Hz tone, I’ll hear beating,
because the 445 Hz is only 5 Hz away from one of the harmonics of the
220 Hz tone. This will sound “dissonant” because, basically, we don’t like
intervals that “beat.”

If I play a 440 Hz tone with the 220 Hz tone, there is no beating, because
440 Hz happens to be one of the harmonics of the 220 Hz tone. If there’s
no beating then we think that it’s consonant.

Therefore, if I wanted to create a system of tuning the notes in a scale,
I would do it using formulae for calculating the frequencies of the various
notes that ensured that, at least for my most-used chords, the intervals in the
chords would not beat. That is to say that when I play notes simultaneously,
the various fundamentals have simple mathematical relationships.
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3.15.2 Pythagorean Temperament

The philosophy described above resulted in a tuning system called Pythagorean
Temperament which was based on only 2 intervals. The idea was that, the
smaller the mathematical relationship between two frequencies, the better,
so the two smallest possible relationships were used to create an entire sys-
tem. Those frequency ratios were 1:2 and 2:3.

Exactly what does this mean? Well, essentially what we’re saying when
we talk about an interval of 1: 2 is that we have two frequencies where one
is twice the other. For example, 100 Hz and 200 Hz. (100:200 = 1:2). As
we have seen previously, this is known as an “octave.”

The second ratio of 2:3 is what we nowadays call a “Perfect Fifth.” In this
interval, the two notes can be seen as harmonics of a common fundamental.
Since the frequencies have a ratio of 2:3 we can consider them to be the 2nd
and 3rd harmonics of another frequency 1 octave below the lower of the two
notes.

Using only these two ratios (or intervals) and a little math, we can tune
all the notes in a diatonic scale as follows:

If we start on a note which we’ll call the “tonic” at, oh, 220 Hz, we tune
another note to have a 2:3 ratio with it. 2:3 is the same as 220:330, so the
second note will be 330 Hz.

We can then repeat this using the 330 Hz note and tuning another note
with it... If we wish to stay within the same octave as our tonic, however,
we’ll have to tune up by a ratio of 2:3 and then transpose that down an
octave (2:1). In other words, we’d go up a Perfect 5th and down an octave,
creating a Major Second from the Tonic. Another way to do this is simply
to tune down a Perfect Fourth (the inversion of a Perfect Fifth). This would
result, however in a different ratio, being 3:4.

How did we arrive at this ratio? Well, we’ll start by doing it emperically.
If we started on a 330 Hz tone, and went up a Perfect Fifth to 495 Hz and
then down an octave, we’d be at 247.5 Hz. 247.5:330 = 3:4.

If we were to do this mathematically, we’d say that our first ratio is 2:3,
the second ratio is 2:1. These two ratios must be multiplied (when we add
intervals, we multiply the frequency ratios which multiply just like fractions)
so 2:3 * 2:1 = 4:3. Therefore, in order to go down a fourth, the ratio is 4:3,
up is 3:4.

In order to tune the other notes in the diatonic scale, we keep going, up a
Perfect 5th, down a Perfect Fourth (or up 2:3, down 4:3) and so on until we
have done 3 ascending fifths and 2 decending fourths. (or, without octave
transpositions, 5 ascending fifths). That gets us 6 of the 7 notes we require
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(being, in chronological order, the Tonic, Fifth, Second, Sixth, and Third in
a “Major” scale. The Fourth of the scale is achieved simply by calculating
the 3:4 ratio with the Tonic.

It may be interesting to note that the first 5 notes we tune are the
“common” pentatonic scale.

We could use the same system to get all of the chromatic notes by merely
repeating the procedure for a total of 6 ascending fifths and 5 decending
fourths (or 11 ascending fifths). This will present us with a problem, how-
ever.

If we do complete the system, starting at the tonic and calculating the
other 11 notes in a chromatic scale, we’ll end up with what is known as one
wolf fifth.

What’s a wolf fifth? Well, if we kept going around through the system
until the 12th note, we ought to end up an octave from where we started –
the problem is that we wind up a little too sharp. So, we tune the octave
above the tonic to the tonic and put up with it being “out of tune” with the
note a fifth below.

In fact, it’s wiser to put this this wolf fifth somewhere else in the scale –
such as in an interval less likely to be played than the tonic and the fourth
of the scale.

Let’s do a little math for a moment. If we go up a fifth and down a
fourth and so on and so on through to the 12th note, we are actually doing
the following equation:

f ∗ 3
2
∗ 3

4
∗ 3

2
∗ 3

4
∗ 3

2
∗ 3

4
∗ 3

2
∗ 3

4
∗ 3

2
∗ 3

4
∗ 3

2
∗ 3

4
(3.31)

If we calculated this we’d see that we get the equation

f ∗ 531441
262144

(3.32)

instead of the f ∗ 2
1 that we’d expect for an octave.

Question:

how far away from a “real” octave is the note you wind up with?

Answer:

well, if we transpose the f ∗ 531441
262144 note down an octave, we get 1

2 ∗ f ∗ 531441
262144

or f ∗ 531441
524288 .
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In other words, the ratio between the tonic and the note which is an
octave below the 12th note in the pythagorean tuning system is

531441 : 524288.
This amount of error is called the Pythagorean Comma.
Just for your information, according to the Grove dictionary, “Medieval

theorists who discussed intervallic ratios nearly always did so in terms of
Pythagorean intonation.” (look up “Pythagorean intonation”)

For an investigation of the relative sizes of intervals within the scale,
look at Table 4.1 on page 86 of “The Science of Musical Sound” By Johann
Sundberg.

3.15.3 Just Temperament

The Pythagorean system is pretty good if you’re playing music that has a
lot of open fifths and fourths (as Pythagorean music seems to have had,
according to Grout) but what if you like a good old major chord – how does
that sound? Well, one way to decide is to look at the intervals. To achieve a
major third above the tonic in Pythagorean temperament, we go up 2 fifths
and down 2 fourths (although not in that order) therefore, the frequency is

f ∗ 3
2
∗ 3

4
∗ 3

2
∗ 3

4
(3.33)

or

f ∗ 81
64

(3.34)

This ratio of 81:64 doesn’t use very small numbers, and, in fact, we
do hear considerably more beating than we’d like. So, once upon a time,
a “better” tuning system was invented to accomodate people who liked
intervals other than fourths and fifths.

The basic idea of this system, called Just Temperament (or pure tem-
perament or just intonation) is that the notes in the diatonic scale have a
realtively simple mathematical relationship with the tonic. In order to do
this, you have to be fairly flexible about what you call “simple” (Pythago-
ras never used a bigger number than 4, remember) but the musical benefits
outweigh the mathematical ones.

In just temperament we use the ratios shown in Table 3.3:
These are all fairly simple mathmatical relationships, and note that the

fouth and fifth are identical to that of the Pythagorean system.
This system has a much better intonation (i.e. less beating) when you

plunk down a I, IV or V triad because the ratios of the frequencies of the
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Musical Frequency ratio
Interval of two notes
Tonic 1:1
2nd 9:8
3rd 5:4
4th 4:3
5th 3:2
6th 5:3
7th 15:8
Octave 2:1

Table 3.3: A list of the ratios of frequencies of notes in a just temperament scale.

three notes in each of the chords have the simple relationships 4:5:6. (i.e.
100 Hz, 125 Hz and 150 Hz)

The system isn’t perfect, however, because intervals that should be the
same actually have different sizes. For example,

• The seconds between the tonic and the 2nd, the 4th and 5th, and the
6th and 7th have a ratio of 9:8

• The second between the 2nd and 3rd, and the 5th and 6th have a ratio
of 10:9

The implications of this are intonation problems when you stray too
far from your tonic key. Thus a keyboard instrument tuned using Just
Intonation must be tuned for a specific key and you’re not permitted to
transpose or modulate without losing your audience or your sanity or both.
Of course, the problem only occurs in instruments with fixed tunings for
notes (such as keyboard and fretted string instruments). Everyone else can
compensate on the fly.

The major third and the tonic in Just Intonation have a frequency ratio
of 5:4. The major third and the tonic in Pythagorean Intonation have a
ratio of 64:81. The difference between these two intervals is

64:81 – 5:4 = 80:81
This is the amount of error in the major third in Pythagorean Tuning

and is called the syntonic comma.
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3.15.4 Meantone Temperaments

Meantone Temperaments were attempts to make the Just system “better.”
The idea was that you fudge a little with a couple of notes in the scale
to make different keys more palatable on the instrument. There were a
number of attempts at this by people like Werckmeister, Valotti, Ramos,
and de Caus, each with a different system that attempted to improve on
the other. (Although Werckmeister was quite happy to use another system
called “Equal Temperament”)

These are well discussed in chapters 18.3 – 18.5 of the book “Music
Acoustics” by Donald Hall

3.15.5 Equal Temperament

The problem with all of the above systems is that an instrument tuned using
either of them was limited to the number of keys it could play in. This is
simply because of the problem mentioned with Just Intonation, different
intervals that should be the same size, are not.

The simple solution to this problem is to decide on a single size for the
smallest possible interval (in our case, the semitone) and just multiply to
get all other intervals.

This was probably first suggested by a Sicilian abbot named Girolamo
Roselli who, in turn convinced Frescobaldi to use it (but not without the
“aid of ‘frequent and gratuitous beverages”’ (Grove Dictionary under “Tem-
peraments”)

So, we have to divide an octave into semitones, or 12 equal divisions.
How do we do this? Well, we need to find a ratio that can multiply by itself
12 times to arrive at twice the number we started with. (i.e. adding 12
semitones gives you an octave.) How do we do this?

We know that 3*3=9 so we say that 32=9 therefore, going backwards,
“the square root of 9 = 3.” What this final equation says is “the number,
when multiplied by itself once gives 9 is 3.” We want to find the number
which, when multiplied by itself 12 times equals 2 (since we’re going up an
octave) so, the number we’re looking for is “the twelfth root of 2.” (or about
1:1.06)That’s it.

Therefore, given any frequency f , the note one semitone up is f * the
12th root of 2. If you want to go up 2 semitones, you have to multiply by
the 12th root of 2 twice or :

f ∗ 12
√

2 ∗ 12
√

2 (3.35)
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or

f ∗ 12
√

22 (3.36)

So, in order to go up any number of semitones, we simply do the following
equation :

f ∗ 12
√

2x (3.37)

where x is the number of semitones
The advantage of this is that you can play in any key on one instrument.

The disadvantage is that every key is “out of tune.” But, they’re all equally
out of tune, so we have gotten used to it. Sort of like we have gotten used to
eating fast food, despite the fact that it tastes pretty wretched, sometimes
even bordering on rancid...

To get an intuitive idea of the fact that equal temperament intervals are
out of tune, even if they don’t sound like it most of the time, take a look at
Figures 3.60 and 3.61
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Figure 3.60: The time response of a perfect fifth played with sine waves. In both cases, the root is
1 kHz. The X axis shows time in samples at a 44.1 kHz sampling rate. The top plot shows a just
temperament perfect fifth, with the frequencies 1 kHz and 1.5 kHz. The bottom plot shows an
equal temperament fifth, with the frequencies 1 kHz and 1.49830707687668 kHz. Notice that the
bottom plot modulates in time. If I had plotted more time, it would be evident that the modulation
is periodic.

3.15.6 Cents

There are some people who want a better way of dividing up the octave.
Basically, some people just aren’t satisfied with 12 equal divisions, so they
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Figure 3.61: The time response of a major third played with sine waves. In both cases, the root is
1 kHz. The X axis shows time in samples at a 44.1 kHz sampling rate. The top plot shows a just
temperament major third, with the frequencies 1 kHz and 1.25 kHz. The bottom plot shows an
equal temperament third, with the frequencies 1 kHz and 1.25992104989487 kHz. Notice that the
bottom plot modulates in time. If I had plotted more time, it would be evident that the modulation
is periodic.

divided up the semitone into 100 equal parts and called them cents . Since a
cent is 1/100 of a semitone, it’s an interval which, when multiplied by itself
1200 times (12 semitones 100 cents) makes an octave, therefore the interval
is the 1200th root of 2 (or 1:1.00058).

Therefore, 1 cent above 440 Hz is

440 ∗ 1200
√

2 = 440.254Hz. (3.38)

We can use cents to compare tuning systems. Remember that 100 cents
is 1 semitone, 200 cents is 2 semitones, and so on.

There is a good comparasion in cents of various tuning systems in “Mu-
sical Acoustics” by Donald Hall. (p. 453)

3.15.7 Suggested Reading List

Tuning and Temperament, A Historical Survey Barbour, J. M.
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3.16 Room Acoustics – Reflections, Resonance and
Reverberation

Let’s ignore all the stuff we talked about in Section 3.2 for a minute. We’ll
pretend that we didn’t talk about acoustical impedance and that we didn’t
look at all sorts of nasty-looking equations. We’ll pretend for this chapter,
when it comes to a sound wave reflecting off a wall, that all we know is
Snell’s Law described in Section 3.3.1. So, for now, we’ll think that all walls
are mirrors and that the angle of incidence equals the angle of reflection.

3.16.1 Early Reflections

Let’s consider a rectangular room with one sound source and you in it as is
shown in Figure 3.62. We’ll also ignore the fact that the room has a ceiling
or a floor... One very convienent way to consider the way sound moves in
this room is to not try to understand everything about it – but instead to
be a complete egoist and ask “what sound gets to me?”

Figure 3.62: A sound source (black dot) and a listener (white dot) in a room (Black rectangle)

As we discussed earlier, when the source makes a sound, the wavefront
expands spherically in all directions, but we’re not thinking that way at the
moment. All you care about is you, so we can say that the sound travels from
the source to you in a straight line. It takes a little while for the sound to get
to you, according to the speed of sound and the distance between you and
the source. This sound that you get first is usually called the direct sound ,
because it travels directly from the sound source to you. This path that
the wave travels is shown in Figure 3.63 as a straight red line. In addition,
if you were replaced by an omnidirectional microphone, we could think of
the impulse response (explained in Section ??) as being a single copy of the
sound arriving a little later than when it was emitted, and slightly lower in
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level because the sound had to travel some distance. This impulse response
is shown in Figure 3.64.

Figure 3.63: The direct sound (red line) travelling from the source to the receiver.

Level (dB
)

Time

Figure 3.64: The impulse response of the direct sound.

Of course, the sound is really travelling out in all directions, which means
that a lof of it is heading towards the walls of the room instead of heading
towards you. As a result, there is a ray of sound that travels from the sound
source, bounces off of one wall (remember Snell’s Law) and comes straight
to you. Of course, this will happen with all four walls – a single reflection
from each wall reaches you a little while after the direct sound and probably
at different times according to the distance travelled. These are called first-
order reflections because they contain only a single bounce off a surface.
They’re shown as the blue lines in Figure 3.65 with the impulse response
shown in Figure 3.66.

We also get situations where the sound wave bounces off two different
walls before the sound reaches you, resulting in second-order reflections. In
our perfectly rectangular room, there will be two types of these second-
order reflections. In the first, the two walls that are reflecting are parallel
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Figure 3.65: The first-order reflections (blue lines) travelling from the source to the receiver.
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Figure 3.66: The impulse response of the first-order reflections (blue lines).
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and opposite to each other. In the second, the two walls are adjacent and
perpendicular. These are shown as the green lines in Figure 3.67 and the
impulse response in Figure 3.68. Note in the impulse response that it’s
possible for a second-order reflection to arrive earlier than a first-order re-
flection, particularly if you are in a long rectangular room. For example, if
you’re sitting in the front row of a big concert hall, it’s possible that you
get a second-order reflection off the stage and side walls before you get a
first-order reflection off the wall in the back behind the audience. The moral
of the story here is that the order of reflection is only a general indicator of
its order of arrival.

Figure 3.67: The second-order reflections (green lines) travelling from the source to the receiver.

Level (dB
)

Time

Figure 3.68: The impulse response of the second-order reflections (green lines).

3.16.2 Reverberation

If the walls were perfect reflectors and there was no such thing as sound
absorption in air, this series of more and more reflections would continue
forever. However, there is a little energy in the sound wave lost in the air,
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and in the wall, so eventually, the reflections get quieter and quieter as they
reach a higher and higher order until eventually, there is nothing.

Let’s say that your sound source is a person clapping their hands once – a
sound with a very fast attack and decay. The first thing you hear is the direct
sound, then the early reflections. These are probably separated enough in
time and space that your brain can interpret them as separate events. Be
careful about what I mean by this previous sentence. I do not necessarily
mean that you will hear the direct and earlier reflections as separate hand
claps (although if the room is big enough you might...) Instead, I mean
that your brain uses these discrete components in the sound that arrives at
the listening position to determine a bunch of information about the sound
source and the room. We’ll talk about that more later.

If we consider higher and higher orders of reflections, then we get more
and more reflections per second as time goes by. For example, in our rect-
angular, two-dimensional room, there are 4 first-order reflections, 8 second-
order reflections, 12 third-order reflections and so on and so on. These will
pile up on each other very quickly and just become a complete mess of sound
that apparently comes from almost everywhere all at the same time (actu-
ally, you will start to approach a diffuse field situation). When the reflections
get very dense, we typically call the collection of all of them reverberation or
reverb. Essentially, reveberation is what you have when there are too many
reflections to think about. So, instead of trying to calculate every single
reflection coming in from every direction at every time, we just give up and
start talking about the statistical properties of the room’s acoustics. So, you
won’t hear about a 57th order reflection coming in a a predicted time. In-
stead, you’ll hear about the probability of a reflection coming from a certain
direction at a given time. (This is sort of the same as trying to predict the
weather. Nobody will tell you that it will definitely rain tomorrow starting
at 2:34 in the afternoon. Instead, they’ll say that there is a 70% chance of
rain. Hiding behind statistics helps you to avoid being incorrect...)

One immediately obvious thing about reverberation in a real room is
that it takes a little while for it to die away or decay. So then the question
is, how do we measure the reveberation time? Well, typically we have to
oversimplify everything we do in audio, so one way to oversimplify this
measurement is to just worry about one frequency. What we’ll do is to get
a loudspeaker that’s emitting a sine tone with a constant level – therefore,
just a single frequency. Also, we’ll put a microphone somewhere in the room
and look at its output level on a decibel scale. If we leave the speaker on for
a while, the sound pressure level at the microphone will stabilize and stay
constant. Then we turn off the sine wave, and the revebreration will decay
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down to nothing. Interestingly, if the room is behaving according to theory,
if we plot the output of the microphone over time on a decibel scale, then
the decay of the reverberation will be a straight line as is shown in Figure
3.69.

Level (dB
)

Time

sine wave 
turned off at 

this time

Figure 3.69: Sound pressure level vs. time for a single sine wave in a room. The sine wave was
turned on once upon a time – long ago enough that the SPL in the room has stabilized at the
microphone’s position. Note that, when the tone is turned off, the decay in the room is linear (a
straight line) on a decibel scale.

The amount of time it takes the reverberation to decay a total of 60
decibels is what we call the reverberation time of the room, abbreviated
RT60.

Sabine Equation

Once upon a time (acutually, around the year 1900), a guy named Wallace
Clement Sabine did some experiments and some math and figured out that
we can arrive at an equation to predict the reveberation time of a room if
we know a couple of things about it.

Let’s consider that the more absorptive the surfaces in the room, the
more energy we lose in the walls, so the faster the reverberation will decay.
Also, the more surface area there is (i.e. the bigger the walls, floor and
ceiling) the more area there is to absorb sound, therefore the reverb will
decay faster. So, the average absorption coefficient (see Section ??) and the
surface area will be inversely proportional to the reverb time.

Also consider, however, that the bigger the room, the longer the sound
will travel before it hits anything to reflect (or absorb) it. Therefore the
bigger the room volume, the longer the reverb time.

Thinking about these three issues, and after doing some experiments
with a stopwatch, Sabine settled on Equation 3.39:
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RT60 =
55.26V

Ac
(3.39)

Where c is the speed of sound in the room and A is the total sound
absorption by the room which can be calculated using Equation 3.40.

A = Sᾱ (3.40)

Where S is the total surface area of the room and ᾱ is the “average value
of the statistical absorption coefficient.” [Morfey, 2001]

Eyring Equation

There is second famous equation that is used to calculate the reverberation
time of a room, developed by C. F. Eyring in 1930. This equation is very
similar to the Sabine equation, in fact you can use Equation 3.39 as the
main equation. You just have to change the value of A using Equation 3.41:

A = S ln
(

1
1− ᾱ

)
(3.41)

Note that some books will call this the Norris-Eyring EquationNorris-
Eyring Equation [Morfey, 2001].

3.16.3 Resonance and Room Modes

I lied. All of the description of reflections and reverberation that I talked
about above only applies to high frequencies. Low frequencies behave com-
pletely differently in a room. Remember back to Section ?? on woodwind
instruments that, as soon as you have a pipe that is closed on both ends, it
will have a natural resonance at a frequency that is determined by its length.
Since the pipe is closed on both ends, then the fundamental resonant fre-
quency has a wavelength equal to twice the length of the pipe. All we need
to do to make the pipe resonate at that frequency and its harmonics is to
put a sound source in there that has any energy at the resonant frequencies.
Since, as we saw in Section ??, an impulse contains all frequencies, if we
snap our fingers inside the pipe, it will ring.

Now, let’s change the scale a bit and consider a closed pipe the length
of a room. This pipe will still resonate at its fundamental frequency and its
harmonics, but these will be very low because the pipe will be very long.
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If we wanted to calculated the fundamental resonant frequency of this
pipe of length L (equal to the Length of the room), we just need to find the
frequency with a wavelength of 2L as is shown in Equation 3.42

f =
c

2L
(3.42)

We also know that the harmonics of this frequency f will resonate as
well. These are easy to calculate by just multiplying f by an integer – so
the first harmonic will be 1f , the second harmonic will be 2f and so on.

It’s worth your while to compare Equation 3.42 to Equation 3.27 back in
the section on resonance in closed pipes. You’ll notice that both equations
are the same.

Axial (One-dimensional) Modes

The interesting thing is that a room behaves in exactly the same way. We
can think of a room with a length of L as a closed pipe with a length of L. In
fact, I’m not even saying that a room is like a closed pipe – I’m saying that
a room is a closed pipe. Therefore the room will resonate at a frequency
with a wavelength of 2L and its harmonics. This can be calculated using
Equation 3.43 which is exactly the same as Equation ??, but written slightly
differently, and with a p added for the harmonic number.

f =
c

2
p

L
(3.43)

This behaviour doesn’t just apply to the length of the room. It also
applies to the width and length – therefore the room is actually behaving as
three pipes of lengths L, W and H (for Length, Width and Height) at the
same time. These three fundamental frequencies (and their harmonics) will
all resonate independently of each other.

There are a couple of interesting things to discuss when it comes to axial
(one-dimensional) room modes.

Firstly, just as with the resonating closed pipe, there is the issue of the
relationship between the particle pressure and the particle velocity. If we
look at the particles adjacent to the wall, we see that these molecules cannot
move, therefore the amplitude of their velocity wave is 0, and the amplitude
of the pressure wave is at its maximum. Conversely, at the centre of the
room, the amplitude of the velocity wave is maximum, and the amplitude
of the pressure wave is 0.

FIGURE HERE?
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Secondly, there’s the issue of phase. Remember back to the discussion
on closed pipes that we can consider them to be waveguides. This means
that the sound energy at one end of the pipe gets out the other end without
being attenuated because it can’t expand in three dimensions – it can only
travel in one. Also, it means that the pressure wave is in phase at any cross
section of the pipe. At the resonant frequency of the room, this is also true.
If you could freeze time and actually see the pressure wave in the room, you
would see that the pressure wave at the resonant frequency is in phase across
the room. So, if you have a loudspeaker in one corner of the room playing a
sine wave at the fundamental resonance of the length of the room, then the
sound wave is not expanding outwards as a sphere from the loudspeaker.
Instead, it’s travelling back and forth in the room as a plane wave.

FIGURE HERE?

Tangential (Two-dimensional) Modes

The axial room modes can be thought of in exactly the same way as a stand-
ing wave in a pipe or on a string. In all of these cases, the resonance is limited
to a single dimension. However, a room has more than one dimension. There
is also the issue of resonances in two-dimensions, known as tangential room
modes. These behave in exactly the same way as a rectangular resonating
plate (assuming of course that we’re talking about a rectangular room).

FINISH THIS OFF

f =
c

2

√( p

L

)2
+
( q

W

)2
(3.44)

FINISH THIS OFF

Oblique (Three-dimensional) Modes

FINISH THIS OFF

f =
c

2

√( p

L

)2
+
( q

W

)2
+
( r

H

)2
(3.45)

Equation 3.45 can also be used as the master equation for calculating
any type of room mode – axial, tangential or oblique. For example, let’s say
that you wanted to calculate the 2nd harmonic of the axial mode for the
width of the room. You set q to equal 2 and set p and r to 0. This winds
up making Equation 3.45 exactly the same as Equation 3.43 because the 0’s
make the L and H components go away.
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Coupling

sound source couples to the mode
FINISH THIS OFF
We also have to consider how well the mode couples to the receiver.
FINISH THIS OFF

Modal Density and Overlap

FINISH THIS OFF

3.16.4 Schroeder frequency

So, now we’ve seen that, at high frequencies, we worry about reflections and
statistical behaviour of the room. At low frequencies, we worry about room
modes, since they’ll ring longer than the reverberation and be the dominant
characteristic in the room’s behaviour. The question that should be sitting
in the back of your head is “what’s the crossover frequency between the low
and the high?”

This frequency is known as the Schroeder frequency or the Schroeder
large-room frequency and is defined as the frequency where the modes start
bunching so closely together that they no longer are seen as resonant peaks.
In most definitions, you’ll see people talking about modal density which is
just a measure of the number of resonant modes in a given bandwidth. (This
number increases with frequency.)

As a result, a room can be considered in the same way that we think
of two-way speakers – the low end has a modal behaviour, the high end is
statistical and the crossover is at the Schroeder frequency. This frequency
can be calculated using Equation 3.46.

fmin ≈ c
4√
πA

− S

16V
(3.46)

where fmin is the Schroeder frequency, A is the room absorption calcu-
lated using Equation 3.40, S is the surface area of the boundaries amd V is
the room’s volume.

3.16.5 Room Radius (aka Critical Distance)

If you go way back in this book, you’ll remember that we mentioned that,
for every doubling of distance from a sound source, you get a 6 dB drop in
sound pressure level. This rule is true, but only if you’re in a free field like
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an anechoic chamber or at the top of a pole outdoors. What happens when
you’re in a real room? This is where things get a little strange.

If you’re close to the sound source, then the direct sound is very loud
compared to all of the reflections, reverberation and modes. As a result, you
can sort of pretend that you’re in a free field, so, as you move away from
the source, you lose 6 dB per doubling of distance, as if you were normal.
However, if you’re far away from the sound source, the total summed power
coming into your SPL meter from the reflections, reverberation and room
modes is greater than the direct sound. When this is the case, then no
matter where you go in the room, you’ll get the same reading on your SPL
meter.

Of course, this means that there must be some middle distance where
the direct sound’s level is equal to the reflected sound pressure level. This
distance is known as the room radius or the critical distance.

This is a fairly easy thing to measure. Send a sine tone out of a loud-
speaker and measure its level with an SPL meter while you’re standing fairly
close to it. Back away from the speaker and keep looking at your SPL meter.
It should drop as you get farther and farther away, but it will reach some
minimum level and not drop below that, no matter how much farther away
you get. The distance from the loudspeaker at which this minimum value is
reached is the room radius.

Of course, if you don’t want to be bothered to measure this, you could
always calculate it using Equation 3.47 []. Notice that the value is dependent
on the volume of the room, V and the reverberation time.

rh = 0.1
√

V

πRT60
(3.47)

3.16.6 Reading List
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3.17 Sound Transmission

I’ve lived most of my adult life in apartment buildings in Montreal and
Ottawa. In 12 years, I lived in 10 different apartments in those two cities,
and as a result, I feel that I am a qualified expert in sound proofing... or,
more to the point, the lack of it.

DEFINE SOUND TRANSMISSION INDEX

3.17.1 Airborne sound

The easiest way to introduce airborne sound transmission is to break it
up into high frequency and low frequency behaviour. This is because, in
most situations, these two frequency bands are transmitted very differently
between two spaces.

High-frequency Transmission

NOT WRITTEN YET

Low-frequency Transmission

NOT WRITTEN YET

3.17.2 Impact noise

NOT WRITTEN YET

3.17.3 Reading List
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3.18 Desirable Characteristics of Rooms and Halls

NOT YET WRITTEN

3.18.1 Reading List

Acoustical Designing in Architecture Knudsen, V. O. and Harris, C. M. John
Wiley and Sons, Inc. (1950)

Acoustics, Noise and Buildings Parkin, P. H. and Humphreys, H. R.
Faber and Faber Ltd (1958)

Architectural Acoustics Knudsen, V. O. John Wiley and Sons, Inc. (1932)
Music, Acoustics and Architecture Beranek, L. L. John Wiley and Sons,

Inc. (1962)
Architectural Acoustics Knudsen, V. O. Scientific American November

1963
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Chapter 4

Psychoacoustics and
perception

4.1 What’s the difference?

NOT YET WRITTEN

255
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4.2 How your ears work

NOT YET WRITTEN
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4.3 Human Response Characteristics

4.3.1 Introduction

Our ability to perceive things using any of our senses is limited by two
things:

• physical limitations and

• the brain’s ability to process the information.

Physical limitations determine the absolute boundaries of range for things
like hearing and sight. For example, there is some maximum frequency
(which may or may not be something about 20 kHz, depending on who you
ask and how old your are...) above which we cannot hear sound. This ceiling
is set by the physical construction of the ear and its internal components.

The brain’s ability to process information is a little tougher to analyze.
For example, we’ll talk about a thing called “psychoacoustic masking” which
basically says that if you are presented with a loud sound and a soft sound
simultaneously, you won’t “hear” the soft sound (for example, if I whisper
something to you at a Motorhead concert, chances are you won’t know that
I exist...). Your ear is actually receiving both sounds, but your brain is
ignoring one of them.

4.3.2 Frequency Range

We said earlier that the limits on human frequency response are about 20
Hz in the low frequency range and 20 kHz in the upper end. This has been
disputed recently by some people who say that, even though tests show that
you cannot hear a single sine wave at, say, 25 kHz, you are able to perceive
the effects a 25 kHz harmonic would have on the timbre of a violin. This
subject provides audio people with something to argue about when they’ve
agreed about everything else...

4.3.3 Dynamic Range

The dynamic range of your hearing is determined by two limits called the
threshold of hearing and the threshold of pain.

The threshold of hearing is the quietest sound that you are able to hear,
specified at 1 kHz. This value is 20 µPa or 20 ∗ 10−6 Pascals. Just to give
you an idea of how quiet this is, the sound of blood rushing in your head is
louder to you than this. Also, at 20 µPa of sound pressure level, the hair cells
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inside your inner ear are moving back and forth with a total peak-to-peak
displacement that is less than the diameter of a hydrogen atom [].

Note that the reference for calculating sound pressure level in dBspl is
20 µPa, therefore, a 1 kHz sine tone at the threshold of hearing has a level
of 0 dBspl.

One important thing to remember is that the threshold of hearing is not
the same sound pressure level at all frequencies, but we’ll talk about this
later.

The threshold of pain is a sound pressure level that is so loud that it
causes you to be in pain. This level is somewhere around 200 Pa, depending
on which book you read and how masochistic you are. This means that the
threshold of pain is around 140 dBspl. This is very loud.

So, based on these two numbers, we can calculate that the human hearing
system has a total dynamic range of about 140 dB.



4. Psychoacoustics and perception 259

4.4 Loudness

4.4.1 Equal loudness contours

Back in 1933, a couple of researchers by the name of Fletcher and Munson
decided to gather some information about how we perceive different fre-
quencies at different amplitudes. What they came up with was a bunch of
lines we now call “Equal Loudness Contours” or the “Fletcher and Munson
Curves”.

These curves indicate two important pieces of information.

1. the threshold of hearing at different frequencies

2. the apparent levels of equal loudness at different frequencies

Threshold of hearing at different frequencies

We said earlier that the softest sound that we are able to hear is equivalent
to a pressure variation of 20 µ Pa. This is true, but only at one frequency
(1 kHz). If we change the frequency, we would find that we are less sensitive
to soft sounds and therefore require a higher amplitude to hear the tone.
The bottom line of the equal loudness contours indicates the amplitude (in
dBspl) we would require to hear a sound in the absence of all other sound.
Although this plot has a specific shape, there are two basic trends to point
out.

We are less sensitive to high frequencies and low frequencies than to
mid-range frequencies

The frequency band in which our hearing is most sensitive is approxi-
mately 1 kHz – 5 kHz. This is an interesting area for two reasons. Firsltly,
the bulk of our speech (specifically consonant sounds) relies on information in
this frequency range (although it’s like that the speech evolved to capitalize
on the sensitive frequency range). Secondly, the anthropologically-minded
will be interested to note that the sound of a snapping twig has lots of in-
formation which is smack in the middle of the 1 kHz – 5 kHz range. This
is a useful characteristic when you look like lunch to a large-toothed animal
that’s sneaking up behind you...

Apparent levels of equal loudness at different frequencies

If I were to play you sine waves at 100 Hz and 1 kHz and then I were to ask
you to set the loudness of the two tones so that they were the same, you
would set the lower pitch to be louder (if we were to measure it in dBspl)
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than the higher pitch. The same effect would happen if we tried it with a
1 kHz tone and a 10 kHz tone, except that the 10 kHz would now be the
louder of the two (even though they sound the same to you). Again, there
are two interesting things to note about this effect.

The curve of equal loudness has virtually the same shape as the absolute
threshold curve, even at other amplitudes

The curve tends to flatten out when the volume goes up. What does
this mean? Firstly, when you turn down the stereo, you are less sensitive
to low and high frequencies (compared to the mid-range frequencies) than
when the stereo was turned up. Therefore the balance changes (particularly
in the low end). If the level is low, then you’ll think that you hear less bass.
This is why there’s a LOUDNESS switch on your stereo. It boosts the bass
to compensate for your low-level Fletcher and Munson curves... Secondly,
things sound better when they’re louder. This is because there’s a “better
balance” in your hearing perception than when they’re at a lower level. This
is why the salesperson at the stereo store will crank up the volume when
you’re buying speakers... they sound good that way... everything does.

4.4.2 Phons (also known as “Phones”)

Most of the world measures things in dBspl. This is a good thing because
it’s a valid measurement of pressure referenced to some fixed amount of
pressure. As Fletcher and Munson discovered, though, those numbers have
fairly little to do with how loud things sound to us... So someone decided
that it would be a really good idea to come up with a system which was
related to dBspl but “fixed” according to how we perceive things.

The system they came up with (which is virtually never used – but
you’ll stumble on it in old textbooks) measures the amplitude of sounds in
something called phons.

Here’s how to find a value in phons for a given measured amplitude.

1. Measure the amplitude of the sound in dBspl

2. Check the frequency of the sound in Hz

3. Plot the intersection of the two values on the chart of the Fletcher and
Munson curves

4. Find the nearest curve contour and check what the value of that curve
is at 1 kHz

5. That value is the amplitude of the sound in phons
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The idea is that all sounds along a single Fletcher and Munson contour
have the same apparent loudness level, and therefore are given the same
value in phons.

Note: I got an email from Bert Noeth, a professor teaching sound and
acoustics in Belgium who tells me that, in Europe, the lines of equal intensity
are called “isophons.”

4.4.3 Sones

There is another frequency-dependent amplitude measurement called the
Sone – but you’ll never see it except in definitions and psychoacoustics tests,
so I’ll jut say “they exist” and if you want more information, check out the
textbook. We won’t speak of them again...
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4.5 Weighting Curves

Let’s say that you’re hired to go measure the level of background noise in an
office building. So, you wait until everyone has gone home, you set up your
band-new and very expensive sound pressure level meter and you’ll find out
that the noise level is really high – something like 90 dBspl or more.

This is a very strange number, because it doesn’t sound like the back-
ground noise is 90 dBspl... so why is the meter giving you such a high
number? The answer lies in the quality of your meter’s microphone. Ba-
sically, the meter can hear better than you can – particularly at very low
frequencies. You see, the air conditioning system in an office building makes
a lot of noise at very low frequencies, but as we saw earlier, you aren’t very
good at hearing very low frequencies.

The result is that the sound pressure level meter is giving you a very
accurate reading, but it’s pretty useless at representing what you hear. So,
how do we fix this? Easy! We just make the meter’s “hearing” as bad as
yours.

So, what we have to do is to introduce a filter in between the microphone
output and the measuring part of the meter. This filter should simulate your
hearing abilities.

There’s a problem, however. As we saw in Section 4.4.1, the “EQ curve”
of your hearing changes with level. Remember, the louder the sound, the
flatter your personal frequency response. This means that we’re going to
need a different filter in our sound pressure level meter according to the
sound pressure of the signal that we’re measuring.

The filter that we use to simulate human hearing is called a weighting
filter because it applies different weights (or levels of importance) to different
frequencies. The frequency response characteristics of the filter is usually
called a weighting curve.

There are three standard weighting curves, although we typically only
use two of them in most situations. These three curves are shown in Figure
?? and are called the A-weighting , B-weighting , and C-weighting curves.

SHOW WEIGHTING CURVES FREQUENCY RESPONSES
As can be seen in Figure ??, the A-weighting curve has the most at-

tenuation in the low and high frequency bands. This corresponds to your
naturally poor hearing abilities at low sound pressure levels. Therefore, you
should use the A-weighting curve when you are measuring signals with a
sound pressure level of XXX dBspl or less.

FINISH OFF THE DESCRIPTIONS OF THE C and B WEIGHTING
CURVES.
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There is an important lesson to learn here – beware! Notice that the
A-weighting curve has a great deal of attenuation in the low and high fre-
quencies. Therefore, if you have a piece of equipment that is noisy, and you
want to make its specifications look better than they really are, you can use
an A-weighting curve to reduce the noise level. Manufacturers who want to
make their gear have better specifications will use an A-weighting curve to
improve the looks of their noise specifications.

You may also see instances where people use an A-weighting curve to
measure acoustical noise floors even when the sound pressure level of the
noise is much higher than XXX dBspl. This really doesn’t make much sense,
since the frequency response of your hearing is better than an A-weighting
filter at higher levels. Again, this is used to make you believe that things
aren’t as loud as they appear to be.
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4.6 Masking

Let’s go back to the bottom curve on the Fletcher and Munson graphs. This
contour tells us the absolute minimum of our abilities to perceive sound. If
we measure a sound to have a pressure that, when plotted on the same
graph is below the line, then we can’t hear it. Sometime after Fletcher and
Munson, however, there was a discovery that this curve was not an absolute.
In fact, it moves around quite a bit depending on what you’re hearing at
the time. It tends to move up and surround sounds that you are hearing.
I’ll explain.

If you play a relatively loud 1 kHz sine wave, the spectrum of the tone
will be plotted on a Frequency vs. Amplitude graph as a vertical line.

If you then play another sine tone (in addition to the first) with a close
frequency to 1 kHz but a comparatively low amplitude, you won’t hear it.

If you then raise the amplitude of the second tone until you can hear
is, plot that point on a graph, and repeat the process with other nearby
frequencies, you’ll wind up with a graph that looks like this:

This is telling us that, if I play a sine tone at 1 kHz with an amplitude
of about 60 dBspl, I will not be able to hear any simultaneously sounding
tone which, when plotted on the same graph, is below the dotted line.

This is the simultaneous masking curve. Others can be plotted for for-
wards and backward masking which occur when the two tones happen at
different times.
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4.7 Localization

Lord Rayleigh to Wightman and Kistler

How do you localize sound? For example, if you close your eyes and you
hear a sound and you point and say “the sound came from over there,” how
did you know? And, how good are you at it?

Well, you have two general things to sort out

1. which direction is the sound coming from?

2. how far away is it?

We determine the direction of the sound using a couple of basic compo-
nents that rely on the fact that we have two ears

1. Which ear got the sound first?

2. Which ear is the sound louder in?

3. What is the timbre of the sound

4. How does is change if I turn my head a little bit?

The first thing you rely on is the interaural (a fancy word meaning
“between the two ears” give or take) time of arrival of the sound. If the
right ear hears the sound first, then the sound is on your right, if the left ear
hears the sound first, then the sound is on your left. If the two ears get the
sound simultaneously, then the sound is directly ahead, or above, or below
or behind you.

The next thing you rely on is the interaural amplitude difference. If the
sound is louder in the right ear, then the sound is probably on your right.
Interestingly, if the sound is louder in your right ear, but arrives in your left
ear first, then your brain decides that the interaural time of arrival is the
more important cue and basically ignores the amplitude information.

You also have these things sticking out of your head which most people
call their ears but are really called your pinnae (1 pinna, 2 pinnae). These
things bounce sound around inside them differently depending on which di-
rection the sound is coming from. They tend to block really high frequencies
coming from the rear (because they stick out a bit...) so rear sources sound
“darker” than front sources. These are of a little more help when you turn
your head back and forth a bit (which you do involuntarily anyway...)
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Once upon a time, a guy named Lord Rayleigh wrote a book called “The
Theory of Sound.” He said that the brain uses the phase difference of low
frequencies to sort out where things are, whereas for high frequencies, the
amplitude differences between the two ears are used. This is a pretty good
estimation, although there’s a couple of people by the names of Wightman
and Kistler in the States working for NASA doing a lot of research in the
matter.

Research in this field is a big thing these days because of all the compa-
nies trying to make virtual reality machines.

4.7.1 Cone of Confusion

Exactly how good are you at the localization of sound sources? Well, if the
sound is in front of you, you’ll be accurate to within about 2◦ or so. If the
sound is directly ot one side, you’ll be up to about 7◦ off, and if the sound
is above you, you’re really bad at it... typical errors for localizing sources
above your head are about 14◦ – 20◦.

Why? Well, probably because, anthropologically speaking, more stuff
was attacking from the ground than from the sky. You’re better equipped
if you can hear where the sabre-toothed tiger is rather than the large now-
extinct human-eating flying penguin...

If you play a sound for someone on one side of their head and asked them
to point at the direction of the sound source, they would typically point in
the wrong direction, but be pointing in the correct angle. That is, if the
sound is 5◦ front of centre, some people will point 5◦ rear of centre, Some
people will point 5◦ above centre and so on. If you made a diagram of the
incorrect (and correct) guesses, you’d wind up drawing a cone sticking out
of the test subject’s ear. This is called the “cone of confusion.”
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4.8 Precedence Effect

Stand about, oh, 10 m from a large flat wall outdoors and clap your hands.
You should hear an echo. It’ll be pretty close behind the clap (in fact it
ought to be about 60 ms behind the clap...) but it’s late enough that you
can hear it. Now, go closer to the wall, and keep clapping as you go. How
close will you be when you can no longer hear a distinct echo? (not one that
goes “echo........echo” but one that at least appears to have a sound coming
from the wall which is separate from the one at your hands...)

It turns out that you’ll be about 5 m away. You see, there is this small
time window of about 30 ms or so where, if the echo is outside the window,
you hear it as a distinct sound all to itself; if the echo is within the window,
you hear it as a component of the direct sound.

It also turns out that you have a predisposition to hear the direction of
the combined sound as originating near the earlier of the two sounds when
they’re less than 30 ms apart.

This localization tendancy is called the precedence effect or the Haas
effect [].

Okay, okay so I’ve oversimplified a bit. Let’s be a little more specific. The
actual time window is dependent on the signal. For very transient sounds,
the window is much shorter than for sustained sounds. For example, you’re
more likely to hear a distinct echo of a xylophone than a cello. (And, in
case you’re wondering, a duck’s quack does echo...) So the upper limit of
the Haas window is between 5 ms and 40 ms, depending on the signal.

Also, if the delay time is very short (less than about 1 ms), then you
will perceive the reflection as having a timbral effect known as a comb filter
(explained in Section ??).

In between these two times, the precedence effect is in action, and its
principal function is to aid you in determining either the distance to the
reflecting surface, the distance to the sound source, or both.

4.8.1 Suggested Reading List
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4.9 Distance Perception

Go outdoors, close your eyes and stand there and listen for a while. Pay
attention to how far away things sound and try not to be distracted by how
far away you know that they are. Chances are that you’ll start noticing that
everything sounds really close. You can tell what direction things are coming
from, but you won’t really know how far away they are. This is because you
probably aren’t getting enough information to tell you the distance to the
sound source. So, the question becomes, “what are the cues that you need
to determine the distance to the sound source?”

There are a number of cues that we rely on to figure out how far away
a sound source is. These are, in no particular order...

• reflection patterns

• direct-to-reverberant ratio

• sound pressure level

• high-frequency content

4.9.1 Reflection patterns

One of the most important cues that you get when it comes to determining
the distance to a sound source lies in the pattern of reflections that arrive
after the direct sound. Both the level and time of arrival relationships
between these reflections and the direct sound tell you not only how far
away the sound source is, but where it is located relative to walls around
you, and how big the room is.

Go to an anechoic chamber (or a frozen pond with snow on it...). Take
a couple of speakers and put them directly in front of you, aimed at your
head with one about 2 m away and the other 4 m distant. Then, make
the two speakers the same apparent level at your listening position using
the amplifier gains. If you switch back and forth between the two speakers
you will not be able to tell which is which – this is because the lack of
reflections in the anechoic chamber rob you of your only cues that give you
this information.

4.9.2 Direct-to-reverberant ratio

Anyone who has used a digital reverberation unit knows that the way to
make things sound farther away in the mix is to increase the level of the
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reverb relative to the dry sound. This is essentially creating the same effect
we have in real life. We’ve seen in Section ?? that, as you get farther and
farther away from a sound source in a room, the direct sound gets quieter
and quieter, but the energy from the room’s reflections – the reverberation
– stays the same. Therefore the direct-to-reverberant level ratio gets smaller
and smaller.

4.9.3 Sound pressure level

If you know how loud the sound source is normally, then you can tell how
far away it is based on how loud it is. This is particularly true of sound
sources with which we are very familiar like human speech, for example.

Of course, if you have never heard the sound before, or if you really don’t
know how loud it is (like the sound of a jet engine, for example) then the
sound’s loudness won’t help you tell how far away it is.

4.9.4 High-frequency content

As we saw in Section 3.2.3, air has a tendency to absorb high-frequency
information. Over short distances, this absorption is minimal, and therefore
not detectable by humans. However, over long distances, the absorption
becomes significant enough for us to hear the difference. Of course, we are
again assuming that we are familiar with the sound source. If you don’t
know the normal frequency balance of the sound, then you won’t know that
the high end has been rolled off due to distance.

4.9.5 Suggested Reading List
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4.10 Hearing Loss and Tinnitus

NOT YET WRITTEN
See http://www.cccd.edu/faq/tinnitus.html for info

4.10.1 Suggested Reading List
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4.11 Perception of sound qualities

NOT YET WRITTEN

4.11.1 Suggested Reading List
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SNR of recording system (typically hum caused by grounding issues)
SNR of playback system (typically hum caused by grounding issues)

Wide band THD
Wide band IMD

IACC
Interchannel crosscorrelation
Interchannel phase response matching

Interchannel amplitude difference
Interchannel time difference

Quality

Dynamics

Timbre

Spatial

Noise

Level

Range

? Tight vs. Pillowy

Hollow vs. Full

Smiling
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Body

Bandwidth

Even-ness

Clean vs. Muddy

Colour

Dark vs. Bright

Clean-ness

Program 
Dependent
(Distortion)

Program 
Independent
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Location
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Narrow vs. Wide
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Bandwidth

Level

Absolute

Relative to signal

Narrow vs. Wide

Shallow vs. Deep

Short vs. Tall

Sound Pressure Level
Dynamic Range

Dynamic Range of Recording
Microphone distance to source
SNR
Slew Rate

Time alignment of loudspeaker drivers
Phase response of loudspeaker
Listening Room Resonances

Relative energy in 250 - 500 Hz band

Relative energy in 250 Hz band

Energy in 125 Hz area

Low IACC in the 2.5 kHz area
Influences spatial characteristic

General ratio of low to high frequency content
Distortion characteristics

THD (Related)
Psychoacoustic CODEC (Unrelated)
IMD (Unrelated)

?

SNR of recording system
SNR of playback system

SNR

SNR

?

Direct - Reverberant ratio in recording
Early reflection pattern in recording

A lot of parameters...

Low-frequency IACC at listening position

General distribution energy in frequency bands

Clean vs Harsh (or crunchy)

Electrical

Acoustical 

Veiled or Covered Lack of energy above 10 kHz

Air Low IACC above 5 kHz

Warm vs. Cold

Low Pass

High Pass

Restricted vs. Bottomless

Muffled vs. Airy High frequency energy

Low frequency energy
Low frequency interchannel correlation

Washy Long reverb time with high IACC

Boomy Room modes in recording space
Room modes in Playback space

Narrow

Wide

Bandwidth

Level

Absolute

Relative

Room noise

Room noise

PNC of recording room

Acoustical SNR in recording room

Absolute (perceived in listening room)

Relative (to mix)

Direct - Reverberant energy ratio
Accuracy of early reflection gain, time and panning

Horizontal

Vertical

Freq. response matching of microphone signals, loudspeakers
Phase matching of microphone signals, loudspeakers
Early reflections in listening room

Location

Precision

?

?

Precision (Focus)

Location

Precision

Precision (Focus)

Precision (Focus)

Related vs. Unrelated Pitch

High vs. Low Pitch

High vs. Low Pitch

Spaciousness High-mid-range IACC at listening position

High frequency THD
High frequency IMD

Wide-band phase response
Accuracy of reproduced early reflection pattern

?

Contrast Transient response Slew Rate
High Frequency content

Related vs. Unrelated Pitch

Precise vs. Imprecise

Precise vs. Imprecise

Precise vs. Imprecise

Figure 4.1: My own personal, unproven and un-researched list of descriptions of sound qualities,
possibly even bordering on perceptual attributes and how I think they correlate with physical mea-
surements. Please be wary of quoting this list – it’s just a map of what is in my head.



Chapter 5

Electroacoustics

5.1 Filters and Equalizers

Thanks to George Massenburg at GML Inc. (www.massenburg.com) for his
kind permission to use include chapter which was originally written as part
of a manual for one of their products.

5.1.1 Introduction

Once upon a time, in the days before audio was digital, when you made
a long-distance phone call, there was an actual physical connection made
between the wire running out of your phone and the phone at the other end.
This caused a big problem in signal quality because a lot of high-frequency
components of the signal would get attenuated along the way. Consequently,
booster circuits were made to help make the relative levels of the various
frequencies equal. As a result, these circuits became known as equalizers.
Nowadays, of course, we don’t need to use equalizers to fix the quality of
long-distance phone calls, but we do use them to customize the relative
balance of various frequencies in an audio signal.

In order to look at equalizers and their smaller cousins, filters, we’re
going to have to look at their frequency response curves. This is a description
of how the output level of the circuit compares to the input for various
frequencies. We assume that the input level is our reference, sitting at 0 dB
and the output is compared to this, so if the signal is louder at the output,
we get values greater than 0 dB. If it’s quieter at the output, then we get
negative values at the output.

273

http://www.massenburg.com
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5.1.2 Filters

Before diving straight in and talking about how equalizers behave, we’ll start
with the basics and look at four different types of filters. Just like a coffee
filter keeps coffee grinds trapped while allowing coffee to flow through, an
audio filter lets some frequencies pass through unaffected while reducing the
level of others.

Low-pass Filter

One of the conceptually simplest filters is known as a low-pass filter because
it allows low frequencies to pass through it. The question, of course, is
“how low is low?” The answer lies in a single frequency known as the cutoff
frequency or fc. This is the frequency where the output of the filter is 3.01 dB
lower than the maximum output for any frequency (although we normally
round this off to -3 dB which is why it’s usually called the 3 dB down point).
“What’s so special about -3 dB?” I hear you cry. This particular number is
chosen because -3 dB is the level where the signal is at one half the power of
a signal at 0 dB. So, if the filter has no additional gain incorporated into it,
then the cutoff frequency is the one where the output is exactly one half the
power of the input. (Which explains why some people call it the half-power
point .)

As frequencies get higher and higher, they are attenuated more and
more. This results in a slope in the frequency response graph which can be
calculated by knowing the amount of extra attenuation for a given change
in frequency. Typically, this slope is specified in decibels per octave. Since
the higher we go, the more we attenuate in a low pass filter, this value will
always be negative.

The slope of the filter is determined by its order . If we oversimplify just
a little, a first-order low-pass filter will have a slope of -6.02 dB per octave
above its cutoff frequency (usually rounded to -6 dB/oct). If we want to be
technically correct about this, then we have to be a little more specific about
where we finally reach this slope. Take a look at the frequency response plot
in Figure 5.1. Notice that the graph has a nice gradual transition from
a slope of 0 (a horizontal line) in the really low frequencies to a slope of
-6 dB/oct in the really high frequencies. In the area around the cutoff
frequency, however, the slope is changing. If we want to be really accurate,
then we have to say that the slope of the frequency response is really 0 for
frequencies less than one tenth of the cutoff frequency. In other words, for
frequencies more than one decade below the cutoff frequency. Similarly, the
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Figure 5.1: The frequency response of a first-order low pass filter with a cutoff frequency of 1 kHz.
Note that the cutoff frequency is where the response has dropped in level by 3 dB. The slope can
be calculated by dividing the drop in level by the change in frequency that corresponds to that
particular drop.

slope of the frequency response is really -6.02 dB/oct for frequencies more
than one decade above the cutoff frequency.

If we have a higher-order filter, the cutoff frequency is still the one where
the output drops by 3 dB, however the slope changes to a value of −6.02n
dB/oct, where n is the order of the filter. For example, if you have a 3rd-
order filter, then the slope is

slope = order ∗ −6.02dB/oct (5.1)
= 3 ∗ −6.02dB/oct (5.2)
= −18.06dB/oct (5.3)

High-pass Filter

A high-pass filter is essentially exactly the same as a low-pass filter, however,
it permits high frequencies to pass through while attenuating low frequencies
as can be seen in Figure 5.2. Just like in the previous section, the cutoff
frequency is where the output has a level of -3.01 dB but now the slope
below the cutoff frequency is positive because we get louder as we increase
in frequency. Just like the low-pass filter, the slope of the high-pass filter is
dependent on the order of the filter and can be calculated using the equation
6.02n dB/oct, where n is the order of the filter.
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Figure 5.2: The frequency response of a first-order high pass filter with a cutoff frequency of 1 kHz.

Remember as well that the slope only applies to frequencies that are at
least one decade away from the cutoff frequency.

Band-pass Filter

Let’s take a signal and send it through a high-pass filter and a low-pass filter
in series, so the output of one feeds into the input of the other. Let’s also
assume for a moment that the two cutoff frequencies are more than a decade
apart.

The result of this probably won’t hold any surprises. The high-pass filter
will attenuate the low frequencies, allowing the higher frequencies to pass
through. The low-pass filter will attenuate the high frequencies, allowing
the lower frequencies to pass through. The result is that the high and low
frequencies are attenuated, with a middle band (called the passband) that’s
allowed to pass relatively unaffected.

Bandwidth

This resulting system is called a bandpass filter and it has a couple of specifi-
cations that we should have a look at. The first is the width of the passband.
This bandwidth is calculated using the difference two cutoff frequencies which
we’ll label fc1 for the lower one and fc2 for the higher one. Consequently,
the bandwidth is calculated using the equation:
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BW = fc2 − fc1 (5.4)

So, using the example of the filter frequency response shown in Figure
4, the bandwidth is 10,000 Hz – 20 Hz = 9980 Hz.

Centre Frequency

We can also calculate the middle of the passband using these two frequencies.
It’s not quite so simple as we’d like, however. Unfortunately, it’s not just
the frequency that’s half-way between the low and high frequency cutoff’s.
This is because frequency specifications don’t really correspond to the way
we hear things. Humans don’t usually talk about frequency – they talk
about pitches and notes. They say things like “Middle C” instead of “262
Hz.” They also say things like “one octave” or “one semitone” instead of
things like “a bandwidth of 262 Hz.”

Consider that, if we play the A below Middle C on a well-tuned piano,
we’ll hear a note with a fundamental of 220 Hz. The octave above that is
440 Hz and the octave above that is 880 Hz. This means that the bandwidth
of the first of these two octaves is 220 Hz (it’s 440 Hz – 220 Hz), but the
bandwidth of the second octave is 440 Hz (880 Hz – 440 Hz). Despite the
fact that they have different bandwidths, we hear them each as one octave,
and we hear the 440 Hz note as being half-way between the other two notes.
So, how do we calculate this? We have to find what’s known as the geometric
mean of the two frequencies. This can be found using the equation

fcentre =
√

fc1fc2 (5.5)

Q

Let’s say that you want to build a bandpass filter with a bandwidth of one
octave. This isn’t difficult if you know the centre frequency and if it’s never
going to change. For example, if the centre frequency was 440 Hz, and
the bandwidth was one octave wide, then the cutoff frequencies would be
311 Hz and 622 Hz (we won’t worry too much about how I arrived at these
numbers). What happens if we leave the bandwidth the same at 311 Hz, but
change the centre frequency to 880 Hz? The result is that the bandwidth is
now no longer an octave wide – it’s one half of an octave. So, we have to
link the bandwidth with the centre frequency so that we can describe it in
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terms of a fixed musical interval. This is done using what is known as the
quality or Q of the filter, calculated using the equation:

Q =
fcentre

BW
(5.6)

Now, instead of talking about the bandwidth of the filter, we can use
the Q which gives us an idea of the width of the filter in musical terms.
This is because, as we increase the centre frequency, we have to increase the
bandwidth proportionately to maintain the same Q. Notice however, that if
we maintain a centre frequency, the smaller the bandwidth gets, the bigger
the Q becomes, so if you’re used to talking in terms of musical intervals, you
have to think backwards. A big Q is a smaller interval as can be seen in the
plot of a number of different Q’s in Figure 5.8.
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Figure 5.3: The frequency responses of various bandpass filters with different Q’s and a matched
centre frequency of 1 kHz.

Notice in Figure 5.8 that you can have a very high Q, and therefore a
very narrow bandwidth for a bandpass filter. All of the definitions still hold,
however. The cutoff frequencies are still the points where we’re 3 dB lower
than the maximum value and the bandwidth is still the distance in Hertz
between these two points and so on...

Band-reject Filter

Although bandpass filters are very useful at accentuating a small band of
frequencies while attenuating others, sometimes we want to do the opposite.
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We want to attenuate a small band of frequencies while leaving the rest alone.
This can be accomplished using a band-reject filter (also known as a bandstop
filter) which, as its name implies, rejects (or usually just attenuates) a band
of frequencies without affecting the surrounding material. As can be seen
in Figure 5.4, this winds up looking very similar to a bandpass filter drawn
upside down.
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Figure 5.4: The frequency response of a band-reject filter with a centre frequency of 1 kHz.

The thing to be careful of when describing band-reject filters is the fact
that cutoff frequencies are still defined as the points where we’ve dropped
in level by 3 dB. Therefore, we don’t really get an intuitive idea of how
much we drop at the centre frequency. Looking at Figure 5.4 we can see
that, although the band-reject filter looks just like the bandpass filter upside
down, the bandwidth is quite different. This is a fairly important point to
remember a little later on in the section on symmetry.

Notch Filter

There is a special breed of band-reject filter that is designed to have almost
infinite attenuation at a single frequency, leaving all others intact. This, of
course is impossible, but we can come close. If we have a band-reject filter
with a very high Q, the result is a frequency response like the one shown in
Figure 5.5. The shape is basically a flat frequency response with a narrow,
deep notch at one frequency – hence the name notch filter
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Figure 5.5: The frequency response of a notch filter with a centre frequency of 1 kHz.

5.1.3 Equalizers

Unlike its counterpart from the days of long-distance phone calls, a modern
equalizer is a device that is capable of attenuating and boosting frequencies
according to the desire and expertise of the user. There are four basic types
of equalizers, but we’ll have to talk about a couple of issues before getting
into the nitty-gritty.

An equalizer typically consists of a collection of filters, each of which
permits you to control one or more of three things: the gain, centre frequency
and Q of the filter. There are some minor differences in these filters from the
ones we discussed above, but we’ll sort that out before moving on. Also, the
filters in the equalizer may be connected in parallel or in series, depending
on the type of equalizer and the manufacturer.

To begin with, as we’ll see, a filter in an equalizer comes in three basic
models, the bandpass, and the band reject, which are typically chosen by
the user by manipulating the gain of the filter. On a decibel scale, positive
gain results in a bandpass, whereas negative gain produces a band reject.
In addition, there is the shelving filter which is a variation on the highpass
and low pass filters.

The principal difference between filters in an equalizer and the filters
defined in Section 1 is that, in a typical equalizer, instead of attenuating
all frequencies outside the passband, the filter typically leaves them at a
gain of 0 dB. An example of this can be seen in the plot of an equalizer’s
bandpass filter in Figure 5.6. Notice now that, rather than attenuating all
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unwanted frequencies, the filter is applying a known gain to the passband.
The further away you get from the passband, the less the signal is affected.
Notice, however, that we still measure the bandwidth using the two points
that are 3 dB down from the peak of the curve.
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Figure 5.6: The frequency response of a bandpass filter with a centre frequency of 1 kHz, a Q of
4, and a gain of 12 dB in a typical equalizer.

Filter symmetry

Constant Q Filter

Let’s look at the frequency response of a filter with a centre frequency of
1 kHz, a Q of 4 and a varying amount of boost or cut. If we plot these
responses on the same graph, they look like Figure 5.11.

Notice that, although these two curves have “matching” parameters,
they do not have the same shape. This is because the bandwidth (and
therefore the Q) of a filter is measured using its 3 dB down point – not
the point that’s 3 dB away from the peak or dip in the curve. Since the
measurement is not symmetrical, the curves are not symmetrical. This is
true of any filter where the Q is kept constant and gain is modified. If
you compare a boost of any amount with a cut of the same amount, you’ll
always get two different curves. This is what is known as a constant Q filter
because the Q is kept as a constant. The result is called an asymmetrical
filter (or non-symmetrical filter) because a matching boost and cut are not
mirror images of each other.
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Figure 5.7: The frequency responses of bandpass filters with a various centre frequencies, a Q of
4, and a gain of 12 dB in a typical equalizer. Blue fc = 250 Hz. Red fc = 500 Hz. Green fc =
1000 Hz. Black fc = 2000 Hz.
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Figure 5.8: The frequency responses of bandpass filters with a centre frequency of 1 kHz, various
Q’s, and a gain of 12 dB in a typical equalizer. Black Q = 1. Green Q = 2. Blue Q = 4. Red Q
= 8.



5. Electroacoustics 283

10
2

10
3

10
4

-15

-10

-5

0

5

10

15

Frequency (Hz)

G
ai

n 
(d

B
)

Figure 5.9: The frequency responses of bandpass filters with a centre frequency of 1 kHz, a Q of
4, and various gains from 0 dB to 12 dB in a typical equalizer. Yellow gain = 0 dB. Red gain = 3
dB. Green gain = 6 dB. Blue gain = 9 dB. Black gain = 12 dB.
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Figure 5.10: The frequency responses of bandpass filters with a centre frequency of 1 kHz, a Q of
4, and various gains from -12 dB to 0 dB in a typical equalizer. Yellow gain = 0 dB. Red gain =
-3 dB. Green gain = -6 dB. Blue gain = -9 dB. Black gain = -12 dB.
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Figure 5.11: The frequency responses of two filters, each with a centre frequency of 1 kHz, and a
Q of 4. The Blue curve shows a gain of 12 dB, the black curve, a gain of -12 dB.

There are advantages and disadvantages to this type of filter. The pri-
mary advantage is that you can have a very selective cut if you’re trying
to eliminate a single frequency, simply by increasing the Q. The primary
disadvantage is that you cannot undo what you have done. This statement
is explained in the following section.

Reciprocal Peak/Dip Filter

Instead of building a filter where the cut and boost always maintain a con-
stant Q, let’s set about to build a filter that is symmetrical – that is to say
that a matching boost and cut at the same centre frequency would result
in the same shape. The nice thing about this design is that, if you take
two such filters and connect them in series and set their parameters to be
the same but opposite gains (for example, both with a centre frequency of
1 kHz and a Q of 2, but one has a boost of 6 dB and the other has a cut
of 6 dB) then they’ll cancel each other out and your output will be iden-
tical to your input. This also applies if you’ve equalized something while
recording – assuming that you live in a perfect world, if you remember your
original settings on the recorded EQ curve, you can undo what you’ve done
by duplicating the settings and inverting the gain.
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Figure 5.12: The frequency responses of various constant Q filters, all with a centre frequency of
1 kHz, gains of either 12 dB or -12 dB (depending on whether it’s a boost or a cut) and various
Q’s. Black Q = 1. Green Q = 2. Blue Q = 4. Red Q = 8.
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Figure 5.13: The frequency responses of various reciprocal peak/dip filters, all with a centre fre-
quency of 1 kHz, gains of either 12 dB or -12 dB (depending on whether it’s a boost or a cut) and
various boost Q’s. Black Q = 1. Green Q = 2. Blue Q = 4. Red Q = 8.
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Parallel vs. Series Filters

Let’s take two reciprocal peak/dip filters, each set with a Q of 2 and a gain
of 6 dB. The only difference between them is that one has a centre frequency
of 1 kHz and the other has a centre frequency of 1.2 kHz. If we use both
of these filters on the same signal simultaneously, we can achieve two very
different resulting frequency responses, depending on how they’re connected.

If the two filters are connected in series (it doesn’t matter what order
we connect them in), then the frequency band that overlaps in the boosted
portion of the two filters’ responses will be boosted twice. In other words,
the signal goes through the first filter and is amplified, after which it goes
through the second filter and the amplified signal is boosted further. This
arrangement is also known as a circuit made of combining filters.

If we connect the two filters in parallel, however, a different situation
occurs. Now each filter boosts the original signal independently, and the
two resulting signals are added, producing a small increase in level, but not
as significant as in the case of the series connection. This arrangement is
also known as a circuit made of non-combining filters.

The primary advantage to having filters in connected in series rather than
in parallel lies in possibility of increased gain or attenuation. For example, if
you have two filters in series, each with a boost of 12 dB and with matched
centre frequencies, the total resulting gain applied to the signal is 24 dB
(because a gain of 12 dB from the second filter is applied to a signal that
already has a gain of 12 dB from the first filter). If the same two filters were
connected in parallel, the total gain would be only 18 dB. (This is because
a the addition of two identical signals results in a doubling of level which
corresponds to an additional gain of only 6 dB.)

The main disadvantage to having filters connected in series rather than
in parallel is the fact that you can occasionally result in frequency bands
being boosted more than you’re intuitively aware. For example, looking at
Figure 17, we can see that, based on the centre frequencies of the two filters,
we would expect to have two peaks in the total frequency response at 1
kHz and 1.2 kHz. The actual result, as can be seen, is a single large peak
between the two expected centre frequencies. Also, it should be noted that
a group of non-combining filters will have a ripple in their output frequency
response.
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Shelving Filter

The nice thing about high pass and low pass filters is that you can reduce
(or eliminate) things you don’t want like low-frequency noise from air condi-
tioners, for example. But, what if you want to boost all your low frequencies
instead of cutting all your high’s? This is when a shelving filter comes in
handy. The response curve of shelving filters most closely resemble their
high- and low-pass filter counterparts with a minor difference. As their
name suggests, the curve of these filters level out at a specified frequency
called the stop frequency . In addition, there is a second defining frequency
called the turnover frequency which is the frequency at which the response
is 3 dB above or below 0 dB. This is illustrated in Figure 20.

The transition ratio is sort of analogous to the order of the filter and is
calculated using the turnover and stop frequencies as shown below.

RT =
fstop

fturnover
(5.7)

where RT is the transition ratio.
The closer the transition ratio is to 1, the greater the slope of the tran-

sition in gain from the unaffected to the affected frequency ranges.
These filters are available as high- and low-frequency shelving units,

boosting high and low frequencies respectively. In addition, they typically
have a symmetrical response. If the transition ratio is less than 1, then the
filter is a low shelving filter. If the transition ratio is greater than 1, then
the filter is a high shelving filter.

The disadvantage of these components lies in their potential to boost
frequencies above and below the audible audio range causing at the least
wasted amplifier power and interference from local AM radio signals, and at
the worst, loudspeaker damage. For example, if you use a high shelf filter
with a stop frequency of 10 kHz to increase the level of the high end by
12 dB to brighten things up a bit, you will probably also wind up boosting
signals above your hearing range. In a typical case, this may cause some
unpredictable signals from your tweeter due to increased intermodulation
distortion of signals you can’t even hear. To reduce these unwanted effects,
super sonic and subsonic signals can be attenuated using a low pass or high
pass filter respectively outside the audio band. Using a peaking filter at the
appropriate frequency instead of a filter with a shelving response can avoids
the problem altogether.

The most common application of this equalizer is the tone controls on
home sound systems. These bass and treble controls generally have a maxi-
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mum slope of 6 dB per octave and reciprocal characteristics. They are also
frequently seen on equalizer modules on small mixing consoles.

Graphic Equalizer

Graphic equalizers are seen just about everywhere these days, primarily be-
cause they’re intuitive to use. In fact, they are probably the most-used piece
of signal processing equipment in recording. The name “graphic equalizer”
comes from the fact that the device is made up of a number of filters with
centre frequencies that are regularly spaced, each with a slider used for gain
control. The result is that the arrangement of the sliders gives a graphic
representation of the frequency response of the equalizer. The most com-
mon frequency resolutions available are one-octave, two-third-octave and
one-third-octave, although resolutions as fine as one-twelveth-octave exist.
The sliders on most graphic equalizers use ISO standardized band center fre-
quencies. They virtually always employ reciprocal peak/dip filters wired in
parallel. As a result, when two adjacent bands are boosted, there remains
a comparatively large dip between the two peaks. This proves to be a great
disadvantage when attempting to boost a frequency between two center fre-
quencies. Drastically excessive amounts of boost may be required at the
band centers in order to properly adjust the desired frequency. This prob-
lem is eliminated in graphic EQ’s using the much-less-common combining
filters. In this system, the filter banks are wired in series, thus adjacent
bands have a cumulative effect. Consequently, in order to boost a frequency
between two center frequencies, the given filters need only be boosted a
minimal amount to result in a higher-boosted mid-frequency.

Virtually all graphic equalizers have fixed frequencies and a fixed Q. This
makes them simple to use and quick to adjust, however they are generally
a compromise. Although quite suitable for general purposes, in situations
where a specific frequency or bandwidth adjustment is required, they will
prove to be inaccurate.

Paragraphic Equalizer

One attempt to overcome the limitations of the graphic equalizer is the para-
graphic equalizer . This is a graphic equalizer with fine frequency adjustment
on each slider. This gives the user the ability to sweep the center frequency
of each filter somewhat, thus giving greater control over the frequency re-
sponse of the system.
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Sweep Filters

These equalizers are most commonly found on the input stages of mixing
consoles. They are generally used where more control is required over the
signal than is available with graphic equalizers, yet space limitations restrict
the sheer number of potentiometers available. Typically, the equalizer sec-
tion on a console input strip will have one or two sweep filters in addition
to low and a high shelf filters with fixed turnover frequencies. The frequen-
cies of the mid-range filters are usually reciprocal peak/dip filters with an
adjustable (or sweepable) center frequencies and fixed Q’s.

The advantage of this configuration is a relatively versatile equalizer
with a minimum of knobs, precisely what is needed on an overcrowded mixer
panel. The obvious disadvantage is its lack of adjustment on the bandwidth,
a problem that is solved with a parametric equalizer.

Parametric Equalizer

A parametric equalizer is one that allow the user to control the gain, centre
frequency and Q of each filter. In addition, these three parameters are
independent – that is to say that adjusting one of the parameters will have
no effect on the other two. They are typically comprised of combining filters
and will have either reciprocal peak/dip or constant-Q filters. (Check your
manual to see which you have – it makes a huge difference!) In order to give
the user a wider amount of control over the signal, the frequency ranges of
the filters in a parametric equalizer typically overlap, making it possible to
apply gain or attenuation to the same centre frequency using at least two
filters.

The obvious advantage of using a parametric equalizer lies in the detail
and versatility of control afforded by the user. This comes at a price, however
– it unfortunately takes much time and practice to master the use of a
parametric equalizer.

Semi-parametric equalizer

A less expensive variation on the true parametric equalizer is the semi-
parametric or quasi-parametric equalizer . From the front panel, this device
appears to be identical to its bigger cousin, however, there is a significant
difference between the two. Whereas in a true parametric equalizer, the
three parameters are independent, in a semi-parametric equalizer, they are
not. As a result, changing the value of one parameter will cause at least one,
if not both, of the other two parameters to change unexpectedly. As a result,
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although these devices are less expensive than a true parametric, they are
less trustworthy and therefore less functional in real working situations.

5.1.4 Summary

5.1.5 Phase response

So far, we’ve only been looking at the frequency response of a filter or
equalizer. In other words, we’ve been looking at what the magnitude of
the output of the filter would be if we send sine tones through it. If the
filter has a gain of 6 dB at a certain frequency, then if we feed it a sine
tone at that frequency, then the amplitude of the output will be 2 times the
amplitude of the input (because a gain of 2 is the same as an increase of 6
dB). What we haven’t looked at so far is any shift in phase (also known as
phase distortion) that might be incurred by the filtering process. Any time
there is a change in the frequency response in the signal, then there is an
associated change in phase response that you may or may not want to worry
about. That phase response is typically expressed as a shift (in degrees) for
a given frequency. Positive phase shifts mean that the signal is delayed in
phase whereas negative phase shifts indicate that the output is ahead of the
input.

“The output is ahead of the input!?” I hear you cry. “How can the
output be ahead of the input? Unless you’ve got one of those new digital
filters that can see into the near future...” Well, it’s actually not as strange
as it sounds. The thing to remember here is that we’re talking about a sine
wave – so don’t think about using an equalizer to help your drummer get
ahead of the beat... It doesn’t mean that the whole signal comes out earlier
than it went in. This is because we’re not talking about negative delay –
it’s negative phase.

Let’s look at a typical example. Figure 24 below shows the phase re-
sponse for a typical filter found in an average equalizer with a frequency
response shown in Figure 10. Note that some frequencies have a negative
phase shift while others have a positive phase shift. If you’re looking really
carefully, you may notice a relationship between the slope of the frequency
response and the polarity of the phase response – but if you didn’t notice
this, don’t worry...

Minimum phase

While it’s true that a change in frequency response of a signal necessarily
implies that there is a change in its phase, you don’t have to have the
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Figure 5.14: The phase responses of bandpass filters with a centre frequency of 1 kHz, various Q’s,
and a gain of 12 dB in a typical equalizer. Black Q = 1. Green Q = 2. Blue Q = 4. Red Q = 8.
(Compare these curves to the plot in Figure 10)
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Figure 5.15: The phase responses of bandpass filters with a centre frequency of 1 kHz, various Q’s,
and a gain of -12 dB in a typical equalizer. Black Q = 1. Green Q = 2. Blue Q = 4. Red Q = 8.
(Compare these curves to the plot in Figure 5.14)
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same phase shift for the same frequency response change. In fact, different
manufacturers can build two filters with centre frequencies of 1 kHz, gains
of 12 dB and Q’s of 4. Although the frequency responses of the two filters
will be identical, their phase responses can be very different.

You may occasionally hear the term minimum phase to describe a filter.
This is a filter that has the frequency response that you want, and incurs
the smallest (hence “minimum”) shift in phase to achieve that frequency
response.

Two things to remember about minimum phase filters: 1) Just because
they have the minimum possible phase shift doesn’t necessarily imply that
they sound the best. 2) A minimum phase filter can be “undone” – that is to
say that if you put your signal through a minimum phase filter, it is possible
to find a second minimum phase filter that will reverse all the effects of the
first, giving you exactly the signal you started with.

Linear Phase

If you plot the phase response of a filter for all frequencies, chances are
you’ll get a smooth, fancy-looking curve like the ones in Figure 24. Some
filters, on the other hand, have a phase response plot that’s a straight line
if you graph the response on a linear frequency scale (instead of a log scale
like we normally do...). This line usually slopes upwards so the higher the
frequency, the bigger the phase change. In fact, this would be exactly the
phase response of a straight delay line – the higher the frequency, the more
of a phase shift that’s incurred by a fixed delay time. If the delay time is 0,
then the straight line is a horizontal one at 0◦ for all frequencies.

Any filter whose phase response is a straight line is called a linear phase
filter . Be careful not to jump to the conclusion that, because it’s a linear
phase filter, it’s better than anything else. While there are situations where
such a filter is useful, they work well in all situations to correct all problems.
Different intentions require different filter characteristics.

Ringing

The phase response of a filter is typically strongly related to its Q. The higher
the Q (and therefore the smaller the bandwidth) the greater the change in
phase around the centre frequency. This can be seen in Figure 24 above.
Notice that, the higher the Q, the higher the slope of the phase response
at the centre frequency of the filter. When the slope of the phase response
of a filter gets very steep (in other words, when the Q of the filter is very
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high) an interesting thing called ringing happens. This is an effect where
the filter starts to oscillate at its centre frequency for a length of time after
the input signal stops. The higher the Q, the longer the filter will ring, and
therefore the more audible the effect will be. In the extreme cases, if the Q
of the filter is 0, then there is no ringing (but the bandwidth is infinity and
you have a flat frequency response – so it’s not a very useful filter...). If the
Q of the filter is infinity, then the filter becomes a sine wave generator.

Figure 5.16: Ringing caused by minimum phase bandpass filters with centre frequencies of 1 kHz
and various Q’s. The input signal is white noise, abruptly cut to digital zero as is shown in the top
plot. There are at least three things to note: 1) The higher the Q, the longer the filter will ring at
the centre frequency after the input signal has stopped. 2) The higher the Q, the more the output
signal approaches a sine wave at the centre frequency. 3) Even a filter with a Q as low as 1 rings
– although this will likely not be audible due to psychoacoustic masking effects.

5.1.6 Applications

All this information is great – but why and how would you use an equalizer?
Well, there are lots of different reasons FINISH THIS OFF

5.1.7 Spectral sculpting

This is probably the most obvious use for an equalizer. You have a lead
vocal that sounds too bright so you want to cut back the high frequency
content. Or you want to get bump up the low mid range of a piano to
warm it up a bit. This is the primary intention of the tone controls on the
cheapest ghetto blaster through to the best equalizer in the recording studio.
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It’s virtually impossible to give a list of “tips and tricks” in this category,
because every instrument and every microphone in every recording situation
will be different. There are time when you’ll want to use an equalizer to
compensate for deficiences in the signal because you couldn’t afford a better
mic for that particular gig. On the other hand there may be occasions
where you have the most expensive microphone in the world on a particular
instrument and it still needs a little tweaking to fix it up. There are, however,
a couple of good rules to follow when you’re in this game.

First of all – don’t forget that you can use an equalizer to cut as easily
well as boost. Consider a situation where you have a signal that has too
much bass – there are two possible ways to correct the problem. You could
increase the mids and highs to balance, or you could turn down the bass.
There are as many situations where one of these is the correct answer as
there are situations where the other answer is more appropriate. Try both
unless you’re in a really big hurry.

Second of all – don’t touch the equalizer before you’ve heard what you’re
tweaking. I often notice when I go to a restaurant that there are a huge
number of people who put salt and pepper on their meal before they’ve
even tasted a single morsel. Doesn’t make much sense... Hand them a plate
full of salt and they’ll still shake salt on it before raising a hand to touch
their fork. The same goes for equalization. Equalize to fix a problem that
you can hear – not because you found a great EQ curve that worked great
on kick drum at the last session.

Thirdly – don’t overdo it. Or at least, overdo it to see how it sounds
when it’s overdone, then bring it back. Again, back to a restaurant analogy
– you know that you’re in a restaurant that knows how to cook steak when
there’s a disclaimer on the menu that says something to the effect of “We
are not responsible for steaks ordered well done.” Everything in moderation
– unless, of course, you’re intending to plow straight through the fields of
moderation and into the barn of excess.

Fourthly, there’s a number of general descriptions that indicate problems
that can be fixed, or at least tamed with equalization. For example, when
someone says that the sound is “muddy,” you could probably clean this up
by reducing the area around 125 – 250 Hz with a low-Q filter. The table
below gives a number of basic examples, but there are plenty more – ask
around...

One last trick here applies when you hear a resonant frequency sticking
out, and you want to get rid of it, but you just don’t know what the exact
frequency is. You know that you need to use a filter to reduce a frequency –
but finding it is going to be the problem. The trick is to search and destroy



5. Electroacoustics 296

Symptom description Possible remedy
Bright Reduce high frequency shelf

Dark, veiled, covered Increase high frequency shelf
Harsh, crunchy Reduce 3 – 5 kHz region
Muddy, thick Reduce 125 – 250 Hz region

Lacks body or warmth Increase 250 – 500 Hz
Hollow Reduce 500 Hz region

Table 5.2: Some possible spectral solutions to general comments about the sound quality

by making the problem worse. Set a filter to boost instead of cutting a
frequency band with a fairly high Q. Then, sweep the frequency of the filter
until the resonance sticks out more than it normally does. You can then fine
tune the centre frequency of the filter so that the problem is as bad as you
can make it, then turn the boost back to a cut.

5.1.8 Loudness

Although we rarely like to admit it, we humans aren’t perfect. This is true
in many respects, but for the purposes of this discussion, we’ll concentrate
specifically on our abilities to hear things. Unfortunately, our ears don’t have
the same frequency response at all listening levels. At very high listening
levels, we have a relatively flat frequency response, but as the level drops,
so does our sensitivity to high and low frequencies. As a result, if you mix a
tune at a very high listening level and then reduce the level, it will appear
to lack low end and high end. Similarly, if you mix at a low level and turn
it up, you’ll tend to get more low end and high end.

One possible use for an equalizer is to compensate for the perceived lack
of information in extreme frequency ranges at low listening levels. Essen-
tially, when you turn down the monitor levels, you can use an equalizer to
increase the levels of the low and high frequency content to compensate for
deficiencies in the human hearing mechanism. This filtering is identical to
that which is engaged when you press the “loudness” button on most home
stereo systems. Of course, the danger with such equalization is that you
don’t know what frequency ranges to alter, and how much to alter them –
so it is not recommendable to do such compensation when you’re mixing,
only when you’re at home listening to something that’s already meen mixed.
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5.1.9 Noise Reduction

It’s possible in some specific cases to use equalization to reduce noise in
recordings, but you have to be aware of the damage that you’re inflicting on
some other parts of the signal.

High-frequency Noise (Hiss)

Let’s say that you’ve got a recording of an electric bass on a really noisy
analog tape deck. Since most of the perceivable noise is going to be high-
frequency stuff and since most of the signal that you’re interested in is
going to be low-frequency stuff, all you need to do is to roll off the high
end to reduce the noise. Of course, this is be best of all possible worlds.
It’s more likely that you’re going to be coping with a signal that has some
high-frequency content (like your lead vocals, for example...) so if you start
rolling off the high end too much, you start losing a lot of brightness and
sparkle from your signal, possibly making the end result worse that you
started. If you’re using equalization to reduce noise levels, don’t forget to
occasionally hit the “bypass” switch of the equalizer once and a while to
hear the original. You may find when you refresh your memory that you’ve
gone a little too far in your attempts to make things better.

Low-frequency Noise (Rumble)

Almost every console in the world has a little button on every input strip
that has a symbol that looks like a little ramp with the slope on the left.
This is a high-pass filter that is typically a second-order filter with a cutoff
frequency around 100 Hz or so, depending on the manufacturer and the year
it was built. The reason that filter is there is to help the recording or sound
reinforcement engineer get rid of low-frequency noise like “stage rumble”
or microphone handling noise. In actual fact, this filter won’t eliminate all
of your problems, but it will certainly reduce them. Remember that most
signals don’t go below 100 Hz (this is about an octave and a half below
middle C on a piano) so you probably don’t need everything that comes
from the microphone in this frequency range – in fact, chances are, unless
you’re recording pipe organ, electric bass or space shuttle launches, you
won’t need nearly as much as you think below 100 Hz.
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Hummmmmmm...

There are many reasons, forgivable and unforgivable, why you may wind
up with an unwanted hum in your recording. Perhaps you work with a
poorly-installed system. Perhaps your recording took place under a buzzing
streetlamp. Whatever the reason, you get a single frequency (and perhaps
a number of its harmonics) singing all the way through your recording. The
nice thing about this situation is that, most of the time, the hum is at a
predictable frequency (depending on where you live, it’s likely a multiple
of either 50 Hz or 60 Hz) and that frequency never changes. Therefore, in
order to reduce, or even eliminate this hum, you need a very narrow band-
reject filter with a lot of attenuation. Just the sort of job for a notch filter.
The drawback is that you also attenuate any of the music that happens to
be at or very near the notch centre frequency, so you may have to reach a
compromise between eliminating the hum and having too detrimental of an
effect on your signal.

5.1.10 Dynamic Equalization

A dynamic equalizer is one which automatically changes its frequency re-
sponse according to characteristics of the signal passing through it. You
won’t find many single devices what fit this description, but you can cre-
ate a system that behaves differently for different input signals if you add
a compressor to the rack. This is easily accomplished today with digital
multi-band compressors which have multiple compressors fed by what could
be considered a crossover network similar to that used in loudspeakers.

Dynamic enhancement

Take your signal and, using filters, divide it into two bands with a crossover
frequency at around 5 kHz. Compress the higher band using a fast attack
and release time, and adjust the output level of the compressor so that when
the signal is at a peak level, the output of the compressor summed with the
lower frequency band results in a flat frequency response. When the signal
level drops, the low frequency band will be reduced more than the high
frequency band and a form of high-frequency enhancement will result.

Dynamic Presence

In order to add a sensation of “presence” to the signal, use the technique
described in Section 3.4.1 but compress the frequency band in the 2 kHz to
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5 kHz range instead of all high frequencies.

De-Essing

There are many instances where a close-mic technique is used to record a
narrator and the result is a signal that emphasizes the sibilant material in
the signal – in particular the “s” sound. Since the problem is due to an excess
of high frequency, one option to fix the issue could be to simply roll off high
frequency content using a low-pass filter or a high-frequency shelf. However,
this will have the effect of dulling all other material in the speech, removing
not only the “s’s” but all brightness in the signal. The goal, therefore, is
to reduce the gain of the signal when the letter “s” is spoken. This can
be accomplished using an equalizer and a compressor with a side chain. In
this case, the input signal is routed to the inputs of the equalizer and the
compressor in parallel. The equalizer is set to boost high frequencies (thus
making the “s’s” even louder...) and its output is fed to the side chain input
of the compressor. The compression parameters are then set so that the
signal is not normally compressed, however, when the “s” is spoken, the
higher output level from the equalizer in the side chain triggers compression
on the signal. The output of the compressor has therefore been “de-essed”
or reduced in sibilance.

Although it seems counterintuitive, don’t forget that, in order to reduce
the level of the high frequencies in the output of the compressor, you have
to increase the level of the high frequencies at the output of the equalizer in
this case.

Pop-reduction

A similar problem to de-essing is the “pop” that occurs when a singer’s plo-
sive sounds (p’s and b’s) cause a thump at the diaphragm of the microphone.
There is a resulting overload in the low frequency component of the signal
that can be eliminated using the same technique described in Section 3.4.3
where the low frequencies (250 Hz and below) are boosted in the equalizer
instead of the high frequency components.

5.1.11 Further reading

What is a filter? – from Julius O. Smith’s substantial website.
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5.2 Compressors, Limiters, Expanders and Gates

5.2.1 What a compressor does.

So you’re out for a drive in your car, listening to some classical music played
by an orchestra on your car’s CD player. The piece starts off very quietly,
so you turn up the volume because you really love this part of the piece and
you want to hear it over the noise of your engine. Then, as the music goes
on, it gets louder and louder because that’s what the composer wanted. The
problem is that you’ve got the stereo turned up to hear the quiet sections, so
these new loud sections are REALLY loud – so you turn down your stereo.
Then, the piece gets quiet again, so you turn up the stereo to compensate.

What you are doing is to manipulate something called the “dynamic
range” of the piece. In this case, the dynamic range is the difference in
level between the softest and the loudest parts of the piece (assuming that
you’re not mucking about with the volume knob). By fiddling with your
stereo, you’re making the soft sounds louder and the loud sounds softer, and
therefore compressing the dynamics. The music still appears to have quiet
sections and loud sections, but they’re not as different as they were without
your fiddling.

In essence, this is what a compressor does – at the most basic level, it
makes loud sounds softer and soft sounds louder so that the music going
through it has a smaller (or compressed) dynamic range. Of course, I’m
oversimplifying, but we’ll straighten that out.

Let’s look at the gain response of an ideal piece of wire. This can be
shown as a transfer function as seen in Figure 1.

Now, let’s look at the gain response for a simple device that behaves as
an oversimplified compressor. Let’s say that, for a sine wave coming in at
0 dBV (1 Vrms, remember?) the device has a gain of 1 (or output=input).
Let’s also say that, for every 2 dB increase in level at the input, the gain of
this device is reduced by 1 dB – so, if the input level goes up by 2 dB, the
output only goes up by 1 dB (because it’s been reduced by 1 dB, right?)
Also, if the level at the input goes down by 2 dB, the gain of the device
comes up by 1 dB, so a 2 dB drop in level at the input only results in a 1
dB drop in level at the output. This generally makes the soft sounds louder
than when they went in, the loud sounds softer than when they went in, and
anything at 0 dBV come out at exactly the same level as it goes in.

If we compare the change in level at the input to the change in level at
the output, we have a comparison bewteen the original dynamic range and
the new one. This comparison is expressed as a ratio of the change in input
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Figure 5.17: The gain response or transfer function of a device with a gain of 1 for all input levels.
Essentially, output = input.

Figure 5.18: The gain response (or transfer function) of a device with a different gain for different
input levels. Note that a 2 dB rise in level at the input results in a 1 dB rise in level at the output.
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level in decibels to change in output level in decibels. So, if the output goes
up 2 dB for every 1 dB increase in level at the input, then we have a 2:1
compression ratio. The higher the compression ratio, the greater the effect
on the dynamic range.

Notice in Figure 2 that there is one input level (in this case, 0 dBV)
that results in a gain of 1 – that is to say that the output is equal to the
input. That input level is known as the rotation point of the compressor.
The reason for this name isn’t immediately obvious in Figure 2, but if we
take a look at a number of different compression ratios plotted on the same
graph as in Figure 3, then the reason becomes clear.

Figure 5.19: The gain response of various compression ratios with the same rotation point (at 0
dBV). Blue = 2:1 compression ratio, red = 3:1, green = 5:1, black = 10:1.

Normally, a compressor doesn’t really behave in the way that’s seen in
any of the above diagrams. If we go back to thinking about listening to the
stereo in the car, we actually leave the volume knob alone most of the time,
and only turn it down during the really loud parts. This is the way we want
the compressor to behave. We’d like to leave the gain at one level (let’s say,
at 1) for most of the program material, but if things get really loud, we’ll
start turning down the gain to avoid letting things get out of hand. The
gain response of such a device is shown in Figure 4.

The level where we change from being a linear gain device (meaning that
the gain of the device is the same for all input levels) to being a compressor
is called the threshold . Below the threshold, the device applies the same
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Figure 5.20: A device which exhibits unity gain for input signals with a level of less than 0 dBV and
a compression of 2:1 for input signals with a level of greater than 0 dBV.

gain to all signal levels. Above the threhold, the device changes its gain
according to the input level. This sudden bend in the transfer function at
the threshold is called the knee in the response.

In the case of the plot shown in Figure 4, the rotation point of the
compressor is the same as the threshold. This is not necessarily the case,
however. If we look at Figure 5, we can see an example of a curve where
this is illustrated.

This device applies a gain of 5 dB to all signals below the threshold, so
an input level of -20 dBV results in an output of -15 dBV and an input at
-10 dBV results in an output of -5 dBV. Notice that the threshold is still
at 0 dBV (because it is the input level over which the device changes its
behaviour). However, now the rotation point is at 10 dBV.

Let’s look at an example of a compressor with a gain of 1 below threshold,
a threshold at 0 dBV and different compression ratios. The various curves
for such a device are shown in Figure 6 below. Notice that, below the
threshold, there is no difference in any of the curves. Above the threshold,
however, the various compression ratios result in very different behaviours.

There are two basic “styles” in compressor design when it comes to the
threshold. Some manufacturers like to give the user control over the thresh-
old level itself, allowing them to change the level at which the compressor



5. Electroacoustics 304

Figure 5.21: An example of a device where the threshold is not the rotation point. The threshold
is 0 dBV and the rotation point is 10 dBV.

Figure 5.22: A plot showing a number of curves representing various settings of the compression
ratio with a unity gain below threshold and a threshold of 0 dBV. red = 1.25:1, blue = 2:1, green
= 4:1, black = 10:1.
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“kicks in.” This type of compressor typically has a unity gain below thresh-
old, although this isn’t always the case. Take a look at Figure 7. This shows
a number of curves for a device with a compression ratio of 2:1, unity gain
below threshold and an adjustable threshold level.

Figure 5.23: A plot showing a number of curves representing various settings of the threshold with a
unity gain below threshold and a compression ratio of 2:1. red threshold = -10 dBV, blue threshold
= -5 dBV, green threshold = 0 dBV, black theshold = 5 dBV.

The advantage of this design is that the bulk of the signal, which is typ-
ically below the threshold, remains unchanged – by changing the threshold
level, we’re simply changing the level at which we start compressing. This
makes the device fairly intuitive to use, but not necessarily a good design
for the final sound quality.

Let’s think about the response of this device (with a 2:1 compression
ratio). If the threshold is turned up to 12 dBV, then any signal coming in
that’s less than 12 dBV will go out unchanged. If the input signal has a
level of 20 dBV, then the output will be 16 dBV, because the input went 8
dB above threshold and the compression ratio is 2:1, so the output goes up
4 dB.

If the threshold is turned down to -12 dBV, then any signal coming in
that’s less than -12 dBV will go out unchanged. If the input signal has a
level of 20 dBV, then the output will be 4 dBV, because the input went 32
dB above threshold and the compression ratio is 2:1, so the output goes up
16 dB.
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So what? Well, as you can see from Figure 7, changing the compres-
sion ratio will affect the output level of the loud stuff by an amount that’s
determined by the relationship bewteen the threshold and the compression
ratio.

Consider for a moment how a compressor will be used in a recording
situation: we use the compressor to reduce the dynamic range of the louder
parts of the signal. As a result, we can increase the overall level of the output
of the compressor before going to tape. This is because the spikes in the
signal are less scary and we can therefore get closer to the maximum input
level of the recording device. As a result, when we compress, we typically
have a tendancy to increase the input level of the device that follows the
compressor. Don’t forget, however, that the compressor itself is adding noise
to the signal, so when we boost the input of the next device in the audio
chain, we’re increasing not only the noise of the signal itself, but the noise
of the compressor as well. How can we reduce or eliminate this problem?
Use compressor design philosophy number 2...

Instead of giving the user control over the threshold, some compressor
designers opt to have a fixed threshold and a variable gain before compres-
sion. This has a slightly different effect on the signal.

Figure 5.24: A plot showing a number of curves representing various settings of the gain before
compression with a fixed threshold. The compression ratio in this example is 2:1. The threshold
is fixed at 0 dBV, however, this value does not directly correspond to the input signal level as in
Figure 7. The red curve has a gain of 10 dB, blue = 5 dB, green = 0 dB, black = -5 dB.
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Let’s look at the implications of this configuration using the response
in Figure 8 which has a fixed threshold of 0 dBV. If we look at the green
curve with a gain of 0 dB, then signals coming in are not amplified or
attenuated before hitting the threshold detector. Therefore, signals lower
than 0 dBV at the input will be unaffected by the device (because they
aren’t being compressed and the gain is 0 dB). Signals greater than 0 dBV
will be compressed at a 2:1 compression ratio.

Now, let’s look at the blue curve. The low-level signals have a constant
5 dB gain applied to them – therefore a signal coming in a -20 dBV comes
out at -15 dBV. An input level of -15 dBV results in an output of -10 dBV.
If the input level is -5 dBV, a gain of 5 dB is applied and the result of the
signal hitting the threshold detector is 0 dBV – the level of the threshold.
Signals above this -5 dBV level (at the input) will be compressed.

If we just consider things in the theoretical world, applying a 5 dB gain
before compression (with a threshold fixed at 0 dBV) results in the same
signal that we’d get if we didn’t change the gain before compression, reduced
the threshold to -5 dBV and then raised the output gain of the compressor
by 5 dB. In the practical world, however, we are reducing our noise level by
applying the gain before compression, since we aren’t amplifying the noise
of the compressor itself.

There’s at least one manufacturer that takes this idea one step further.
Let’s say that you have the output of a compressor being sent to the input
of a recording device. If the compressor has a variable threshold and you’re
looking at the record levels, then the more you turn down the threshold,
the lower the signal going into the recording device gets. This can be seen
by looking at the graph in Figure 7 comparing the output levels of an input
signal with a level of 20 dBV. Therefore, the more we turn down the thresh-
old on the compressor, the more we’re going to turn up the input level on
the recorder.

Take the same situation but use a compressor with a variable gain before
compression. In this case, the more we turn up the gain before compression,
the higher the output is going to get. Now, if we turn up the gain before
compression, we are going to turn down the input level to the recorder to
make sure that things don’t get out of hand.

What would be nice is to have a system where all this gain compensation
is done for you. So, using the example of a compressor with gain before
compression: we turn up the gain before compression by some amount, but
at the same time, the compressor turns down its output to make sure that
the compressed part of the signal doesn’t get any louder. In the case where
the compression ratio is 2:1, if we turn up the gain before compression by 10
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dB, then the output has to be turned down by 5 dB to make this happen.
The output attenuation in dB is equal to the gain before compression (in
dB) divided by the compression ratio.

What would this response look like? It’s shown in Figure 9. As you can
see, changes in the gain before compression are compensated so that the
output for a signal above the threshold is always the same, so we don’t have
to fiddle with the input level of the next device in the chain.

If we were to do the same thing using a compressor with a variable
threshold, then we’d have to boost the signal at the output, thus increasing
the apparent noise floor of the compressor and making it sound as bad as it
is...

Figure 5.25: The gain response curves for various settings on a compressor with a magic output
gain stage that compensates for changes in either the threshold or the gain before compression
stage so that you don’t have to.

As you can see from Figure 9, the advantage of this system is that
adjustments in the gain before compression (or the threshold) don’t have
any affect on how the loud stuff behaves – if you’re past the threshold, you
get the same output for the same input.

Compressor gain characterisitics

So far we’ve been looking at the relationship between the output level and
the input level of a compressor. Let’s look at this relationship in a different
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way by considering the gain of the compressor for various signals.

Figure 5.26: The transfer function of a compressor with a gain before compression of 0 dB, a
threshold at -20 dBV and a compression ratio of 8:1.

Figure 10 shows the level of the output of a compressor with a given
threshold and compression ratio. As we would expect, below the threshold,
the output is the same as the input, therefore the gain for input signals with
a level of less than -20 dBV in this case is 0 dB – unity gain. For signals above
this threshold, the higher the level gets the more the compressor reduces the
gain – in fact, in this case, for every 8 dB increase in the input level, the
output increases by only 1 dB, therefore the compressor reduces its gain by
7 dB for every 8 dB increase. If we look at this gain vs. the input level, we
have a response that is shown in Figure 11.

Notice that Figure 11 plots the gain in decibels vs. the input level in
dBV. The result of this comparison is that the gain reduction above the
threshold appears to be a linear change with an increase in level. This
response could be plotted somewhat differently as is shown in Figure 12.

You’ll now notice that there is a rather dramatic change in gain just
above the threshold for signals that increase in level just a bit. The result of
this is an audible gain change for signals that hover around the threshold –
an artifact called pumping This is an issue that we’ll deal with a little later.

Let’s now consider this same issue for a number of different compression
ratios. Figures 13, 14 and 15 show the relationships of 4 different compres-
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Figure 5.27: The gain vs. input response of a compressor with a gain before compression of 0 dB,
a threshold at -20 dBV and a compression ratio of 8:1.

Figure 5.28: The gain vs. input response of a compressor with a gain before compression of 0 dB, a
threshold at -20 dBV and a compression ratio of 8:1. Notice that the gain is not plotted in decibels
in this case. In effect, Figures 10, 11 and 12 show the same information.
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sion ratios with the same thresholds and gains before compression to give
you an idea of the change in the gain of the compressor for various ratios.

Figure 5.29: The transfer function of a compressor with a gain before compression of 0 dB, a
threshold at -20 dBV. Four different compression ratios are shown: red = 1.25:1, blue = 2:1, green
= 4:1, black = 10:1.

Soft Knee Compressors

There is a simple solution to the problem of the pumping caused by the
sudden change in gain when the signal level crosses the threshold. Since the
problem is caused by the fact that the gain change is sudden because the
knee in the response curve is a sharp corner, the solution is to soften the
sharp corner into a gradual bend. This response is called a soft knee for
obvious reasons.

Signal level detection

So far, we’ve been looking at a device that alters its gain according to the
input level, but we’ve been talking in terms of the input level being measured
in dBV – therefore, we’re thinking of the signal level in VRMS . In fact, there
are two types of level detection available – compressors can either respond
to the RMS value of the input signal, or the peak value of the input signal.
In fact, some compressors give you the option of selecting some combination
of the two instead of just selecting one or the other.
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Figure 5.30: The gain vs. input response of a compressor with a gain before compression of 0 dB,
a threshold at -20 dBV. Four different compression ratios are shown: red = 1.25:1, blue = 2:1,
green = 4:1, black = 10:1.

Figure 5.31: The gain vs. input response of a compressor with a gain before compression of 0 dB,
a threshold at -20 dBV. Four different compression ratios are shown: red = 1.25:1, blue = 2:1,
green = 4:1, black = 10:1.
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Figure 5.32: The gain vs. input level plot for a soft knee compressor with a gain before compression
of 0 dB, a threshold at -20 dBV and a compression ratio of 8:1. Compare this plot to the one in
Figure 10.

Probably the simplest signal detection method is the RMS option. As
we’ll see later, the signal that is input to the device goes to two circuits: one
is the circuit that changes the gain of the signal and sends it out the output
of the device. The second, known as the control path determines the RMS
level of the signal and outputs a control signal that changes the gain of the
first circuit. In this case, the speed at which the control circuit can respond
to changes in level depends on the time constant of the RMS detector buit
into it. For more info on time constants of RMS measurements, see Section
2.1.6. The thing to remember is that an RMS measurement is an average
of the signal over a given period of time, therefore the detection system
needs a little time to respond to the change in the signal. Also, remember
that if the time constant of the RMS detection is long, then a short, high
level transient will get through the system without it even knowing that it
happened.

If you’d like your compressor to repond a little more quickly to the
changes in signal level, you can typically choose to have it determine its
gain based on the peak level of the signal rather than the RMS value. In
reality, the compressor is not continuously looking at the instantaneous level
of the voltage at the input – it’s usually got a circuit built in that’s looks at
a smoothed version of the absolute value of the signal. Almost all compres-
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sors these days give you the option to switch between a peak and an RMS
detection circuit.

On high-end units, you can have your detection circuit respond to some
mix of the simultaneous peak and RMS values of the input level. Remember
from Chapter 2.1.6 that the ratio of the peak to the RMS is called the crest
factor . This ratio of peak/RMS can either be written as a value from 0
to something big, or it may be converted into a dB scale. Remember that,
if the crest factor is near 0 (or -infinity dB), then the RMS value is much
greater than the peak value and therefore the compressor is responding to
the RMS of the signal level. If the crest factor is a big number (or a smaller
number in dB – but much greater than -infinity), then the compressor is
responding to the peak value of the input level.

Time Response: Attack and Release

Now that we’re talking about the RMS and the smoothed peak of the signal,
we have to start considering what time it is. Up to now, we’ve been only
looking at the output level or the gain of the compressor based on a static
input level. We’re assuming that the only thing we’re sending through the
unit is a steady-state sine tone. Of course, this is pretty boring to listen to,
but if we’re going to look at real-world signals, then the behaviour of the
compressor gets pretty complicated.

Let’s start by considering a signal that’s quiet to begin with and suddenly
gets louder. For the purposes of this discussion, we’ll simulate this with a
pulse-modulated sine wave like the one shown in Figure 17.

Figure 5.33: A sine wave that is suddenly increased in level from a peak value of 0.33 to a peak
value of 1.

Unfortunately, a real-world compressor cannot respond instantaneously
to this sudden change in level. In order to be able to do this, the unit would
have to be able to see into the future to know what the new peak value of
the signal will be before we actually hit that peak. (In fact, some digital
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compressors can do this by delaying the signal and turning the present into
the past and the future into the present, but we’ll pretend that this isn’t
happening for now...).

Let’s say that we have a compressor with a gain before compression of
0 dB and a threshold that’s set to a level that’s higher than the lower-level
signal in Figure 17, but lower than the higher-level signal. So, the first part
of the signal, the quiet part, won’t be compressed and the later, louder part
will. Therefore the compressor will have to have a gain of 1 (or 0 dB) for
the quiet signal and then a reduced gain for the louder signal.

Since the compressor can’t see into the future, it will respond somewhat
slowly to the sudden change in level. In fact, most compressors allow you
to control the speed with which the gain change happens. This is called the
attack time of the compressor. Looking at Figure 18, we can see that the
compressor has a sudden awareness of the new level (at Time = 500) but
it then settles gradually to the new gain for the higher signal level. This
raises a question – the gain starts changing at a known time, but, as you can
see in Figure 18, it approaches the final gain forever without really reaching
it. The question that’s raised is “what is the time of the attack time?” In
other words, if I say that the compressor has an attack time of 200 ms, then
what is the relationship between that amount of time and the gain applied
by the compressor. The answer to this question is found in the chapter on
capacitors. Remember that, in a simple RC circuit, the capacitor charges to
a new voltage level at a rate determined by the time constant which is the
product of the resistance and the capacitance. After 1 time constant, the
capacitor has charged to 63 % of the voltage being applied to the circuit.
After 5 time constants, the capacitor has charged to over 99 % of the voltage,
and we consider it to have reached its destination. The same numbers apply
to compressors. In the case of an attack time of 200 ms, then after 200 ms
has passed, the gain of the compressor will be at 63 % of the final gain level.
After 5 times the attack time (in this case, 1 second) we can consider the
device to have reached its final gain level. (In fact, it never reaches it, it
just gets closer and closer and closer forever...)

What is the result of the attack time on the output of the compressor?
This actually is pretty interesting. Take a look at Figure 19 showing the
output of a compressor that has the signal in Figure 17 sent into it and
responding with the gain in Figure 18. Notice that the lower-level signal
goes out exactly as it went it. We would expect this because the gain of
the compressor for that portion of the signal is 1. Then the signal suddenly
increases to a new level. Since the compressor detection circuit take a little
while to figure out that the signal has gotten louder, the initial new loud
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Figure 5.34: The change in gain over time for a sudden increase in signal level going from a signal
that’s lower than the threshold to one that’s higher. This is called the attack time of the compressor.
(Notice that this looks just like the response of a capacitor being charged to a new voltage level.
This is not a coincidence.)

signal gets through, almost unchanged. As we get further and further into
the new level in time, however, the gain settles to the new value and the
signal is compressed as we would expect. The interesting thing to note here
is that a portion of the high-level signal gets through the compressor. The
result is that we’ve created a signal that sounds like more of a transient than
the input. This is somewhat contrary to the way most people tend to think
that a compressor behaves. The common belief is that a compressor will
control all of your high-level signals, thus reducing your dynamic range –
but this is not exactly the case as we can see in this example. In fact, it may
be possible that the perceived dynamic range is greater than the original
because of the accents on the transient material in the signal.

Figure 5.35: The output of a compressor which is fed the signal shown in Figure 17 and responds
with the gain shown in Figure 18.

Similarly, what happens when the signals decreases in level from one that
is being compressed to one that is lower than the threshold? Again, it takes
some time for the compressor’s detection circuit to realize that the level has
changed and therefore responds slowly to fast changes. This response time
is called the release time of the compressor. (Note that the release time is
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measured in the same way as the attack time – it’s the amount of time it
takes the compressor to get to 63% of its intended gain.)

For example, we’ll assume that the signal in Figure 20 is being fed into
a compressor. We’ll also assume that the higher-level signal is above the
compression threshold and the lower-level signal is lower than the threshold.

Figure 5.36: A sine wave that is suddenly decreased in level from a peak value of 1 to a peak value
of 0.33.

This signal will result in a gain reduction for the first part of the signal
and no gain reduction for the latter part, however, the release time of the
compressor results in a transition time from these two states as is shown in
Figure 21.

Figure 5.37: The change in gain over time for a sudden decrease in signal level going from a
signal that’s higher than the threshold to one that’s lower. This is called the release time of the
compressor. (Notice that this looks just like the response of a capacitor being charged to a new
voltage level. This is not a coincidence.)

Again, the result of this gain response curve is somewhat interesting.
The output of the compressor will start with a gain-reduced version of the
louder signal. When the signal drops to the lower level, however, the com-
pressor is still reducing the gain for a while, therefore we wind up with
a compressed signal that’s below the threshold – a signal that normally
wouldn’t be compressed. As the compressor figures out that the signal has
dropped, it releases its gain to return to a unity gain, resulting in an output
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signal shown in Figure 22.

Figure 5.38: The output of a compressor which is fed the signal shown in Figure 20 and responds
with the gain shown in Figure 21.

Just for comparison purposes, Figures 23 and 24 show a number of dif-
ferent attack and release times.

Figure 5.39: Four different attack times for compressors with the same thresholds and compression
ratios.

One last thing to discuss is a small issue in low-cost RMS-based compres-
sors. In these machines, the attack and release times of the compressor are
determined by the time constant of the RMS detection circuit. Therefore,
the attack and release times are identical (normally, we call them “symmet-
rical”) and not adjustable. Check your manual to see if, by going into RMS
mode, you’re defeating the attack time and release time controls.

5.2.2 How compressors compress

On its simplest level, a compressor can be thought of as a device which
controls its gain based on the incoming signal. In order to do this, it takes
the incoming audio and sends it in two directions, along the audio path,
which is where the signal goes in, gets modified and comes out the output;
and the control path, (also known as a side chain) where the signal comes in,
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Figure 5.40: Four different release times for compressors with the same thresholds and compression
ratios.

gets analysed and converted into a different signal which is used to control
the gain of the audio path.

As a result, we can think of a basic compressor as is shown in the block
diagram below.

Figure 5.41: INSERT CAPTION

Notice that the input gets split in two directions right away, going to the
two different paths.

At the heart of the audio path is a device we have’t seen before – it’s
drawn in block diagrams (and sometimes in schematics) as a triangle (so
we know right away it’s an amplifier of some kind) attached to a box with
an “X” through it on the left. This device is called a voltage controlled
amplifier or VCA. It has one audio input on the left, one audio output on
the right and a control voltage (or CV ) input on the top. The amplifier has
a gain which is determined by the level of the control voltage. This gain is
typically applied to the current through the VCA, not the voltage – this is
a new concept as well... but we’ll get to that later.

If you go to the VCA store and buy a VCA, you’ll find out that it has
an interesting characteristic. Usually, it will have a logarithmic change in
gain for a linear change in voltage at the control voltage input. For example,
one particular VCA from THAT corporation has a gain of 0 dB (so input =
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output) if the CV is at 0 V. If you increase the CV by 6 mV, then the gain
of the VCA goes down by 1 dB.

So, for that particular VCA, we could make the following table which
we’ll use later on.

Control Voltage (mV) Gain of Audio signal (dB)
-12 +2
-6 +1
0 0
+6 -1
+12 -2

Table 5.3: INSERT CAPTION HERE

The only problem with the schematic so far is that the VCA is a current
amplifier not a voltage amplifer. Since we prefer to think in terms of voltage
most of the time, we’ll need to convert the voltage signal that we’re feeding
into the compressor into a current signal of the same shape. This is done
by sticking the VCA in the middle of an inverting amplifier circuit as shown
below:

Figure 5.42: INSERT CAPTION

Here’s an explanation of why we have to build the circuit like this. Re-
member back to the first stuff on op amps – one of the results of the feedback
loop is that the voltage level at the negative input leg MUST be the same
as the positive input leg. If this wasn’t the case, then the huge gain of the
op amp would result in a clipped output. So, we call the voltage level at
the negative input “virtual ground” because it has the same voltage level as
ground, but there’s really no direct connection to ground. If we assume that
the VCA has an impedance through it of 0Ω (a pretty safe assumption), then
the voltage level at the signal input of the VCA is also the same as ground.
Therefore the current through the resistor on the left in the above schematic
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is equal to the Audio in voltage divided by the resistor value. Now, if we
assume that the VCA has a gain of 0 dB, then the current coming out of
it equals the current going into it. We also happen to remember that the
input impedance of the op amp is infinite, therefore all the current on the
wire coming out of the VCA must go through the resistor in the feedback
loop of the op amp. This results in a voltage drop across it equal to the
current multiplied by the resistance.

Let’s use an example. If the Audio in is 1 Vrms, then the current through
the input resistor on the left is 0.1 mArms. That current goes through the
VCA (which we’ll assume for now has a gain of 0 dB) and continues on
through the feedback resistor. Since the current is 0.1 mArms and the
resistor is 10 kΩ, then the voltage drop across it is 1 Vrms. Therefore, the
Audio out is 1 Vrms but opposite in polarity to the input. This is exactly
the same as if the VCA was not there.

Now take a case where the VCA has a gain of +6 dB for some reason.
The voltage level at its input is 0 V (virtual ground) so the current through
the input resistor is still 0.1 mA rms (for a 1 V rms input signal). That
current gets multiplied by 2 in the VCA (because it has a gain of +6 dB)
making it 0.2 mA rms. This all goes through the feedback resistor which
results in a voltage drop of 10k * 0.2 mArms = 2 V rms (and opposite in
polarity). Ah hah! The gain applied to the current by the VCA now shows
up as a gain on the voltage at the output. Now all we need to do is to build
the control circuitry and we have a compressor...

The control circuitry needs a number of things: a level detector, com-
pression ratio adjustment, threshold, threshold level adjustment and some
other stuff that we’ll get to. We’ll take them one at a time. For now, let’s
assume that we have a compressor which is only looking at the RMS level
to determine its compression characteristics.

RMS Detector

This is an easy one. You buy a chip called an RMS detector. There’s more
stuff to do once you buy that chip to make it happy, but you can just follow
the manufacturer’s specifications on that one. This chip will give you a DC
voltage output which is determined by the logarithmic level of an AC input.
For example, using a THAT Corp. chip again... The audio input of the chip
is measured relative to 0.316 V rms (which happens to be -10 dBV). If the
RMS level of the audio input of the chip is 0.316 V rms, then the output of
the chip is 0 V DC. If you increase the level of the input signal by 1 dB, the
output level goes up by 6 mV. Conversely, if the input level goes down by 1
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dB, then the output goes down by 6 mV. An important thing to notice here
is that a logarithmic change in the input level results in a linear change in
the output voltage. So, we build a table for future reference again:

Input level (dBV) Output Voltage (mV)
-8 +12
-9 +6
-10 0
-11 -6
-12 -12

Table 5.4: INSERT CAPTION HERE

Now, what would happen if we took the output from this RMS detector
and connected it directly to the control voltage input of the VCA like in the
diagram below?

Figure 5.43: INSERT CAPTION

Well, if the input level to the whole circuit was -10 dBV, then the RMS
detector would output a 0 V control voltage to the CV input of the VCA.
This would cause it to have a gain of 0 dB and its output would be -10 dBV.
BUT, if the input was -11 dBV, then the RMS detector output would be
-6 mV making the VCA gain go up by 1 dB, raising the output level to -10
dBV. Hmmmmm... If the input level was -9 dBV, then the RMS detector’s
output goes to 6 mV and the VCA gain goes to -1 dB, so the output is
-10 dBV. Essentially, no matter what the input level was, the output level
would always be the same. That’s a compression ratio of infinity : 1.

Although the circuit above would indeed compress with a ratio of infinity
: 1, that’s not terribly useful to us for a number of reasons. Let’s talk about
how to reduce the compression ratio. Take a look at this circuit.

If the potentiometer has a linear scale, and the wiper is half-way up the
pot, then the voltage at the wiper is one half the voltage applied to the top



5. Electroacoustics 323

Figure 5.44: INSERT CAPTION

of the pot. This means, in turn, that the voltage applied to the CV input
of the VCA is one half the voltage output from the RMS detector. How
does this affect us? Well, if the input level of the circuit is -10 dBV, then
the RMS detector outputs 0 V, the wiper on the pot is at 0 V and the gain
of the VCA is 0 dB, therefore the output level is -10 dBV. If, however, the
input level goes up by 1 dB (to -9 dBV), then the RMS detector output goes
up by 6 mV, the wiper on the pot goes up by 3 mV, therefore the gain of
the VCA goes down by 0.5 dB and the output level is -9.5 dB. So, for a 2
dB change in level at the input, we get a 1 dB change in level at the output
– in other words, a 2:1 compression ratio.

If we put the pot at another location, we change the ratio of the voltage
at the top of the pot (which is dependent on the input level to the RMS
detector) to the gain (which is controlled by the wiper voltage). So, we
have a variable compression ratio from 1:1 (no compression) to infinity:1
(complete limiting) and a rotation point at -10 dBV. This is moderately
useful, but real compressors have a threshold. So – how do we make this
happen?

Threshold

The first thing we’ll need to make a threshold detection circuit is a way
of looking at the signal and dividing it into a low voltage area (in which
nothing gets out of the circuit) and a high area (in which the output = the
input to the circuit). We already looked at how to do this in a rather crude
fashion – it’s called a half-wave rectifier. Since the voltage of the wiper on
the pot is going positive and negative as the input signal goes up and down
respectively, all we need to do is rectify the signal after the wiper so that
none of the negative voltage gets through to the CV input of the VCA. That
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way, when the signal is low, the gain of the VCA will be 0 dB, leaving the
signal unaffected. When the signal goes positive, the rectifer lets the signal
through, the gain of the VCA goes down and the compressor compresses.

One way to do this would simply be to put a diode in the circuit pointing
away from the wiper. This wouldn’t work very well because the diode would
need the 0.7 V difference across it to turn on in the first place. Also, the
turn-on voltage of the diode is a little sloppy, so we wouldn’t know exactly
what the threshold was (but we’ll come back to this later). what we need
then, is something called a precision rectifier – a circuit that looks like a
perfect diode. This is pretty easy to build with a couple of diodes and an
op amp as is shown in the circuit below.

Figure 5.45: INSERT CAPTION

Notice that the circuit has two effects – the first is that it is a half-wave
rectifier, so only the positive half of the input gets through. The second is
that it is an inverting amplifier, so the output is opposite in polarity to the
input – therefore, in order to get things back in the right polarity, we’ll have
to flip the polarity once again with a second inverting amplifier with unity
gain.

If we add this circuit between the wiper and the VCA CV input like the
diagram shown below, what will happen?

Now, if the input level is -10 dBV or lower, the output of the RMS
detector is 0 V or lower. This will result in the output of the half-wave
rectifier being 0 V. This will be multiplied by -1 in the polarity inversion,
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Figure 5.46: INSERT CAPTION

resulting in a level of 0 V at the CV input of the VCA. This means that if
the input signal is -10 dBV or lower, there is no gain change. If, however,
the input level goes above -10 dBV, then the output of the RMS detector
goes up. This gets through the rectifier and comes out multipled by -1, so
for every increase in 1 dB above -10 dBV at the input, the output of the
rectifier goes DOWN by an amount determined by the position of the wiper.
This is multiplied by -1 again at the polarity inversion and sent to the CV
input of the VCA causing a gain change. So, we have a threshold at -10
dBV at the input. But, what if we wanted to change the threshold level?

In order to change the threshold level, we have to trick the trheshold de-
tection circuit into thinking that the signal has reached the threshold before
it really has. Remember that the output of the RMS detection circuit (and
therefore the wiper on the pot) is DC (well, technically speaking, it varies
if the input signal’s RMS level varies, but we’ll say it’s DC for now). So, we
need to mix some DC with this level to give the input to the rectification
circuit an additional boost. For example, up until now, the threshold is
-10 dBV at the input because that’s where the output of the RMS detector
crosses from negative to positive voltage. If we wanted to make the thresh-
old -20 dBV, then we’d need to find out the output of the RMS detector if
the signal was -20 dBV (that would be -60 mV because it’s 6 mV per dB
and 10 dB below -10 dBV) and add that much DC voltage to the signal
before sending it into the rectification stage. There are a couple of ways to
do this, but one efficient way is to combine an inverting mixer circuit with
the half-wave rectifier that’s already there.

The threshold level adjustment is just a controllable DC level which is
mixed with the DC level coming out of the RMS detector. One important
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Figure 5.47: INSERT CAPTION

thing to note is that when you turn UP this level to the top of the pot,
you are acutally getting a lower voltage (notice that the top of the pot is
connected to a negative voltage supply). Why is this? Well, if the output
of the threshold level adjustment wiper is 0 V, this gets added to the RMS
detector output and the threshold stays at -10 dBV. If the output of the
threshold level adjustment wiper goes positive, then the output of the RMS
detector is increased and the rectifier opens up at a lower level, so by turning
UP the voltage level of the threshold adjustment pot, you turn DOWN the
threshold. Of course, the size of the change we’re talking about on the
threshold level adjustement is on the order of mV to match the level coming
out of the RMS detector, so you might want to be sure to make the maximum
and minimum values possible from the pot pretty small. See the THAT Corp
.pdf file linked at the bottom of the page for more details on how to do this.

So, now we have a compressor with a controllable compression ratio and
a threshold with a controllable level. All we need to do is to add an output
gain knob. This is pretty easy since all we’re going to do is add a static gain
value for the VCA. This can be done in a number of ways, but we’ll just add
another DC voltage to the control voltage after the threshold. That way, no
matter what comes out of the threshold, we can alter the level.

The diagram above shows the whole circuit. Note that the output gain
control has the + DC voltage at the top of the pot. This is because it will
become negative after going through the polarity inversion stage, making
the VCA go up in gain. Since this DC voltage level is added to the control
voltage signal after the threshold detection circuit, it’s always on – therefore
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Figure 5.48: INSERT CAPTION

it’s basically the same as an output level knob. In fact, it IS an output level
knob.

Everything I’ve said here is basically a lead-up to the pdf file below
from THAT Corp. It’s a good introduction to how a simple RMS-based
compressor works. It includes all the response graphs that I left out here,
and goes a little further to explain how to include a soft knee for your circuit.
Definitely recommended reading if you’re planning on learning more about
these things...

5.2.3 Suggested Reading List

Basic Compressor/Limiter Design – from THAT Corporation www.thatcorp.com/datashts/an100a.pdf
Users Manual for the GML 8900 Dynamic Range Controller www.gmlinc.com/8900.pdf
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5.3 Analog Tape

NOT YET WRITTEN

5.3.1 Suggested Reading List
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5.4 Noise Sources

5.4.1 Introduction

Noise can very basically be defined as anything in the audio that we don’t
want.

There are two basic sources of noise in an audio chain, internal noise and
noise from external sources.

Internal noise is inherent in the equipment, we can either mask it with
better gain structures (i.e. more gain earlier in the chain rather than later...
You want to be almost clipping the output of your mic preamplifier and
attenuating as you go through the remainder of your gear. This way, you’re
not boosting the noise of all previous equipment, except of course for the
self-noise of the microphones) or just buy better equipment...

Noise from external sources is caused by Electromagnetic Interference,
also known as EMI, requires 3 simulaneous things...

1. Source of electromagnetic noise
2. Transmission medium in which the noise can propagate (usually a

piece of wire, for example)
3. A receiver sensitive to the noise

5.4.2 EMI Transmission

EMI has four possible means of transmission: common impedance coupling,
electrical field coupling, magnetic field coupling and electromagnetic radia-
tion.

Common Impedance Coupling

This occurs when there is a shared wire between the source and the receiver.
Let’s say, for example, that two units, a microphone preamplifier and

a food processor, are both connected to the same power bar. This means
that, from the power bar to the earth, the two devices are making use of the
same wires for their references to ground. This means that, in the case of
this shared ground wire, they are coupled by a common impedance to the
earth (the impedance of the ground wire from the power bar to the earth).
If one of the two devices (the food processor maybe...) is a source of noise
in the form of alternating current, and therefore voltage (because the wire
has some impedance and V=IR) at the ground connection in the powerbar,
then the “ground” voltage at the microphone preamp will modulate. If this
is supposed to be a DC 0 V forever relative to the rest of the studio, and it
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isn’t, then the mic pre will output the audio signal plus the noise coupled
from the common impedance.

Electrical field coupling

This is determined by the capacitance between the source and the receiver
or their transmission media.

Once upon a time, we looked at the construction of a capacitor as being
two metal plates side by side but not touching each other. If we push
electrons into one of the plates, we’ll repel electrons out of the other plate
and we appear to have “current” flowing through the capacitor. The higher
the rate of change of the current flowing in and out of the plate, the easier
it is to move current in and out of the other plate.

Consider that if we take any two pieces of metal and place them side by
side without touching, we’re going to create a capacitor. This is true of two
wires side by side inside a mic cable, or two wires resting next to each other
on the floor or so on. If we send a high frequency through one of the wires,
and we have some small capacitance between that wire and the “receiver”
wire, we’ll get some signal appearing on the latter.

The level of this noise is proportional to:
1. The area that the source and receiver share (how big the plates are,

or in this case, how long the wires are side by side)
2. The frequency of the noise
3. The amplitude of the noise voltage (note that this is “voltage”)
4. The permittivity of the medium (dielectric) between the two
The level of the noise is inversely proportional to
1. the square of the distance between the sender and the receiver (or in

some cases their connected wires)

Magnetic field coupling

This is determined by the mutual inductance between the source and re-
ceiver.

Remember back to the chapter where we talked about the right hand rule
and how, when we send AC through a wire, we generate a pulsing magnetic
field around it whose direction is dependent on the direction of the current
and whose amplitude (or distance from the wire) is proportional to the level
of the current. If we place another wire in this moving magnetic field, we
will induce a current in the second wire – which is how a transformer works.
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Although this concept is great for transformers, it’s a problem when we
have microphone cables sitting next to high-current AC cables. If there’s
lots of current through the AC cable at 60 Hz, and we place the mic cable
in the resulting generated magnetic field, then we will induce a current in
the mic cable which is then amplified by the mic preamplifier to an audible
level. This is bad, but there are a number of ways to avoid it as we’ll see.

The level of this noise is proportional to:
1. The loop area of the receiver (therefore it’s best not to create a loop

with your mic cables)
2. The frequency of source
3. The current of source
4. The permeability of the medium between them
The level of this noise is inversely proportional to:
1. the square of the distance between them (so you should keep mic

cables away from AC cables! – and if they have to cross, cross them at a
right angle to each other to minimize the effects)

Electromagnetic radiation

This occurs when the source and receiver are at least 1/6th of a wavelength
apart (therefore the receiver is in the far field – where the wavefront is a
plane and the ratio of the electrostatic to the electromagnetic field strengths
is constant)

An example of noise caused by electromagnetic radiation is RFI (Radio
Frequency Interference) caused by radio transmitters, CB etc.

5.4.3 Suggested Reading List

www.engineeringharmonics.com
Grounding and Shielding for Sound and Video Philip Giddings
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5.5 Reducing Noise – Shielding, Balancing and
Grounding

How do we get rid of the noise caused by the four sources described in
Chapter 5.4? There are three ways: shielding, balancing and grounding

5.5.1 Shielding

This is the first line of defense against outside noise caused by high-frequency
electrical field and magnetic field coupling as well as electromagnetic radia-
tion. The theory is that the shielding wire, foil or conduit will prevent the
bulk of the noise coming in from the outside.

It works by relying on two properties
1. Reflection back to the outside world where it can’t do any harm...

(and, to a small extent, re-reflection within the shield, but this is a VERY
small extent)

2. Absorption – where the energy is absorbed by the shield and sent to
ground.

The effectiveness of the shield is dependent on its:
1. Thickness – the thinner the shield the less effective. This is par-

ticularly true of low-frequency noise... Aluminum foil shield works well at
rejecting up to 90 dB at frequencies above 30 MHz, but it’s inadequate at
fending off low-frequency magnetic fields (in fact it’s practically transparent
below 1 kHz), We rely on balancing and differential amplifiers to get rid of
these.

2. Conductivity – the shield must be able to sink all stray currents to
the ground plane more easily than anything else.

3. Continuity – we cannot break the shield. It must be continuous
around the signal paths, otherwise the noise will leak in like water into a
hole in a boat. Don’t forget that the holes in your equipment for cooling,
potentiometers and so on are breaks in the continuity. General guideline:
keep the diameter of your holes at less than 1/20 of the wavelength of the
highest frequency you’re worried about to ensure at least 20 dB of attenu-
ation. Most high-frequency noise problems are caused by openings in the
shield material.

5.5.2 Balanced transmission lines

It is commonly believed even at the highest levels of the audio world that a
balanced signal and a differential or symmetrical signal are the same thing.
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This is not the case. A differential (or symmetrical) signal is one where
one channel of audio is sent as two voltages on two wires, which are usually
twisted together. These two signals are identical in ever respect with the
exception that they are opposite in polarity. These signals are known by
such names as “inverting and non-inverting” or “Live and Return” – the
“L” and “R” in XLR (the X is for eXternal – the ground). They are re-
ceived by a differential amplifier which subtracts the return from the live
and produces a single signal with a gain of 6 dB (since a signal minus its
negative self is the same as 2 times the signal and therefore 6 dB louder).
The theoretical benefit of using this system is that any noise that is received
on the transmission cables between the source and the receiver is (theoreti-
cally) identical on both wires. When these two versions of the noise arrive
at the receiver’s differential amplifier, they are theoretically eliminated since
we are subtracting the signal from a copy of itself. This is what is known
as the Common Mode Rejection done by the differential input. The ability
of the amplifier to reject the common signals (or mode) is measured as a
ratio between the output and one input leg of the differential amplifier and
is therefore called the Common Mode Rejection Ratio (CMRR).

Having said all that, I want to come back to the fact that I used the
word “theoretical” a little too often in the last paragraph. The amount and
quality of the noise on those two transmission lines (the live and the return)
in the so-called “balanced” wire is dependent on a number of things.

1. The proximity to the noise source. This is what is causing the noise to
wind up on the two wires in the first place. If the source of the noise is quite
near to the receiving wire (for example, in the case of a high-voltage/current
AC cable sitting next to a microphone cable) then the closer wire within our
“balanced” pair will receive a higher level of noise than the more distant wire.
Remember that this is inversely proportional to the square of the distance,
so it can cause a major problem if the AC and mic cables are sitting side
by side. The simplest way to avoid this difference in the noise on the two
wires is to wrap them together. This ensures that, over the length of the
cable, the two internal wires average out to being equally close to the AC
cable and therefore we pick up the same amount of noise – therefore the
differential amplifier will cancel it.

2. The termination impedance of the two wires. In fact, technically
speaking, a balanced transmission line is one where the impedance between
each of the two wires and ground is identical for each end of the transmis-
sion. Therefore the impedance between live and ground is identical to the
impedance between return and ground at the output of the sending device
and at the input of the receiving device. This is not to say that the in-
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put and output impedances are matched. They are not. If the termination
impedances are mismatched, then the noise on each of the wires will be
different and the differential amplifier will not be subtracting a signal from
a copy of itself – therefore the noise will get through. Some manufacturers
are aware of this and save themselves some money while still providing you
with a balanced output. Mackie consoles, for example, drive the signal on
the tip of their 1/4” balanced outputs, but only put a resistor between the
ring and ground (the sleeve) on the same output connector. This is still a
balanced output despite the fact that there is no signal on the ring because
the impedance between the tip and ground matches the impedance between
the ring and ground (they’re careful about what resistor they put in there...)

5.5.3 Grounding

The grounding of audio equipment is there for one primary purpose: to keep
you alive. If something goes horribly wrong inside one of those devices and
winds up connecting the 120 V AC from the wall to the box (chassis) itself,
and you come along and touch the front panel while standing in a pool of
water, YOU are the path to ground. This is bad. So, the manufacturers
put a third pin on their AC cables which is connected to the chassis on the
equipment end, and the third pin in the wall socket.

Let’s look at how the wiring inside a wall socket is connected to begin
with. Take a look at Figures 5.49 to 5.53.

Figure 5.49: A typical North American electrical outlet showing the locations of the two spade
connections and the third, round ground pin. Note that the orange cable contains three independent
conductors, each with a different coloured insulator.

The third pin in the wall socket is called the ground bus and is connected
to the electrical breaker box somewhere in the facility. All of the ground
busses connect to a primary ground point somewhere in the building. This
is the point at which the building makes contact with the earth through a
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Figure 5.50: The same outlet as is shown in Figure 5.49 with the safety faceplate removed.

Figure 5.51: PUT CAPTION HERE
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Figure 5.52: The beginnings of the inside of the outlet showing the connection of the white and
green wires to the socket. The white wire is at 0 V and is connected in parallel through the brass
plate on the side of the socket to the two larger spades. The green wire is also at 0 V and is
connected in parallel to the round safety ground pin as well as the box that houses the socket. The
third lack wire which is at 120 VRMS is connected to the socket on the opposite side and cannot
be seen in this photograph.
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Figure 5.53: The socket completely removed from the housing.
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spike or piling called the grounding electrode. The wires which connect these
grounds together MUST be heavy-gauge (and therefore very low impedance)
in order to ensure that they have a MUCH lower impedance than you when
you and it are a parallel connection to ground. The lower this impedance,
the less current will flow through you if something goes wrong.

MUCH MORE TO COME!

5.5.4 Suggested Reading List

Grounding and Shielding for Sound and Video by Philip Giddings www.engineeringharmonics.com
Hum and Buzz in Unbalanced Interconnect Systems by Bill Whitlock

www.jensen-transformers.com/an/an004.pdf
Sound System Interconnection www.rane.com/note110.html
Grounding www.trinitysoundcompany.com/grounding.html
Ground loop problems and how to get rid of them www.hut.fi/Misc/Electronics/docs/groundloop
Considerations in Grounding and Shielding Audio Devices www.rane.com/pdf/groundin.pdf
A Clean Audio Installation Guide – from Benchmark Media www.benchmarkmedia.com/appnotes-

a/caig
Fundamentals of Studio Grounding, Richard Majestic: Broadcast Engi-

neering, April 1992
The Proper Use of Grounding and Shielding, Philip Giddings: Sound

and Video Contractor, September 20, 1995
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5.6 Microphones – Transducer type

5.6.1 Introduction

A microphone is one of a small number of devices used in audio that can
be called a transducer. Generally speaking, a transducer is any device that
converts one kind of energy into another (for example, electrical energy
into mechanical energy). In the case of microphones, we are converting
mechanical energy (the movement of the air particles due to sound waves)
into electrical energy (the output of the microphone). In order to choose
and use your microphones effectively for various purposes, you should know
a little about how this magical transformation occurs.

5.6.2 Dynamic Microphones

Back in the chapter on induction and transformers, we talked about an
interesting relationship between magnetism and current. If you have a mag-
netic field, which is comprised of what we call magnetic lines of force all
“pointing” in the same direction, and you move a piece of wire through it
so that the wire cuts the lines of force perpendicularly, then you’ll generate
a current in the wire. (If this is coming as a surprise, then you should read
Chapters 2.6 and 2.7.)

Dynamic microphones rely on this principal. Somewhere inside the mi-
crophone, there’s a piece of metal or wire that’s sitting in a strong magnetic
field. When a sound wave hits the microphone, it pushes and pulls on a
membrane called a diaphragm that will, in turn, move back and forth pro-
portionally to some component of the particle movement (either the pressure
or the velocity – but we’ll talk more about that later). The movement of
the diaphragm causes the piece of metal to move in the magnetic field, thus
producing current that is representational of the movement itself. The result
is an electrical representation of the sound wave where the electrical energy
is actually converted from mechanical energy of the air molecules.

One important thing to note here is the fact that the current that is
generated by the metal moving in the magnetic field is proportional to the
velocity at which it’s moving. The faster it moves, the bigger the current.
As a result, you’ll often hear dynamic microphones referred to as velocity
microphones. The problem with this name is that some people like using
the term “velocity microphone” to mean something completely unrelated –
and as a result, people get very confused when you go from book to book
and see the term in multiple places with multiple meanings. For a further
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discussion on this topic, see the section on Pressure Gradient microphones
in Section .

Ribbon Dynamic Microphones

The simplest design of dynamic transducer we can make is where the di-
aphragm is the piece of metal that’s moving in the magnetic field. Take a
strip of aluminium a couple of µm (micrometers) thick, 2 to 4 mm wide and
a couple of centimeters long and bend it so that it’s corrugated (see Figure
5.54) to make it a little stiff across the width. This will be the diaphragm of
the microphone. It’s nice and light, so it moves very easily when the sound
wave hits it. Now we’ll support the microphone from the top and bottom
and hang it in between the North and South poles of a strong magnet as
shown in Figure 5.54.

Referring to the construction in Figure 5.54: if a sound wave with a
positive pressure hits the front of the diaphragm, it moves backwards and
generates a current that goes up the length of the aluminium (you can double
check this using the right hand rule described in Chapter 2.6). Therefore, if
we connect wires that run from the top and bottom of the diaphragm out
to a preamplifier, we’ll get a signal.

N S

Figure 5.54: The construction of a simple ribbon microphone. The diaphragm is the corrugated
(folded) foil placed between the two poles of the magnet.

There are a couple of small problems with this design. Firstly, the current
that’s generated by one little strip of aluminium that’s getting pushed back
and forth by a sound wave will be very small. So small that a typical
microphone preamplifier won’t have enough gain to bring the signal up to a
useable level. Secondly, consider that the impedance of a strip of aluminium
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a couple of centimeters long will be very small, which is fine, except that the
input of the microphone preamp is expecting to “see” an impedance which
is at least around 200Ω or so. Luckily, we can fix both of these problems in
one step by adding a transformer to the microphone.

The output wires from the diaphragm are connected to the primary coil
of a transformer that steps up the voltage to the secondary coil. The result
of this is that the output of the microphone is increased proportionally to the
turns ratio of the transformer, and the apparent impedance of the diaphragm
is increased proportionally to the square of the turns ratio. (See Section 2.7
of the electronics section if this doesn’t make sense.) So, by adding a small
transformer inside the body of the microphone, we kill both birds with one
stone. In fact, there is a third dead bird lying around here as well – we can
also use the transformer to balance the output signal by including a centre
tap on the secondary coil and making it the ground connection for the mic’s
output. (See Chapter 5.5 for a discussion on balancing if you’re not sure
about this.)

That’s pretty much it for the basic design of a ribbon condenser micro-
phone – different manufacturers will use different designs for their magnet
and ribbon assembly. There is an advantage and a couple of disadvantages in
this design that we should discuss at this point. Firstly, the advantage: since
the diaphragm in a ribbon microphone is a very small piece of aluminium,
it is very light, and therefore very easy to move quickly. As a result, rib-
bon microphones have a good high-frequency response characteristic (and
therefore a good transient response). On the contrary, there are a number of
disadvantages to using ribbon microphones. Firstly, you have to remember
that the diaphragm is a very thin and relatively fragile strip of aluminium.
you cannot throw a ribbon microphnone around in a road case and expect
it to work the next day – they’re just too easily broken. Since the output
of the diaphragm is proportional to the its velocity, and since that velocity
is proportional to frequency, the ribbon has a very poor low-frequency re-
sponse. There’s also the issue of noise: since the ribbon itself doesn’t have
a large output, it must be boosted in level a great deal, therefore increasing
the noise floor as well. The cost of ribbon microphones is moderately high
(although not insane) because of the rather delicate construction. Finally,
as we’ll see a little later, ribbon microphones are particularly suceptible to
low-frequency noises caused by handling and breath noise.
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Moving Coil Dynamic Microphones

In the chapter on induction, we talked about ways to increase the efficiency
of the transfer of mechanical energy into electrical energy. The easiest way
to do this is to take your wire that’s moving in the magnetic field and turn it
into a coil. The result of this is that the individual turns in the coil reinforce
each other producing more current.

This same principal can be applied to a dynamic microphone. If we
replace the single ribbon with a coil of copper wire sitting in the gap of
a carefully constructed magnet, we’ll generate a lot more current with the
same amount of movement. Take a look at Figures 5.55 and 5.55.

Figure 5.55: An exploded view of a coil of wire with a diameter carefully chosen to fit in the circular
gap of a permanent magnet.

Now, when the coil is moved in and out of the magnet, a current is
generated that is proportional to the velocity of the movement. How do we
create this movement? We glue the front of the coil on to a diaphragm made
of plastic as is shown in the cross section in Figure 5.57.

Pressure changes caused by sound waves hitting the front of the di-
aphragm push and pull it, moving the coil in and out of the gap. This
causes the wire in coil to cut perpendicularly through the magnetic lines
of force, thus generating a current that is substantially greater than that
produced by the ribbon in a ribbon microphone.

This signal still need to be boosted, and the impedance of the coil isn’t
high enough for us to simply take the wire connected to the coil and connect
it to the microphone’s output. Therefore, we use a step-up transformer
again, just as we did in the case of the ribbon mic, to increase the sigal
strength, increase the output impedance to around 200Ω, and to provide a
balanced output.
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Figure 5.56: A cross section of the same device when assembled. Note that the front of the coil
of wire is attached to the inside of the diaphragm.

Figure 5.57: A moving coil dynamic microphone with the protection grid removed. The “front” of
the microphone shows a second protective layer made of mesh and hard plastic. The diaphragm
and assembly are below this.
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Figure 5.58: The underside of the diaphragm showing the copper coil glued to the back of the
diaphragm. This coil fits inside the circular gap in the magnet. See Figure 3a for part labels.

Figure 5.59: The same photograph as Figure 2a with the various parts labeled.
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There are a number of advantages and disadvantages to using moving
coil microphones. One of the biggest advantages is the rugged construction
of these devices. For the most part, moving coil microphones border on
being indestructible – in fact, it’s almost diffuicult to break one without
intentionally doing so. This is why you’ll see them in road cases of touring
setups – they can withstand a great deal of abuse. Secondly, since there are
so many of these devices in production, and because they have a fairly simple
design, the costs are quite affordable. On the side of the disadvantages, you
have to consider that the coil in a moving coil microphone is relatively heavy
and difficult to move quickly. As a result, it’s difficult to get a good high
frequency response from such a microphone. Similarly, since the output of
the coil is dependent on its velocity, very low frequencies will result in little
output as well.

5.6.3 Condenser Microphones

The goal in a microphone is to turn the movement of a diaphragm into a
change in electrical potential. As we saw in dynamic microphones, this can
be done using induction however, there is another way.

DC Polarized Condenser Microphones

Electret Condenser Microphones

5.6.4 RF Condenser Microphones

5.6.5 Suggested Reading List
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5.7 Microphones – Directional Characteristics

5.7.1 Introduction

If you take a look at any book of science experiments for kids you’ll find a
project that teaches children about barometric pressure. You take a coffee
can and stretch a balloon over the open end, sealing it up with rubber bands.
Then you use some tape to stick a drinking straw on the balloon so that it
hangs over the end. The whole contraption should look like the one shown
in Figure 1.

So, what is this thing? Believe it or not, it’s a barometer. If the seal on
the ballon is tight, then no air can escape from the can. As a result, if the
barometric pressure outdoors goes down (when the weather is rainy), then
the pressure inside the can is relatively high (relative to the outside, that
is...) so the balloon swells up in the middle and the straw points down as is
shown in Figure 2.

On a sunny day, the barometric pressure goes up and the balloon is
pushed into the can, so the straw points up as can be seen in Figure 3.

This little barometer tells us a great deal about how a microphone works.
There are two big things to remember about this device:

1. The displacement of the balloon is caused by the difference in air
pressure on each side of it. In the case of the coffee can, the balloon
moves to try and make the pressure inside the can the same as the
outside of the can. The balloon always moves away from the side with
the higher air pressure.

2. In the case of the sealed can, it doesn’t matter which direction the
pressure outside the can is coming from. On a low-pressure day, the
balloon pushes out of the can, and this is true whether the can is
rightside up, on its side, or even upside down.

5.7.2 Pressure Transducers

The barometer in the introduction responds to large changes in barometric
pressure on the order of 2 or 3 Pascals over long periods of time on the
order of hours or days. However, if we made a miniature copy of the coffee
can and the balloon, we’re have a device that would respond much more
quickly to much smaller changes in pressure. In fact, if we were to call the
miniaturized balloon a diaphragm and make it about 1 cm in diameter or so,
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it would be perfect for responding to changes in pressure caused by passing
sound waves instead of weather systems.

So, let’s consider what we have. A small can, sealed on the front by a
very thin diaphragm. This device is built so that the diaphragm moves in
and out of the can with changes in pressure between 20 micropascals and 2
pascals (give or take...) and frequencies up to about 20 kHz or so. There’s
just one problem: the diaphragm moves a distance that is proprotionate
to the amplitude of the pressure change in the air, so if the barometric
pressure goes down on a rainy day, the diaphragm will get stretched out
and will probably tear. So, to prevent this from happening, we’ll drill a
very small hole called a capillary tube in the back of the can for very long
term changes in the pressure. If you’d like to build one, the construction
diagrams are shown in Figure 4.

The biologically-minded reader may be interested to note that this is es-
sentially the construction of the human ear. The diaphragm is your eardrum,
the canister is your head (or at least a small cavity behind your eardrum in-
side your head) and the capillary tube is your eustachian tube that connects
the back of your eardrum to your mouth. When you undergo a wide change
in air pressure in a longer period of time (like when you’re taking off in
an airplane, for example), your eardrum is pushed out and “pops” just like
the diaphragm would be. And, like the capillary tube, the eustachian tube
lets the new pressure “equalize” on the back of the eardrum – therefore, by
yawning or swallowing, you put your eardrum back where it belongs.

Figure 5.60: The construction of a miniature coffee can barometer.

How will this system behave? Remember that, just like the coffee can
barometer, the back of the diaphragm is effectively sealed so if the pressure
outside the can is high, the diaphragm will get pushed into the can. If the
pressure outside the can is low, then the diaphragm will get pulled out of the
can. This will be true no matter where the change in pressure originated.
(The capillary tube is of a small enough diameter that fast pressure changes
in the audio range don’t make it through into the can, so we can consider
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the can to be completely sealed.)
What we have is called a pressure transducer. Remember that a trans-

ducer is any device that converts one kind of energy into another. In the
case of a microphone, we’re converting mechanical energy (the movement
of the diaphragm) into electrical energy (the change in voltage and/or cur-
rent at the output). How that conversion actually takes place is dealt with
in a previous chapter – what we’re concerned about in this chapter is the
pressure part.

A perfect pressure transducer responds identically to a change in air pres-
sure originating in any direction, and therefore arriving at the diaphragm
from any angle of incidence. Every microphone has a “front,” “side” and
“back,” but because we’re trying to be a little more precise about things
(translation: because we’re geeks) we break this down further into angles.
So, directly in front of the microphone is considered to be an angle of inci-
dence of 0◦. We can rotate around from there to 90◦ on the side and 180◦

at the back as is shown in Figure 5.

Figure 5.61: A microphone showing various angles of incidence (full marking every 30◦, small
markings every 10◦). Note that we can consider the rotational angle in any plane whereas this
photo only indicates the horizontal plane.

We can make a graph of the way in which a perfect pressure transducer
will respond to the pressure changes by graphing its sensitivity. This is a
word used for the gain of a microphone caused by the angle of incidence of
the incoming sound (although, as we saw earlier, other issues are included
in the sensitivity as well). Remember in the case of a perfect pressure trans-
ducer, the sensitivity will be the same regardless of the angle of incidence,
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so if we consider that the gain for a sound source that’s on-axis or with an
angle of incidence of 0◦ is normalized to a value of 1, then all other angles of
incidence will be 1 as well. This can be plotted on a cartesian X-Y graph as
is shown in Figure 6. The equation below can be used to calculate the sen-
sitivity for a pressure transducer. (Okay, okay, it’s not much of an equation
– for any angle, the sensitivity is 1...)

SP = 1 (5.8)

where SP is the sensitivity of a pressure transducer.
For any angle, you can just multiply the pressure by the sensitivity for

that angle of incidence to find the voltage output.

Figure 5.62: A Cartesian plot of the sensitivity of a perfect pressure transducer normalized to the
on-axis response.

Most people like to see this in a little more intuitive graph called a polar
plot shown in Figure 7. In this kind of graph, the sensitivity is graphed as
a radius from the centre of the graph at a given angle of rotation.

One thing to note here: most books plot their polar plots with 0◦ pointing
directly upwards (towards 12 o’clock). Technically speaking, this is incorrect
– a proper polar plot starts with 0◦ on the right side (towards 3 o’clock).
This is the system that I’ll be using for all polar plots in this book.

Just for the sake of having a version of the plots that look nice and clean,
Figures 8 and 9 are duplicates of Figures 6 and 7.

Most people don’t call these microphones “pressure transducers” – be-
cause the microphone is equally sensitive to all sound sources regardless of
direction they’re normally called omnidirectional microphones. Some people
shorten this even further and call them omni’s.



5. Electroacoustics 351

Figure 5.63: A polar plot of the sensitivity of a perfect pressure transducer normalized to the on-axis
response. Note that this plot shows the same information as the plot in Figure 6.

Figure 5.64: Cartesian plot of the sensitivity of a perfect pressure transducer normalized to the
on-axis response.
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Figure 5.65: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a perfect
pressure transducer normalized to the on-axis response.

Figure 5.66: Polar plot of the sensitivity of a perfect pressure transducer normalized to the on-axis
response. Note that this plot shows the same information as the plot in Figure 8.
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5.7.3 Pressure Gradient Transducers

What happens if the diaphragm is held up in mid-air without being sealed
on either side? Figure 9 shows just such a system where the diaphragm is
supported by a ring and is exposed to the outside world on both sides.

Figure 5.67: The construction of a diaphragm that’s open on both sides.

Let’s assume for the purposes of this discussion that a movement of the
diaphragm to the left of the resting position somehow magically results in
a positive voltage at the output of this microphone (for more info on how
this miracle actually occurs, read Section 5.6.) Therefore if the diaphragm
moves in the opposite direction, the voltage at the output will be negative.
Let’s also assume that the side of the diaphragm facing the right is called
the “front” of the microphone.

If there’s a sound source producing a high pressure at the front of the
diaphragm, then the diaphragm is pushed backwards and the voltage output
is positive. Positive pressure causes positive voltage. If the sound source
stays at the front and produces a low pressure, then the diaphragm is pulled
frontwards and the resulting voltage output is negative. Negative pressure
causes negative voltage. Therefore there is a positive relationship between
the pressure at the front of the diaphragm and the voltage output – meaning
that, the polarity of the voltage at the output is the same as the pressure
at the front of the microphone.

What happens if the sound source is at the rear of the microphone at an
angle of incidence of 180◦? Now, a positive pressure pushes on the diaphragm
from the rear and causes it to move towards the front of the microphone.
Remember from two paragraphs back that this causes a negative voltage
output. Positive pressure causes negative voltage. If the source is in the
rear and the pressure is negative, then the diaphragm is pulled towards the
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Figure 5.68: A positive pressure at the front of the microphone moves the diaphragm towards the
back and causes a positive voltage at the output.

rear of the microphone, resulting in a positive voltage output. Now, we have
a situation where there is a negative relationship between the pressure at the
rear of the microphone and the voltage output – the polarity of the voltage
at the output is opposite to the pressure at the rear.

Figure 5.69: A positive pressure at the back of the microphone moves the diaphragm towards the
front and causes a negative voltage at the output.

What happens when the sound source is at an angle of incidence of
90◦ – directly to one side of the microphone? If the source produces a high
pressure, then this reaches both sides of the diaphragm equally and therefore
the diaphragm doesn’t move. The result is that the output voltage is 0 –
there is no output. The same will be true if the pressure is negative because
the two low-pressure areas on either side of the microphone will be pulling
equally on the diaphragm.

This phenomenon of the sound source outputting a high or low pressure
with no voltage at the output of the microphone shows exactly what’s hap-
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Figure 5.70: A positive pressure at the side of the microphone causes no movement in the diaphragm
and causes 0 volts at the output.

pening in this microphone. The movement of the diaphragm (and therefore
the output of the microphone) is dependent on the difference in pressure on
the two sides of the diaphragm. If the pressure on the two sides is the same,
the difference is 0 and therefore the output is 0. The bigger the difference
in pressure, the bigger the voltage output. Another word for “difference” is
“gradient” and thus this design is called a Pressure Gradient Transducer.

We know the sensitivity of the microphone at four angles of incidence
– at 0◦ the sensitivity is 1 just like a Pressure Transducer. At 180◦, the
sensitivity is -1. The voltage waveform will look like the pressure waveform,
but it will be upside down – inverted in polarity because it’s multiplied by
-1. At 90◦ and 270◦ the sensitivity will be 0 – no matter what the pressure
is, the voltage output will be 0.

The question now is, what happens at all the other angles? Well, it
might be already obvious. There’s a simple function that converts angles to
a number where 0◦ corresponds to a value of 1, 90◦ to 0, 180◦ to -1 and 270◦

to 0 again. The function is called a cosine – it turns out that the sensitivity
of this construction of microphone is the cosine of the angle of incidence as
is shown in Figure 13. So, the equation for calculating the sensitivity is:

SG = cos(α) (5.9)

where SG is the sensitivity of a pressure gradient transducer and α is the
angle of incidence.

Again, most people prefer to see this in a polar plot as is shown in Figure



5. Electroacoustics 356

Figure 5.71: Cartesian plot of the sensitivity of a pressure gradient transducer. Note that the
negative polarity lobe has been higlighted in red.

Figure 5.72: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a
pressure gradient transducer. Note that the negative polarity lobe has been higlighted in red.
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15, however, what most people don’t know is that they’re not really looking
at an accurate polar plot of the sensitivity. In this case, we’re looking at a
polar plot of the absolute value of the cosine of the angle of incidence – if
this doesn’t make sense, don’t worry too much about it.

Figure 5.73: Polar plot of the absolute value of the sensitivity of a pressure gradient transducer.
Blue indicates positive polarity, red indicates negative polarity. Note that this plot shows the same
information as the plot in Figure 14.

Notice that in the graph in Figure 15, the front half of the plot is in blue
while the rear half is red. This is to indicate the polarity of the sensitivity,
so at an angle of 180◦, the radius of the plot is 1, but because the plot at
that angle is red, it’s -1. At 30◦, the radius is 0.5 and because it’s blue, then
it’s positive.

Just like pressure transducers are normally called omnidirectional micro-
phones, pressure gradient transducers are usually called either bidirectional
microphones (because they they’re sensitive in two directions – the front
and back) or figure eight microphones (because the polar pattern looks like
the number 8).

There’s one thing that we should get out of the way right now. Many
people see the figure 8 pattern of a bidirectional microphone and jump to
the assumption that the mic has two outputs – one for the front and one
for the back. This is not the case. The microphone has one output and one
output only. The sound picked up by the front and rear lobes is essentially
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mixed acoustically and output as a single signal. You cannot separate the
two lobes to give you independent outputs.

5.7.4 Combinations of Pressure and Pressure Gradient

It is possible to create a microphone that has some combination of both a
pressure component and a pressure gradient component. For example, look
at the diagram in Figure 16. This shows a microphone where the diaphragm
is not entirely sealed in a can as in the pressure transducer design, but it’s
not completely open as in the pressure gradient design.

Figure 5.74: A microphone that is one half pressure transducer and one half pressure gradient
design. Note that if you build this microphone it probably will not work properly – this is an
approximate drawing for conceptual purposes. The significant things to note here are the vents
that allow some of the pressure changes from the outside world into the back of the diaphragm.
Note, however, that the back of the diaphragm is not completely exposed to the outside world.

In this case, the path to the back of the diaphragm from the outside
world is the same length as the path to the front of the diaphragm when the
sound source is at 180◦ – not 90◦ as in a pure pressure gradient transducer.
This then means that there will be no output when the sound source is at
the rear of the microphone. In this case, the sensitivity pattern is created by
creating a mixture of 50 percent Pressure and 50 percent Pressure Gradient.
Therefore, we’re multiplying the two pure sensitivity patterns by 0.5 and
adding them together. This results in the pattern shown in Figure 17 –
notice the similarity between this pattern and the perfect pressure gradient
sensitivity pattern – it’s just a cosine wave that’s been offset by enough to
eliminate the negative components.

If we plot this sensitivity pattern on a polar plot, we get the graph shown
in Figure 18. Notice that this pattern looks somewhat like a heart shape,
so it’s normally called a cardioid pattern (“cardio” meaning “heart” as in
“cardio-vascular” or “cardio-pulmonary”)
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Figure 5.75: Cartesian plot of the sensitivity pattern of a microphone that is one half Pressure and
one half Pressure Gradient transducer.

Figure 5.76: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a
microphone that is one half Pressure and one half Pressure Gradient transducer.
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Figure 5.77: Polar plot of the sensitivity pattern of a cardioid microphone (one half Pressure and
one half Pressure Gradient transducer). Note that this plot shows the same information as the plot
in Figure 16. A good rule of thumb to remember about this polar pattern is that the sensitivity is
0.5 (or -6 dB) at 90◦.

5.7.5 General Sensitivity Equation

We can now develop a general equation for calculating the sensitivity pat-
tern of a microphone that contains both Pressure and Pressure Gradient
components as follows:

S = P + G ∗ cos(α) (5.10)

where S is the sensitivity of the microphone, P is the Pressure component,
G is the Pressure Gradient component, α is the angle of incidence and where
P + G = 1.

For example, for a microphone that is 50 percent Pressure and 50 percent
Pressure Gradient, the sensitivity equation would be:

S = P + G ∗ cos(α) (5.11)

S = 0.5 + 0.5 ∗ cos(α) (5.12)

This sensitivity equation can then be used to create any polar pattern
between a perfect pressure transducer and a perfect pressure gradient. All we
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need to do is to decide how much of each we want to add in the equation. For
a perfect omnidirectional microphone, we make P=1 and PG=0. Therefore
the microphone is a 100 percent pressure transducer and 0 percent pressure
gradient transducer. There are five “standard” polar patterns, although one
of these is actually two different standards, depending on the manufacturer.
The five most commonly-seen polar patterns are:

Polar Pattern P G
Omnidirectional 1 0
Subcardioid 0.75 0.25
Cardioid 0.5 0.5
Supercardioid 0.333 0.666
Hypercardioid 0.25 0.75
Bidirectional 0 1

Table 5.6: INSERT CAPTION HERE

What do these polar patterns look like? We’ve aready seen the omnidi-
rectional, cardioid and bidirectional patterns. The others are as follows.

Figure 5.78: Cartesian plot of the sensitivity of a subcardioid microphone.

Just to compare the relationship between the various directional pat-
terns, we can look at all of them on the same plot. This gets a little compli-
cated if they’re all on the same polar plot – just because things get crowded,
but if we see them on the same Cartesian plot (see the graphs above for the
corresponding polar plots) then we can see that all of the simple directional
patterns are basically the same.
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Figure 5.79: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a
subcardioid microphone.

Figure 5.80: Polar plot of a subcardioid microphone. Notice that the maximum attenuation of 0.5
(or -6.02 dB) is at the rear of the microphone at 180◦.
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Figure 5.81: Cartesian plot of a hypercardioid microphone using the values P=0.25 and PG=0.75.

Figure 5.82: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a
hypercardioid microphone using the values P=0.25 and PG=0.75. Note that the negative polarity
lobe has been higlighted in red.
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Figure 5.83: Polar plot of a hypercardioid microphone using the values P=0.25 and PG=0.75.
Notice that the maximum attenuation of 0 (or -infinity dB) is at about 109◦.

Figure 5.84: Cartesian plot of a supercardioid microphone using the values P=0.333 and PG=0.666
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Figure 5.85: Cartesian plot of the sensitivity (in dB referenced to the on-axis sensitivity) of a
supercardioid microphone using the values P=0.333 and PG=0.666. Note that the negative polarity
lobe has been higlighted in red.

Figure 5.86: Polar plot of a supercardioid microphone using the values P=0.333 and PG=0.666.
Notice that the maximum attenuation of 0 (or -infinity dB) is at 120◦.
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Figure 5.87: Most of the standard polar patterns on one Cartesian plot. From top to bottom, these
are omnidirectional, subcardioid, cardioid, hypercardioid, and bidirectional. Note that red sections
of the plot point out the fact that the sensitivity is negative polarity.

One of the interesting things that becomes obvious in this plot is the rela-
tionship between the angle of incidence where the sensitivity is 0 – sometimes
called the null because there is no output – and the mixture of the Pressure
and Pressure Gradient components. All mixtures between omnidirectional
and cardioid have no null because there is no angle of incidence that results
in no output. The cardioid microphone has a single null at 180◦, or, directly
to the rear of the microphone. As we increase the mixture to have more and
more Pressure Gradient component, the null splits into two symmetrical
points on the polar plot that move around from the rear of the microphone
to the sides until, when the transducer is a perfect bidirectional, the nulls
are at 90 and 270◦.

5.7.6 Do-It-Yourself Polar Patterns

If you go to your local microphone store and buy a “normal” single-diaphragm
cardioid microphone like a B & K 4011 (don’t worry if you’re surprised
that there might be something other than a microphone with a single di-
aphragm... we’ll talk about that later) the manufacturer has built the device
so that it’s the appropriate mixture of Pressure and Pressure Gradient. Con-
sider, however, that if you have a perfect omnidirectional microphone and a
perfect bidirectional microphone, then you could strap them together, mix
their outputs electrically in a run-of-the-mill mixing console, and, assuming
that everything was perfectly aligned, you’d be able to make your own car-
dioid. In fact, if the two real microhpones were exactly matched, you could
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make any polar pattern you wanted just by modifying the relative levels of
the two signals.

Mathematically speaking, the output of the omnidirectional microphone
is the Pressure component and the output of the Bidirectional Microphone
is the Pressure Gradient component. The two are just added in the mixer
so you’re fulfilling the standard sensitivity equation:

S = P + G ∗ cos(α) (5.13)

where P is the gain applied to the omnidirectional microphone and G is
the gain applied to the bidirectional microphone.

Also, let’s say that you have two cardioid microphones, but that you
put them in a back-to-back configuration where the two are pointing 180◦

away from each other. Let’s look at this pair mathematically. We’ll call
microphone 1 the one pointing “forwards” and microphone 2 the second
microphone pointing 180◦ away. Note that we’re also assuming for a moment
that the gain applied to both microphones is the same.

STOTAL = (0.5 + 0.5 ∗ cos(α)) + (0.5 + 0.5 ∗ cos(α + 180)) (5.14)

STOTAL = 0.5 + 0.5 + 0.5 ∗ (cos(α) + cos(α + 180)) (5.15)

STOTAL = 1 + 0.5 ∗ (cos(α) + cos(α + 180)) (5.16)

Now, consider that the cosine of every angle is the opposite polarity to
the cosine of the same angle + 180◦. In other words:

cos(α) = −1 ∗ cos(α + 180◦) (5.17)

Consider therefore that the cosine of any angle added to the cosine of
the same angle + 180◦ will equal 0. In other words:

cos(α) + cos(α + 180◦) = 0 (5.18)

Let’s go back to the equation that describes the back to back cardioids:

STOTAL = 1 + 0.5 ∗ (cos(α) + cos(α + 180)) (5.19)

We now know that the two cosines cancel each other, therefore the equa-
tion simplifies to:
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STOTAL = 1 + 0.5 ∗ (0) (5.20)

STOTAL = 1 (5.21)

Therefore, the result is an omnidirectional microphone. This result is
possibly easier to understand intuitively if we look at graphs of the sensitivity
patterns as is shown in Figures 26 and 27.

Figure 5.88: Cartesian plot of the sensitivity patterns of two cardioid microphones aimed 180◦

apart. The blue plot is the forward-facing cardioid, the green is the rear-facing cardioid. Note that,
if summed, the resulting output would be 1 for any angle.

Figure 5.89: Polar plot of the sensitivity patterns of two cardioid microphones aimed 180◦ apart.
Note that, if summed, the resulting output would be 1 for any angle.
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Similarly, if we inverted the polarity of the rear-facing microphone, the
resulting mixed output (if the gains applied to the two cardioids were equal)
would be a bidirectional microphone. The equation for this mixture would
be:

STOTAL = (0.5 + 0.5 ∗ cos(α)) +−1 ∗ (0.5 + 0.5 ∗ cos(α + 180)) (5.22)

STOTAL = 0.5 + 0.5 ∗ cos(α)−−0.5−−0.5 ∗ cos(α + 180)) (5.23)

STOTAL = 0.5−−0.5 + 0.5 ∗ cos(α)−−0.5 ∗ cos(α + 180) (5.24)

STOTAL = 0.5 ∗ cos(α)−−0.5 ∗ cos(α + 180) (5.25)

STOTAL = cos(α) (5.26)

So, as you can see, not only is it possible to create any microphone polar
pattern using the summed outputs of a bidirectional and an omnidirectional
microphone, it can be accomplished using two back-to-back cardioids as well.
Of course, we’re still assuming at this point that we’re living in a perfect
world where all transducers are matched – but we’ll stay in that world for
now...

5.7.7 The Influence of Polar Pattern on Frequency Response

Pressure Transducers

Remember that a pressure transducer is basically a sealed can, just like
the coffee can barometer. Therefore, any change in pressure in the outside
world results in the displacement of the diaphragm. High pressure pushes
the diaphragm in, low pressure pulls it out. Unless the change in pressure is
extremely slow with a period on the order of hours (which we obviously will
not hear as a sound wave – and which leaks through the capillary tube) then
the displacement of the diaphragm is dependent on the pressure, regardless
of frequency. Therefore a perfect pressure transducer will respond to all
frequencies similarly. This is to say that, if a pressure wave arriving at the
diaphragm is kept at the same peak pressure value, but varied in frequency,
then the output of the microphone will be a voltage waveform that changes
in frequency but does not change in peak voltage output.

A graph of this would look like Figure 28.
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Figure 5.90: The frequency response of a perfect Pressure transducer. Note that all frequencies
have equal output assuming that the peak value of the pressure wave is the same at all frequencies.

Pressure Gradient Transducers

The behaviour of a Pressure Gradient transducer is somewhat different be-
cause the incoming pressure wave reaches both sides of the diaphragm. Re-
member that the lower the frequency, the longer the wavelength. Also,
consider that, if a sound source is on-axis to the transducer, then there is
a pathlength difference between the pressure wave hitting the front and the
rear of the diaphragm. That pathlength difference remains at a constant
delay time regardless of frequency, therefore, the lower the frequency the
more alike the pressures at the front and rear of the diaphragm because the
phase difference is smaller with lower frequencies. The delay is constant and
short because the diaphragm is typically small.

Figure 5.91: A diagram of a Pressure Gradient transducer showing the two paths to the front and
rear of the diaphragm from a source on axis.

Since the sensitivity at the rear of the diaphragm has a negative polarity
and the front has a positive polarity, then the result is that the pressure at
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the rear is subtracted from the front.
With this in mind, let’s start at a frequency of 0 Hz and work our way

upwards. At 0 Hz, then the pressure at the rear of the diaphragm equals
the pressure at the front, therefore the diaphragm does not move and there
is no output. (Note that, right away, we’re looking at a different beast than
the perfect Pressure transducer. Without the capillary tube, the pressure
transducer would give us an output with a 0 Hz pressure applied to it.)

As we increase in frequency, the phase difference in the pressure wave at
the front and rear of the diaphragm increases. Therefore, there is less and
less cancellation at the diaphragm and we get more and more output. In
fact, we get a doubling of output for every doubling of frequency – in other
words, we have a slope of +6 dB per octave.

Eventually, we get to a frequency where the pressure at the rear of the
microphone is 180◦ later than the pressure at the front. Therefore, if the
pressure at the front of the microphone is high and pushing the diaphragm
in, then the pressure at the rear is low and pulling the diaphragm in. At
this frequency, we have constructive interference and an increased output
by 6 dB.

If we increase the frequency further, then the phase difference between
the front and rear increases and we start approaching a delay of 360◦. At
that frequency (which will be twice the frequency where we had +6 dB
output) we will have no output at all – therefore a level of – infinity dB.

As the frequency increases, we result in a common pattern of peaks and
valleys shown in Figure 30. Because this pattern looks like a hair comb, it’s
called a comb filter.

The frequencies of the peaks and valleys in the comb filter frequency
response are determined by the distance between the front and the rear of
the diaphragm. This distance, in turn, is principally determined by the
diameter of the diaphragm. The smaller the diameter, the shorter the delay
and the higher the frequency of the lowest-frequency peak.

Most manufacturers build their bidirectional microphones so that the
lowest frequency peak in the frequency response is higher than the range
of normal audio. Therefore, the “standard” frequency response of a bidi-
rectional microphone starts an output of 0 at 0 Hz and doubles for every
doubling of frequency to a maximum output that is somewhere around or
above 20 kHz.

This, of course, is a problem. We don’t want a microphone that has a
rising frequency response, so we have to fix it. How? Well, we just build
the diaphragm so that it has a natural resonance down in the low frequency
range. This means that, if you thump the diaphragm like a drum head, it
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Figure 5.92: A linear plot of a comb filter caused by the interference of the pressures at the front
and rear of a Pressure Gradient transducer. The harmonic relationship between the peaks and dips
in the frequency response is evident in this plot.

Figure 5.93: A semi-logarithmic plot of a comb filter caused by the interference of the pressures at
the front and rear of a Pressure Gradient transducer. The 6 dB/octave rise in the response up to
the lowest-frequency peak is evident in this plot.
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Figure 5.94: The output of a Pressure Gradient transducer whose design ensures that the entire
audio range lies below the lowest-frequency peak in the frequency response.

will ring at a very low note. The higher the frequency, the further you get
from the peak of the resonance. This resonance acts like a filter that has a
gain that increases by 6 dB for every halving of frequency. Therefore, the
lower the frequency, the higher the gain. This counteracts the rising natural
slope of the diaphragm’s output and produces a theoretically flat frequency
response. The only problem with this is that, at very low frequencies, there
is almost no output to speak of, so we have to have enormous gain and the
resulting output is basically nothing but noise.

The moral of this story is that Pressure Gradient microphones have no
very low frequency output. Also, keep in mind that any microphone with
a Pressure Gradient component will have a similar response. Therefore, if
you want to record program material with low frequency content, you have
to stick with omnidirectional microphones.

5.7.8 Proximity Effect

Most microphones that have a pressure gradient component have a correc-
tion filter built in to fix the low frequency problems of the natural response
of the diaphragm. In many cases, this correction works very well, however,
there is a specific case where the filter actually makes things worse.

Consider that a pressure gradient microphone has a natually rising fre-
quency response because the incoming pressure wave arrives at the front as
well as a the rear of the diaphragm. Pressure microphones have a naturally
flat frequency response because the rear of the diaphragm in sealed from the
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Figure 5.95: The blue plot shows the gain response of a theoretical filter required to “fix” the
frequency response of the transducer shown in Figure 32. Note the extremely high gain required in
the low frequency range. The red plot shows the gain achieved by making the diaphragm naturally
resonant at a low frequency. Note that there is a bottom limit to the benefits of the resonance.

Figure 5.96: The blue plot shows the result of the frequency response of the output of the transducer
shown in Figure 32 filtered using the theoretical (blue) gain response plotted in Figure 33. Note
that this is a theoretical result that does not take real life into account... The red plot shows a
more likely scenario where the extra gain provided by the resonance doesn’t extend all the way
down to 0 Hz.
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outside world. Also, consider a little rule of thumb that says that, in a free,
unbounded space, the pressure of a sound wave is reduced by half for every
doubling of distance. The implication of this rule is that, if you’re very close
to a sound source, a small change in distance will result in a large change in
sound level. At a greater distance from the sound source, the same change
in distance will result in a smaller change in level. For example, if you’re 1
cm from the sound source, moving away by 1 cm will cut the level by half,
a drop of 6 dB. If you’re 1 m from the sound source, moving away by 1 cm
will have a negligible effect on the sound level. So what?

Imagine that you have a pressure gradient microphone that is placed
very close to a sound source. Consider that the distance from the sound
source (say, a singer’s mouth...) to the front of the diaphragm will be on
the order of millimeters. At the same time, the distance to the rear of the
diaphragm will be comparatively very far – possibly 4 to 8 times the distance
to the singer’s lips. Therefore there is a very large drop in pressure for the
sound wave arriving at the rear of the diaphragm. The result is that the
rear of the diaphragm is effectively sealed from the outside world by virtue
of the fact that the sound pressure level at that side of the diaphragm is
much lower than that at the front. Consequently, the natural frequency
response becomes more like a pressure transducer than a pressure gradient
transducer.

What’s the problem? Well, remember that the microphone has a filter
that boosts the low end built into it to correct for problems in the natural
frequency response – problems that don’t exist when the microphone is close
to the sound source. As a result, when the microphone is very close to the
source, there is a boost in the low frequencies because the correction filter
is applied to a now natually flat frequency response. This boost in the low
end is called proximity effect because it is caused by the microphone being
in close proximity to the sound source.

There are a number of microphones that rely on the proximity effect
to boost the low frequency components of the signal. These are typically
sold as vocal mic’s such as the Shure SM58. If you measure the frequency
response of such a microphone from 1 m away, then you’ll notice that there
is almost no low-end output. However, in typical usage, there is plenty of
low end. Why? Because, in typical usage, the microphone is stuffed in the
singer’s mouth – therefore there’s lots of low end because of proximity effect.

Remember, when the microphone has a pressure gradient component, the
frequency response is partially dependent on the distance to the diaphragm.
Also remember that, for some microphones, you have to be placed close
to the source to get a reasonably low frequency response, whereas other
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microphones in the same location will have a boosted low frequency response.

5.7.9 Acceptance Angle

As we saw in a previous section, the bandwidth of a filter is determined by
the frequency band limited by the points where the signal is 3 dB lower than
the maximum output of the filter. Microphones have a spatial equivalent
called the acceptance angle. This is the frontal angle of the microphone
where the sensitivity is within 3 dB of the on-axis response. This angle will
vary with polar pattern.

In the case of an omnidirectional, all angles of incidence have a sensitivity
of 0 dB relative to the on-axis response of the microphone. Consequently,
the acceptance angle is ±180◦ because the sensitivity never drops below -3
dB relative to the on-axis sensitivity.

A subcardioid, on the other hand, has a sensitivity that drops below
-3 dB when the angle of incidence of the sound source is outside the ac-
ceptance angle of ±99.9◦. A cardioid has an acceptance angle of ±65.5◦, a
hypercardioid has an acceptance angle of ±52.4◦, and a bidirectional has an
acceptance angle of ±45.0◦.

Polar Pattern (P : G) Acceptance Angle
Omnidirectional (1 : 0) ±180◦

Subcardioid (0.75 : 0.25) ±99.9◦

Cardioid (0.5 : 0.5) ±65.5◦

Supercardioid (0.375 : 0.625) ±57.9◦

Hypercardioid (0.25 : 0.75) ±52.4◦

Bidirectional (0 : 1) ±45.0◦

Table 5.7: Acceptance Angles for various microphone polar patterns.

5.7.10 Random-Energy Response (RER)

Think about an omnidirectional microphone in a diffuse field (the concept
of a diffuse field is explained in Section ??). The omni is equally sensitive
to all sounds coming from all directions, giving it some output level. If you
put a cardioid microphone in exactly the same place, you wouldn’t get as
much output from it because, although it’s as sensitive to on-axis sounds as
the omni, all other directions will be attenuated in comparison.

Since a diffuse field is comprised of random signals coming from random
directions, we call the theoretical power output of a microphone in a diffuse
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field the Random-Energy Response or RER. Note that this measurement is
of the power output of the microphone.

The easiest way to get an intuitive understanding of the RER of a given
polar pattern is that it is simply the square of the surface area of a three-
dimensional plot of the pattern. The reason we square the surface area is
that we are looking at the power of the output which, as we saw in Section
??, is the square of the signal.

The RER of any polar pattern can be calculated using Equation 5.27.

RER =
∫ π

0

∫ 2π

0
S2 sinαdφdα (5.27)

where S is the sensitivity of the microphone, α is the angle of rotation
around the microphone’s “equator” and φ is the angle of rotation around
the microphones axis. These two angles are shown in the explanation of
spherical coordinates in Section ??.

If you’re having some difficulties grasping the intricacies of Equation
5.27, don’t panic. Double integrals aren’t something we see every day. We
know from Section ?? that, because we’re dealing with integrals, then we
must be looking for the area of some shape. So far so good. (The area we’re
looking for is the surface area of the three-dimensional plot of the polar
pattern.)

FINISH THIS OFF
There are a couple of good rules of thumb to remember when it comes

to RER.

1. An omni has the greatest sum of sensitivities to sounds from all direc-
tions, therefore it has the highest RER of all polar patterns.

2. A cardioid and a bidirectional both have the same RER.

3. A hypercardioid has the lowest RER of all first-order gradient polar
patterns.

5.7.11 Random-Energy Efficiency (REE)

It’s a little difficult to remember the strange numbers that the RER equation
comes up with, so we rarely bother. Instead, it’s really more interesting to
see how the various microphone polar patterns compare to each other. So,
what we do is call the RER of an omnidirectional the “reference” and then
look at how the other polar patterns’ RER’s compare to it.
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Polar Pattern (P : G) RER
Omnidirectional (1 : 0) 4π
Subcardioid (0.75 : 0.25) 7π

3
Cardioid (0.5 : 0.5) 4π

3
Supercardioid (0.375 : 0.625) 13π

12
Hypercardioid (0.25 : 0.75) π
Bidirectional (0 : 1) 4π

3

Table 5.8: Random Energy Responses for various microphone polar patterns.
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Figure 5.97: Random Energy Response vs. the Pressure component, P in the microphone.
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This relationship is called the Random-Energy Efficiency , abbreviated
REE of the microphone, and is calculated using Equation 5.28.

REE =
RER

RERomni
(5.28)

So, as we can see, all we’re doing is calculating the ratio of the micro-
phone’s RER to that of an omni. As a result, the lower the RER, the lower
the REE.

This value can be expressed either as a linear value, or it can be calcu-
lated in decibels using Equation 5.29.

REEdB = 10 log(REE) (5.29)

Notice in Equation 5.29 that we’re multiplying by 10 instead of the
usual 20. This is because the REE is a power measurement and, as we saw
in Section ??, for power you multiply by 10 instead of 20.

In the practical world, this value gives you an indication of the relative
outputs of microphone (assuming that they have similar electrical sensitivi-
ties, explained in Section ??) when you put them in a reverberant field. Let’s
say that you have an omnidirectional microphone in the back of a concert
hall to pick up some of the swimmy reverberation sound. If you replace it
with a hypercardioid in the same location, you’ll have to crank up the gain
of the hypercardioid by 6 dB to get the same output as the omni because
the REE of a hypercardioid is - 6 dB.

Polar Pattern (P : G) REE REE (dB)
Omnidirectional (1 : 0) 1 0dB
Subcardioid (0.75 : 0.25) 7

12 −2.34dB
Cardioid (0.5 : 0.5) 1

3 −4.77dB
Supercardioid (0.375 : 0.625) 13

48 −5.67dB
Hypercardioid (0.25 : 0.75) 1

4 −6.02dB
Bidirectional (0 : 1) 1

3 −4.77dB

Table 5.9: Random Energy Efficiency for various microphone polar patterns.

5.7.12 Directivity Factor (DRF)

Of course, usually microphones (at least for classical recordings in reverber-
ant spaces...) are not just placed far away in the back of the hall. Then
again, they’re not stuck up the musicians’... uh... down the musicians’
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Figure 5.98: Random Energy Efficiency vs. the Pressure component, P in the microphone.
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Figure 5.99: Random Energy Response on a decibel scale vs. the Pressure component, P in the
microphone.
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throats, either. They’re somewhere in between where they’re getting a little
direct sound, possibly on-axis, and some diffuse, reverberant sound. So, one
of the characteristics we’re interested in is the relationship between these
two signals. This specification is called the Directivity Factor (the DRF )
of the microphone. It is the ratio of the response of the microphone in a
diffuse field to the response to a free-field source with the same intensity
as the diffuse field signal, located on -axis to the microphone. In essence,
this is a measure of the direct-to-reverberant ratio of the microphone’s polar
pattern.

Since

1. the imaginary free field source has the same intensity as the diffuse-
field signal, and

2. the power output of the microphone for that signal, on-axis, would be
the same as the RER of an omni in a diffuse field...

we can calculate the DRF using Equation 5.31

DRF =
1

REE
(5.30)

Polar Pattern (P : G) DRF Decimal equivalent
Omnidirectional (1 : 0) 1 1
Subcardioid (0.75 : 0.25) 12

7 1.71
Cardioid (0.5 : 0.5) 3 3
Supercardioid (0.375 : 0.625) 48

13 3.69
Hypercardioid (0.25 : 0.75) 4 4
Bidirectional (0 : 1) 3 3

Table 5.10: Directivity Factor for various microphone polar patterns.

5.7.13 Distance Factor (DSF)

We can use the DRF to get an idea of the relative powers of the direct and
reverberant signals coming from the microphones. Essentially, it tells us
the relative sensitivities of those two signals, but what use is this to us in a
panic situation when the orchestra is sitting out there waiting for you to put
up the microphones and $ 1000 per minute is going by while you place the
mic’s... It’s not, really... so we need to translate this number into a useable
one in the real world.
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Figure 5.100: Directivity Factor vs. the Pressure component, P in the microphone.

Well, consider a couple of things:

1. if you move away from a sound source in a real room, the direct sound
will drop by 6 dB per doubling of distance

2. if you move away from a sound source in a real room, the reverberant
sound will not change. This is true, even inside the room radius. The
only reason the level drops inside this area is because the direct sound
is much louder than the reverberant sound.

3. the relative balance of the direct sound and the reverberant sound is
dependent on the DRF of the microphone’s polar pattern.

So, we now have a question. If you have a sound source in a reverberant
space, and you put an omnidirectional microphone somewhere in front of
it, and you want a cardioid to have the same direct-to-reverberant ratio as
the omni, where do you put the omni? If you put the two microphones
side-by-side, the cardioid will sound closer since it will get the same direct
sound, but less reverberant energy than the omni. Therefore, the cardioid
must be placed farther away, but how much farther? This is actually quite
simple to calculate. All we have to do is to convert the DRF (which is a
measurement based on the power output of the microphone) into a Distance
Factor (or DSF ). This is done by coming back from the power measurement
into an amplitude measurement (because the distance to the sound source
is inversely proportional to the relative level of the received direct sound. In
other words, if you go twice as far away, you get half the amplitude.) So,
we can calculate the DSF using Equation ??.
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DSF =
√

DRF (5.31)

Polar Pattern (P : G) DSF Decimal equivalent
Omnidirectional (1 : 0) 1 1

Subcardioid (0.75 : 0.25) 2
√

3
7 1.31

Cardioid (0.5 : 0.5)
√

3 1.73

Supercardioid (0.375 : 0.625) 4
√

3
13 1.92

Hypercardioid (0.25 : 0.75) 2 2
Bidirectional (0 : 1)

√
3 1.73

Table 5.11: Distance Factor for various microphone polar patterns.
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Figure 5.101: Distance Factor vs. the Pressure component, P in the microphone.

So, what does this mean? Have a look at Figure 5.102. All of the mi-
crophones in this diagram will have the same direct-to-reverberant outputs.
The relative distances to the sound source have been directly taken from
Table 5.10 as you can see...

5.7.14 Variable Pattern Microphones

5.7.15 Suggested Reading List
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Figure 5.102: Diagram showing the distance factor in practice. In theory, all of the outputs of
these microphones at these specific distances from the sound source will all have the same direct-
to-reverberant ratios.
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5.8 Loudspeakers – Transducer type

Note that this is just an outline at this point. Bear with me while I think
about this before I start writing it.

5.8.1 Introduction

Loudspeakers are basically comprised of two things:

1. one or more drivers to push and pull the air in the room

2. an enclosure (fancy word for “box”) to make the driver sound and
look better. This topic is discussed in Section 5.9

We can group the different types of loudspeaker drivers into a number
of categories:

1. Dynamic (which can further be subdivided into two other types:

• Ribbon

• Moving Coil

2. Electrostatic

3. Servodrive, which is only found in subwoofers (low-frequency drivers)

4. Plasma, which is only found in homes of very rich people

5.8.2 Ribbon Loudspeakers

As we have now seen many times, if you put current through a piece of wire,
you generate a magnetic field around it. If that wire is suspended in another
magnetic field, then the field that you generate will cause the wire to move.
The direction of movement is determined by the polarity of the field that
you created using the current in the wire. The velocity of the movement is
determined by the strength of the magnetic fields, and therefore the amount
of current in the wire.

Ribbon loudspeakers use exactly this principle. We suspend a piece of
corrugated aluminum in a magnetic field and connect a lead wire to each
end of the ribbon as is shown in Figure 5.103.

When we apply a current through the wire and ribbon, we generate
a magnetic field, and the ribbon moves. If the current goes positive and
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N S

Figure 5.103: When you put current in the wire, a magnetic field is created around it and the
ribbon. Therefore the ribbon moves.

negative, then the ribbon moves forwards and backwards. Therefore, we
have a loudspeaker driver where the ribbon itself is the diaphragm of the
loudspeaker.

This ribbon has a low mass, so it’s easy to move quickly (making it
appropriate for high frequencies) but it doesn’t create a large magnetic field,
so it cannot play very loudly.. Also, if you thump the ribbon with your
finger, you’ll see that it has a very low resonant frequency, mainly because
it’s loosely suspended. As a result, this is a good driver to use for a tweeter,
but it’s difficult to make it behave for lower frequencies.

There are advantages and disadvantages to using ribbon loudspeakers:

Advantages

• The ribbon has a low mass, therefore it’s good for high frequencies.

Disadvantages

• You can’t make it very large, or have a very large excursion (it’ll break
apart) so it’s not good for low frequencies or high sound pressure levels.

• The magnets have to produce a very strong magnetic field (making
them very heavy) because the ribbon can’t.
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• The impedance of the driver is very low (because it’s just a piece of
aluminum) – so it may be a nasty load for your amplifier, unless you
look after this using a transformer.

5.8.3 Moving Coil Loudspeakers

REWRITE ALL OF THIS CHAPTER
Think back to the chapter on electromagnetism and remember the right

hand rule. If you put current though a wire, you’ll create a magnetic field
surrounding it; likewise if you move a wire in a magnetic field, you’ll induce
a current. A moving coil loudspeaker uses a coil of wire suspended in a
stationary magnetic field (compliments of a permanent magnet). If you
send current thought the coil, it induces a magnetic field around the coil
(think of a transformer). Since the coil is suspended, it is free to move,
which is does according to the strengths and directions of the two magnetic
fields (the permanent one and the induced one). The bigger the current, the
bigger the field, therefore the greater the movement.

Figure 5.104:

In order for the system to work well, you need reasonably strong magnetic
fields. The easiest way to do this is to use a really strong permanent magnet.
You could also improve the packing density of the voice coil. This essentially
means putting more metal in the same space by changing the cross-section
of the wire. The close-ups shown below illustrate how this can be done. The
third (and least elegant) method is to add more wire to the coil. We’ll talk
about why this is a bad idea later.
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Figure 5.105:
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Figure 5.106: A cross section of a simplified model of a moving coil loudspeaker.



5. Electroacoustics 389

Figure 5.107: A diaphragm is glued to the front (this side) of the coil (called the voice coil. It has
two basic purposes: 1) to push the air and 2) to suspend the coil in the magnetic field

Figure 5.108: Voice coil using wire with a round cross section. This is cheap and easy to make, but
less efficient.

Figure 5.109: Voice coil using wire with a flat cross section. This has greater packing density,
producing a stronger magnetic field and is therefore more efficient.
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Loudspeaker have to put a great deal of acoustic energy into a room, so
they have to push a great deal of air. This can be done in one of two ways:

- use a big diaphragm and move lots of molecules by a little bit (big
diaphragm, small excursion)

- use a little diaphragm and move a few molecules by a lot (little di-
aphragm, big excursion)

In the first case, you have to move a big mass (the diaphragm and the
air next to it) by a little, in the second case, you move a little mass by
a lot – either way you need to get a lot of energy into the room. If the
loudspeaker is inefficient, you’ll be throwing away large amounts of energy
produced by your power amplifier. This is why you worry about things like
packing density of the voice coil. If you try to solve the problem simply
by making the voice coil bigger (by adding more wire), you also make it
heavier, and therefore harder to move.

There are advantages and disadvantages to using moving coil loudspeak-
ers:

Advantages

• They are pretty rugged (that’s to say that they can take a lot of
punishment – not that they look nice if they’re carpeted...)

• They can make very loud sounds

• They are easy (and therefore cheap) to construct

Disadvantages

• There’s a big hunk of metal (the voice coil) that you’re trying to move
back and forth. In this case, inertia is not your friend. The more en-
ergy you want to emit (you’ll need lots in low frequencies) the bigger
the coil – the bigger the heavier – the heavier, the harder to move
quickly – the harder to move quickly, the more difficult it is to pro-
duce high frequencies. The moral: a driver (single coil and diaphragm
without an enclosure) can’t effectively produce all frequencies for you.
It has to be optimized for a specific frequency range.

• They’re heavy because strong permanent magnets weigh a lot. This
is especially bad if you’re part of a road crew for a rock band.

• They have funny-looking impedance curves – but we’ll talk about that
later.
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5.8.4 Electrostatic Loudspeakers

When we learned how capacitors worked, we talked a bit about electrostatic
attraction. This is the tendency for oppositely charged particles to attract
each other, and similarly charged particles to repel each other. This is what
causes electrons in the plates of a capacitor to bunch up when there’s a
voltage applied to the device. Let’s now take this principle a step farther.

Figure 5.110: Put three conductive plates side by side (just like in a capacitor, but with an extra
plate). Have the two outside plates fixed, but the middle one suspended so that it can move (shown
by the little arrow at the bottom of the diagram.

Charge the middle plate with a DC polarizing voltage. It is now equally
attracted to the two outside plates (assuming that their charges are equal).

If we change the charge on the outside plates such that they are different
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from each other, the inside plate will move towards the plate of more opposite
polarity.

Figure 5.111: If the middle plate is very positive and the outsite plates are slightly positive and
slightly negative relative to each other, the middle plate will be attracted to (and be pulled towards)
the more negative plate while it is repelled (and therefore pushed away from) the more positive
plate. This system is known as push-pull for obvious reasons.

If we then perforate the plates (or better yet, make them out of a metal
mesh) the movement of the inside plate will cause air pressure changes that
radiate through the holes into the room.

There are (as expected) advantages and disadvantages to this system.

Disadvantages

- In order for this system to work, you need enough charge to create an
adequate attraction and repulsion. This requires one of two things:
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- a very big polarizing voltage on the middle plate (on the order of 5000
V). Most electrostatics use a hugh polarizing voltage (hence the necessity in
most models to plug them into your wall and your amplifier.

- a very small gap between the plates. If the gap is too small, you can’t
have a very big excursion of the diaphragm, therefore you can’t produce
enough low frequency energy without a big diaphragm (it’s not unusual to
see electrostatics that are 2m2.

- Starting prices for these things are in the thousands of dollars.

Advantages

- The diaphragm can be very thin, making it practically massless – or at least
approaching the mass of the air it’s moving. This in turn, gives electrostatic
loudspeakers a very good transient response due to an extremely high high-
frequency cutoff.

- You can see through them (this impresses visitors)
- They have symmetrical distortion – we’ll talk a little more about this

in the following section on enclosures.

Electrical Impedance

Hmmmmmm... loudspeaker impedance... We’re going to only look at mov-
ing coil loudspeakers. (If you want to know more about this – or anything
about the other kinds of drivers, get a copy of the Borwick book I mentioned
earlier.)

We’ll begin by looking at the impedance of a resistor:

Figure 5.112: The impedance is the same at all frequencies.

Next, we learned the impedance characteristic of a capacitor
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Figure 5.113: The higher the frequency, the lower the impedance.

Finally, we learned that the impedance characteristic of an inductor (a
coil of wire) is the opposite to that of a capacitor.

Figure 5.114: The higher the frequency, the higher the impedance.

Therefore, even before we attach a diaphragm or a magnet, a loud-
speaker coil has the above impedance. The problem occurs when you add
the diaphragm, magnet and enclosure which, together create a resonant fre-
quency for the whole system. At that frequency, a little energy will create
a lot of movement because the system is naturally resonating. This causes
something interesting to happen: the loudspeaker starts acting more like a
microphone of sorts and produces its own current in the opposite direction
to that which you are sending in. This is called back EMF (Electro-Motive
Force) and its end result is that the impedance of the speaker is increased at
its resonant frequency. The resulting curve looks something like this (notice
the “bump” in the impedance at the resonant frequency of the system):

Note the following things:
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Figure 5.115: INSERT CAPTION

- The curve is for a single driver in an enclosure
- For a driver rated at an impedance of 8Ω, the curve varies from about

7Ω to 80Ω (at the resonance point).
As you add more drivers to the system, the impedance curve gets more

and more complicated. The important thing to remember is that an 8Ω
speaker is almost never 8Ω.

Suggested Reading List



5. Electroacoustics 396

5.9 Loudspeaker acoustics

Note that this is just an outline at this point. Bear with me while I think
about this before I start writing it.

5.9.1 Enclosures

- Enclosure Design (i.e. “what does the box look like?”) of which there are
a number of possibilities including the following:

- Dipole Radiator (no enclosure) - Infinite Baffle - Finite Baffle - Folded
Baffle - Sealed Cabinet (aka Acoustic Suspension) - Ported Cabinet (aka
Bass Reflex)

- Horns (aka Compression Driver)

Dipole Radiator

(no enclosure)
aka a Doublet Radiator
Since both sides of a dipole radiator’s diaphragm are exposed to the out-

side world (better known as your listening room) there are opposite polarity
pressures being generated in the same space (albeit at different locations)
simultaneously. As the diaphragm moves “outwards” (i.e. towards the lis-
tener), the resulting air pressure at the “front” of the diaphragm is positive
while the pressure at the back of the diaphragm is of equal magnitude but
opposite polarity.

Figure 5.116: INSERT CAPTION
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Figure 5.117: INSERT CAPTION

At high frequencies, the diaphragm beams (meaning that it’s directional
– it only sends the energy out in a narrow beam rather than dispersing it in
all directions) as if the rear side of the diaphragm were sealed. The result
of this is that the negative pressure generated by the rear of the diaphragm
does not reach the listener. For more informaiton on beaming see section
1.6 of the Loudspeaker and Headphone Handbook edited by John Borwick
and published by Butterworth.

At low frequencies, the delay time required for energy to travel from the
back of the diaphragm to the front and towards the listener is a negligible
part of the phase of the wave (i.e. the distance around the diaphragm is
very small compared to the wavelength of the frequency). Since the energy
at the rear of the diaphragm is opposite in polarity to the front, the two
cancel each other out at the listening position.

The result of all this is that a dipole radiator doesn’t have a very good
low frequency response – in fact, it acts much like a high pass filter with
a slope of 6 dB/octave and a cutoff frequency which is dependent on the
physical dimensions of the diaphragm.

How do we fix this?

Infinite Baffle

The biggest problem with a dipole radiator is caused by the fact that the
energy from the rear of the diaphragm reaches the listener at the front of
the diaphragm. The simplest solution to this issue is to seal the back of the
diaphragm as shown.



5. Electroacoustics 398

Figure 5.118: INSERT CAPTION

This is called an “infinite baffle because the diaphragm is essentially
mounted on a wall of infinite dimensions. (Another way to draw this would
have been to put the diaphragm mounted in a small hole in a wall that goes
out forever. The problem with that kind of drawing is that my stick man
wouldn’t have had anything to stand on.)

Disadvantages
- You’re automatically throwing away half of your energy (the half that’s

radiated by the rear of the diaphragm
- Costs... How do you build a wall of infinite dimensions?
Advantages
- Lower low-frequency cutoff than a dipole radiator.
Now the low cutoff frequency is dependent on the diameter of the di-

aphragm according to the following equation:

fc =
c

πD
(5.32)

Where fc is the low frequency cutoff in Hz (-3 dB point) c is the speed
of sound in air in m/s D is the diameter of the loudspeaker in m

Unlike the dipole radiator, frequencies below the cutoff have a pressure
response of 12 dB/octave (instead of 6 dB/octave). Therefore, if we’re going
down in frequency comparing a dipole radiator and an infinite baffle with
identical diaphragms, the infinite baffle will go lower, but drops off more
quickly past that frequency.

Finite Baffle

Instead of trying to build a baffle with infinte dimensions, what would hap-
pen if we mounted the diaphragm on a circular baffle of finite dimensions as
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shown below?

Figure 5.119: INSERT CAPTION

Now, the circular baffle causes the energy from the rear of the driver to
reach the listener with a given delay time determined by the dimensions of
the baffle. This causes a comb-filtering effect with the first notch happening
where the path length from the rear of the driver to the front of the baffle
equals one wavelength as shown below:

One solution to this problem is to create multiple path lengths by us-
ing an irregularly-shaped baffle. This causes mutiple delay times for the
pressure from the rear of the diaphragm to reach the front of the baffle.
The technique will eliminate the comb filtering effect (no notches above the
transition frequency) but we still have a 6 dB/octave slope in the low end
(below the transisition frequency). If the baffle is very big (approaching
infinite relative to the wavelength of the lowest frequencies) then the slop in
the low end approaches 12 dB/octave – essentially, we have the same effect
as if it were an infinite baffle.

If the resonant frequency of the driver, below which the roll-off occurs at
a slope of 6 dB/octave, is the same as (or close to) the transition frequency
of the baffle, the slope becomes 12 or 18 dB/octave (dependent on the size
of th baffle – the slopes add). The resonant frequency of the driver is the
rate at which the driver would oscillate if your thumped it with your finger
– though we’ll talk about that a little more in the section on impedance.

What do you do if you don’t have enough room in your home for big
baffles? You fold them up!
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Figure 5.120: The natural frequency response of a radiator mounted in the centre of a circular finite
baffle. The transition frequency is where the extra path length from the rear of the diaphragm to the
listener is one half of a wavelength. Note that the plotted transition frequency is unnaturally high
for a real loudspeaker. Also, compare this frequency response to the natural frequency response of
a bidirectional microphone shown in Figure XXX in Section 5.7.

Folded Baffle

(aka Open-back Cabinet)
A folded baffle is essentially a large flat baffle that has been “folded”

into a tube which is open on one end (the back) and sealed by the driver at
the other end as is shown below.

Figure 5.121: INSERT CAPTION

The fact that there’s a half-open tube in the picture causes a nasty
resonance (see the section on resonance in the Acoustics section of this
textbook for more info on why this happens) at a frequency determined by
the length of the tube.
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wavelength of the resonant frequency = 4 * length of the tube
The low frequency response of this system is the same as in the case of

finite baffles.

Sealed Cabinet

(aka Acoustic Suspension)
We can eliminate the resonance of an open-back cabinet by sealing it up,

thus turning the tube into a box.

Figure 5.122: INSERT CAPTION

Now the air sealed inside the enclosure acts as a spring which pushes
back against the rear of the diaphragm. This has a number of subsequent
effects:

- increased resonant frequency of the driver
- reduced efficiency of the driver (because it has to push and pull the

“spring” in addition to the air in the room)
- non-symmetrical distortion (because pushing in on the “spring” has a

different response than pulling out on it)
We’re throuwing away a lot of energy as in the case of the infinite baffle

because the back of the driver is sealed off to the world.
Usually the enclosure has an acoustic resonant frequency (sort of like

little room modes) which is lower than the (now raised...) resonant frequency
of the driver. This effectively lowers the low cutoff frequency of the entire
system, below which the slope is typically 12 dB/octave.

Ported Cabinet

(aka Bass Reflex)
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You can achieve a lower low cutoff frequency in a sealed cabinet if you
cut a hole in it – the location is up to you (although, obviously, different
locations will have different effects...)

Figure 5.123: INSERT CAPTION

If you match the cabinet resonance, which is determined by the volume of
the cabinet and the diameter and length of the hole (look up Helmholtz res-
onators in the Acoustics section), with the speaker driver resonance properly
(NOTE: Could someone explain to me what a “properly matched” cabinet
and driver resonance means?), you can get a lower low frequency cutoff
than a sealed cabinet, but the low frequencies now roll off at a slope of 24
dB/octave.

Horns

(aka Compression Drivers)
The efficiency of a system in transferring power is determined by how

the power delivered to the system relates to the power received in the room.
For example, if were to send a signal to a resistor from a function generator
with an output impedance of 50Ω, I woudl get the most power dissapation
in the resistor if it had a value of 50Ω. Any other value would mean that
less power would be dissapated by the device. This is because its impedance
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would be matched to the internal impedance of the function generator.
Consider loudspeakers to have the same problem: the transfer motion

(kinetic energy, if you’re a geek) or power from a moving diaphragm to the
air surrounding it. The problem is that the air has much lower acoustic
impedance than the driver (meaning, it’s easier to move back and forth),
therefore our system isn’t very efficient.

Just as we could use a transformer to match electrical impedances in
a circuit (providing a Req rather than the actual R) we can use something
called a horn to match the acoustic impedances between a driver and the
air.

Figure 5.124: INSERT CAPTION

There are a couple of things to point out regarding this approach:
- The diaphragm is mounted in a small chamber which opens to the horn
- At point “a” (the small area of the horn) there is a small area of air

undergoing a large excursion. The purpose of the horn is to slowly change
this into the energy at point “b” where we have a large area with a small
excursion. In other words, the horn acts as an impedance matching device,
ensuring that we have an optimal power transfer from the diaphragm to the
air in the room.

- Notice that the diaphragm is large relative to the opening to the horn.
This means that, if the diaphragm moves as a single unit (which it effectively
does) there is a phase difference (caused by propogation delay differences to
the horn) between the pressure caused by the centre of the diaphragm and
the pressure caused by the edge of the diaphragm. Luckily, this problem can
be avoided with the insertion of a plug which ensures that the path lengths
from different parts of the diaphragm to the centre of the throat fo the horn
are all equal.

In the above diagram, the large black area is the cross section of the
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Figure 5.125: INSERT CAPTION

plug with hole drilled in it (the white lines). Each hole is the same length,
ensureing that there is no interference, either constructive or destructive,
caused by multiple path lengths from the diaphragm to the horn.

5.9.2 Other Issues

Beaming

As a general rule of thumb, a loudspeaker is almost completely omnidirec-
tional (it radiates energy spherically – in all directions) when the driver is
equal to or less than 1/4 the wavelength of the frequency being produced.
The higher the frequency, the more directional the driver.

Why is this a problem?
High frequencies are very directional, therefore if your ear is not in the

direct “line of fire” of the speaker (that is to say, “on axis”) then you are
getting some high-frequency roll-off.

In the case of low frequencies, the loudspeaker is omnidirectional, there-
fore you are getting energy radiating behind and to the sides of the speaker.
If there’s a nearby wall, floor or ceiling, the pressure which bounces off it
will add to that which is radiating forward and you’ll get a boost in the low
end.

- If you’re near 1 surface, you get 3 dB more power in the low end
- If you’re near 2 surfaces, you get 6 dB more power in the low end
- If you’re near 3 surfaces, you get 9 dB more power in the low end
The moral of this story? Unless you want more low end, don’t put your

loudspeaker in the corner of the room.
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Multiple drivers

We said much earlier that drivers are usually optimized for specific frequency
bands. Therefore, an easy way to get a wide-band loudspeaker is to use
multiple drivers to cover the entire audio range. Most commonly seen these
days are 2-way loudspeakers (meaning 2 drivers, usually in 1 enclosure),
although there are many variations on this.

If you’re going to use multiple drivers, then you have some issues to
contend with:

1 – Crossovers
- You don’t want to send high frequencies to a low frequency driver (aka

woofer or, more destructively, low frequencies to a high-frequency driver
(aka tweeter). In order to avoid this, you filter the signals getting sent to
each driver – the woofer’s signal is routed through a low-pass filter, while
the tweeter’s is filtered using a high-pass. If you are using mid-range drivers
as well, then you use a band-pass filter for the signal. This combination of
filters is known as a crossover.

Most filters in crossovers have slopes of 12 or 18 dB/octave (although
it’s not uncommon to see steeper slopes) and have very specific designs to
minimize phase distortion around the crossover frequencies (the frequencies
where the two filters overlap and therefore the two drivers are producing
roughtly equal energy) This is particularly important because crossover fre-
quencies are frequently (sorry... I couldn’t resist at least one pun) around
the 1 – 3 kHz range – the most sensitive band of our hearing.

There are two basic types of crossovers, active and passive.

Passive crossovers

These are probably what you have in your home. Your power amplifier
sends a full-bandwidth signal to the crossover in the loudspeaker enclosure
which, in turn, sends filtered signals to the various drivers. This system
has a drawback in that it wastes power from your amplifier – anything that
is filtered out is lost power. “Audiophiles” (translation: “people with too
much disposable income who spend more time reading reviews of their audio
equipment than they do actually listening to it”) also complain about issues
like back EMF and cabinet vibrations which may or may not affect the
crossover. (I’ll believe this when I see some data on it...). The advantage
of passive crossovers is that they’re idiot-proof. You plug in one amplifier
to one speaker input and the system works and works well. Also – they’re
inexpensive.
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Active crossovers

These are filters that preceed the power amplifier in the audio chain (the
amplifier is then directly connected to the individual driver). They are more
efficient, since you only amplify the required frequency band for each driver
– then again, they’re more expensive because you have to buy the crossover
plus extra amplifiers.

2 – Crossover Distortion
There is a band of frequencies around the cuttoffs of the crossover filters

where the drivers overlap. At this point you have roughly equal energy
being emitted by at least two diaphragms. There is an acoustic interaction
between these two which must be considered, particularly because it is in
the middle of the audio range usually.

In order to minimize problems in this band, the drivers must have
matched distances to the listener, otherwise, you’ll get comb filtering due to
propogation delay differences. This so-called time aligning can be done in
one of two ways. You can either build the enclosure such that the tweeter
is set back into the face of the cabinet, so its voice coil is vertically aligned
with the voice coil of the deeper woofer. Or, alternatelym you can use an
electronic delay to retard the arrival of the signal at the closer driver by an
appropriate amount.

3 – Interaction between drivers
Remember that ther air inside the encolsure acts like a spring which

pushes and pulls the drivers contrary to the direction you want them to
move in. Imagine a woofer moving into a cabinet. This increases the air
pressure inside the enclosure which pushes out against both the woofer AND
the tweeter. This is bad thing. Some manufacturers get around this problem
by putting divided secctions inside the cabinet – others simply build seperate
cabinets – one for each driver (as in the B and W 801).

Electrical Impedance

Hmmmmmm... loudspeaker impedance... We’re going to only look at mov-
ing coil loudspeakers. (If you want to know more about this – or anything
about the other kinds of drivers, get a copy of the Borwick book I mentioned
earlier.)

We’ll begin by looking at the impedance of a resistor:
Next, we learned the impedance characteristic of a capacitor
Finally, we learned that the impedance characteristic of an inductor (a

coil of wire) is the opposite to that of a capacitor.
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Figure 5.126: The impedance is the same at all frequencies.

Figure 5.127: The higher the frequency, the lower the impedance.

Figure 5.128: The higher the frequency, the higher the impedance.
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Therefore, even before we attach a diaphragm or a magnet, a loud-
speaker coil has the above impedance. The problem occurs when you add
the diaphragm, magnet and enclosure which, together create a resonant fre-
quency for the whole system. At that frequency, a little energy will create
a lot of movement because the system is naturally resonating. This causes
something interesting to happen: the loudspeaker starts acting more like a
microphone of sorts and produces its own current in the opposite direction
to that which you are sending in. This is called back EMF (Electro-Motive
Force) and its end result is that the impedance of the speaker is increased at
its resonant frequency. The resulting curve looks something like this (notice
the “bump” in the impedance at the resonant frequency of the system):

Figure 5.129: INSERT CAPTION

Note the following things:
- The curve is for a single driver in an enclosure
- For a driver rated at an impedance of 8Ω, the curve varies from about

7Ω to 80Ω (at the resonance point).
As you add more drivers to the system, the impedance curve gets more

and more complicated. The important thing to remember is that an 8Ω
speaker is almost never 8Ω.

Suggested Reading List
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5.10 Power Amplifiers

NOT YET WRITTEN

5.10.1 Introduction
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Chapter 6

Electroacoustic
Measurements

6.1 Tools of the Trade

I could describe a piece of paper using a list of its measurements. If I said,
“one sheet of white paper, 8.5 inches by 11 inches” you’d have a pretty clear
idea of what I was talking about. The same can be done for audio gear –
we can use various measurements to describe the characteristics of a given
piece of equipment. Although it would be impossible to perform a set of
measurements that describe the characteristics exactly, we can get a good
idea of what’s going on.

Before we look at the various electroacoustic measurements you can per-
form on a piece of audio equipment, we’ll look at the various tools that we
use.

6.1.1 Digital Multimeter

A digital multimeter (also known as a DMM for short) is a handy device
that replaces a number of different analog tools such as a voltmeter and a
galvanometer . The particular tools incorporated into one DMM depends on
the manufacturer and the price range.

At the very least, a DMM will have meters for measuring voltage and
current – both AC and DC. These are typically chosen in advance, so you
set the switch on the meter to “AC Voltage” to do that particular measure-
ment, for example. In addition, the DMM will invariably include a meter
for measuring the resistance of a device (such as a resistor, for example...)

411
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Figure 6.1: A cheap digital multimeter. This thing is about the size of a credit card, not much
thicker and cost around $20Cdn.
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Usually, the last meter you’ll be guaranteed is a great little tool called a con-
tinuity tester . This is essentially a simplified version of a resistance meter
where the only output of the meter is a “beep” when there is a low-resistance
connection between the two leads.

Some fancier (and therefore more expensive) units will also include a
diode tester and a meter that can measure capacitance.

There are a couple of things to be concerned about when using one of
these devices.

First, we’ll just look a the basic operation. Let’s say that you wanted
to measure the DC voltage between two points on your circuit. You set the
DMM to a DC Voltage measurement and touch the two leads on the two
points. Be careful not to touch more than one point on the circuit with each
lead of the DMM. This could do some damage to your circuit... Note that
one of the leads is labelled “ground” which does not necessarily mean that
it’s actually connected to ground in your circuit. All it really means is that,
for the DMM, that particular lead is the reference. The voltage displayed is
the voltage of the other lead relative to the “ground” lead.

When you’re measuring voltage, the two leads of the DMM theoretically
have an infinite impedance between them. This is necessary becauuse, if they
didn’t, you’d change the voltage that you were measuring by measuring it.
For example, let’s pretend that you have two identical resistors in series
across a voltage source. If your DMM had a small impedance across the two
leads, and you used it to measure the voltage across one of the resistors,
then the small impedance of the DMM would be in parallel with the resistor
being measured. Consequently, the voltage division will change and you
won’t get an accurate measurement. Since the impedance between the leads
is infinityΩ (or at least, pretty darned close...), when it’s in parallel with a
resistor, it’s as if it’s not there at all, and it consequently has no effect on
the circuit being measured.

If you’re measuring current, then you have to use the DMM a little
differently. Whereas a voltage measurement is performed by putting the
DMM in parallel with the resistor being measured, a current measurement
is performed by putting the DMM in series with the circuit. This ensures
that the current goes through the DMM on it’s way through the circuit.
Also, as a result, it’s good to remember that the impedance across the leads
for a current measurement is 0Ω – otherwise, it would change the current in
the circuit and you’d get an inaccurate measurement.

Now, there’s an important thing to remember here – when the DMM is
in voltage measuring mode, the impedance is infinity. When it’s in current
measuring mode, it’s 0Ω. Therefore, if you are measuring current, and
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you accidently forget to set the meter back to voltage measuring mode to
measure the voltage across a power supply or a battery, you’ll probably
melt something. Remember that power supplies and batteries don’t like
being shorted out with a 0Ω impedance – it means that you’re asking for
infinite current...

Another thing: a DMM measures resistance (and continuity) by putting
a small voltage difference across its leads and measuring the resulting current
through it. The smaller the current, the bigger the resistance. This also
means, however, that your DMM in this case, is its own little power supply
– so you don’t want to go poking at a circuit to measure resistors without
lifting the resistor out – one leg of the resistor will do.

One last thing to remember: the AC measurements in a typical DMM
are supposed to be RMS measurements. In fact, they’re pseudo-RMS, so
you can’t usually trust them. Remember from way back that the RMS of
a sine wave is about 0.707 of its peak value? Well, a DMM assumes that
this is always the case – so it measures the peak value, multiplies by 0.707
and displays that number. This is fine if all you ever do is measure sine
waves (like most electricians do...) but we audio types deal with waveforms
other than sinusoids, so we need to use something a little more accurate.
Just remember, if you’re using a DMM and it’s not a sine wave, then you’re
looking at the wrong answer.

A small thing that you can usually ignore: a DMM is only accurate (such
as it is...) within a limited frequency range. Don’t expect a $10 DMM to
be able to give you a reliable reading on a 30 kHz sine tone.

6.1.2 True RMS Meter

A true RMS meter is just a fancy DMM that actually does a real RMS volt-
age measurement instead of some quick and dirty short cut to the wrong
answer. Unfortunately, because there’s not much demand for these things,
they’re a LOT more expensive than a run-of-the-mill DMM. Bet on spending
tens to hundreds of times the cost of a DMM to get a true RMS measure-
ment. They look exactly the same as a normal DMM, but they have the
words “True RMS” written on it somewhere – that and the price tag will
be higher (on the order of about $ 300 Cdn).

Note that a true RMS meter usually suffers from the same limited fre-
quency range problem as a cheap DMM. The good thing is that a true RMS
meter will have a much wider range, and the manual will probably tell you
what that range is, so you know when to stop trusting it.

You may also see a DMM that has a switchable low-pass filter on it.
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This may seem a little silly at first, but it’s actually really useful for doing
noise measurements. For example, if you want to measure the noise output
of a microphone preamp, you’ll have to do a true RMS measurement, but
you’re not really worried about noise above, say, 100 kHz (then again, maybe
you are... I don’t know...). If you just did the measurement without a low
pass filter, you’d get a much bigger value than you’ll like, and one that
isn’t representative of the audible noise level. So, in this case, the low pass
filter is your friend. If your true RMS meter doesn’t have one, you might
want to build one out of a simple RC circuit. Just remember, though, that if
you’re stating a noise measurement that you did, include the LPF magnitude
characteristic with your values.

6.1.3 Oscilloscope

Digital multimeters and true RMS meters are great for doing a quick mea-
surement of a signal and getting a single number to describe it – the problem
is that you really don’t know all that much about the signal’s shape. For
example, if I handed you two wires and asked you to give me a measurement
of their voltage difference with a true RMS meter, you’d tell me one, maybe
two numbers (the AC and DC components can be measured separately, re-
member...). But you don’t know if it’s a sine wave or a square wave or a
Britney Spears tune.

in order to see the shape of the voltage waveform, we use an oscilloscope.
This is a device which can be seen in the background of every B science fiction
film ever made. All evil scientists and aliens seem to have oscilloscopes in
their labs measuring sine waves all the time.

An oscilloscope displays a graph showing the voltage being measured as
it changes in time. It shows this by sweeping a bright little dot across the
screen from left to right and moving it up when the voltage is positive and
down when it’s negative.

For the remainder of this discussion, keep referring back to the drawing
of an oscilloscope in Figure 6.2. The first thing to notice is that the display
screen is divided into squares – 10 across and 8 down. These squares are
called divisions and each is further divided into five sections using little tick
marks on the centre lines – the X- and Y-axes. As we’ll see, these divisions
are our only reference to the particular characteristics of the waveform.

You basically have control over two parameters on a ‘scope – the speed
of the dot as it goes across the screen and the vertical magnification of the
voltage. There are a couple of extra controls that we’ll look at one by one.
We’ll do this section by section on the panel in Figure 6.2.
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Figure 6.2: A simple dual-channel oscilloscope.

Power

This section is simple – it contains the Power switch – the on/off button.

Screen

Typically, there is a section on the oscilloscope that lets you control some
basic aspects of the display like the Intensity of the beam – a measure of
its brightness, the focus and the screen Illumination. In addition, there is
also probably a small hole showing the top of a screwdriver potentiometer.
If this is labeled, it is called the trace rotation. This controls the horizontal
angle of the dot on the screen and shouldn’t need to be adjusted very often
– once a month maybe.

Time / div.

The horizontal speed of the dot is controlled by the knob marked Time/div
which stands for “Time per Division.” For example, when this is set to 1
second, it means that the dot will move from left to right, taking 10 seconds
to move across the screen (because there are 10 divisions and the dot is
traveling at a rate of 1 division per second). As the knob is turned to
smaller and smaller divisions of a second, the dot moves faster and faster
until it is moving so fast that it appears that there is a line on the screen
rather than a single dot.

You’ll notice on the drawing that there area actually two knobs – one
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gray and one red. The gray one is the usual one. The red one is rarely
used so it’s normally in the off position. If it’s turned on, it uncalibrates the
larger knob, meaning that if the time-per-division number can no longer be
trusted. This is why, when the red knob is turned on, a red light comes on
on the front panel next to the word “Uncalibrate,” warning the user that
any time readings will be incorrect.

Channel 1

Most oscilloscopes that you’ll see have two input channels which can be
used to make completely independent measurements of two different signals
simultaneously. We’ll just look at one of the channel’s controls, since the
second one has identical parameters.

To begin with, the input is a BNC connector, shown on the lower left
of the panel. This is normally connected to either of two things. The first
is a probe, which has an alligator clip for the ground connection (almost
always black) and a pointy part for the probe that you’ll use to make the
measurement. The second is somewhat simpler – it’s just two alligator clips,
one black one for the ground and one red one for the probe.

The large knob on this panel is marked “V/div” which stands for “Volts
per Division.” This is essentially a vertical magnification control, telling you
how many divisions the green dot on the screen will move vertically for a
given voltage. For example, when this knob is set to 100 mV per division
and the dot moves upwards by 2 divisions, then the incoming voltage is 200
mV. A downwards movement of the dot indicates a negative voltage.

This knob can also be uncalibrated using the smaller red knob within it
which is normally turned off. Again, there is a warning light to tell you not
to trust the display when this knob is turned on.

Moving to the lower right side of the panel, you’ll see a toggle switch
that can be used to select three different possibilities – AC, DC and Ground.
These don’t mean what your intuition would think, so we’ll go through them.
When the toggle is set to Ground, the dot displays the vertical location of
0 V. Since this vertical position is adjustable using the knob just above the
toggle switch, it can be set to any location on the screen. Normally, we
would set the toggle to Ground which results in a flat horizontal line on
the display, then we turn the Vertical position so that the line is perfectly
aligned with the centre line on the screen. This means that you have the
same positive and negative voltage ranges. If you’re looking at a DC voltage,
or an AC voltage with a DC component, then you may want to move the
Ground position to a more appropriate vertical location.
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When the toggle is set to DC, the dot displays the actual instantaneous
voltage. This is true whether the signal is a DC signal or an AC signal. Note
that this does not mean that you’re looking at just the DC component of an
AC signal. If you have a 1 VRMS sine wave with a -1 V DC offset coming
into the oscilloscope and if it’s set to DC mode, then what you see is what
you get – both the AC and the DC components of the signal.

When the toggle is set to AC, the dot displays the AC component of the
waveform, omitting the DC offset component. So, if you try to measure the
voltage of a battery using an oscilloscope in AC mode, then you’ll see a value
of 0 V. However, if you’re measuring the ripple of a power supply rail without
seeing the DC component, this mode is very useful. For example, let’s say
that you’ve got an 18 V rail with a 10 mV of ripple. If the oscilloscope is in
DC mode and you set the V/div knob to have a high magnification so that
you can accurately measure the 10 mV AC, then you can’t see the signal
because it’s somewhere up in the ceiling. If you decrease the magnification
so that you can see the signal, it looks like a perfectly flat line because 10
mV AC is so much smaller than 18 V DC. So, you set the mode to AC –
this removes the 18 V DC component and lets you look at only the 10 mV
AC ripple component at a high magnification.

Trigger

Let’s say that you’ve got a 1 kHz sine wave that you’re measuring with
the ‘scope. The dot on the screen just travels from left to right at a speed
determined by the user. when it gets to the right side of the screen, it
just starts on the left side again. Chances are that this rotation doesn’t
correspond in any way to the period of the signal. Consequently, the sine
wave appears to move on the screen because every time the trace starts, it
starts at a new point in the wave. In order to prevent ourselves from getting
seasick or at least a headache, we have to tell the oscilloscope to start the
trace at the same point in the waveform every time. This is controlled by
the trigger. If we set the trigger to a level of 0 V, then the trace will wait
until the signal crosses the level of 0 V before moving across the screen.
This works great, but we need one more control – the slope. If we just set
the trigger level to 0 V and hoped for the best, then sometimes the sine
wave would start off on the left side at 0 V heading in the positive direction,
sometimes at 0 V in the negative direction. This would result in a shape
made of two sine waves, each a vertical mirror image of the other. Therefore,
we set the trigger to a particular slope – for example, 0 V heading positive.

We can also select which signal is sent to the triggering circuit. This is
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done using the toggle switch at the bottom of the panel. The user can select
either the signal coming into Channel 1, Channel 2 or a separate External
input connected to the BNC connector right on the trigger panel.

View

Finally, there is a panel that contains the controls to determine what you’re
actually looking at on the screen. There is a knob that permits you to select
between looking at either Channel 1, Channel 2 or both simultaneously.
There are two options for seeing both signals – Chop and Alternate. There
is a slight difference between these two.

In actual fact, there is only one dot tracing across the screen on the
‘scope, so it cannot display both signals simultaneously. It can, however,
do a pretty good job of fooling your eyes so that it looks like you’re seeing
both signals at once. When the ‘scope is in Alternate mode, the dot traces
across the screen showing Channel 1, then it goes back and traces Channel
2, alternating back and forth. If the horizontal speed of hte trace is fast
enough, then two lines appear on the screen. This works really well for fast
traces used for high frequency signals, but if the trace is moving very slowly,
then it takes too long to wait for the other channel to re-appear.

Consequently, when you’re using slower trace speeds for lower frequen-
cies, you put the scope in Chop mode. In this case, the dot moves across
the screen, hopping back and forth between the Channel 1 and 2 inputs, es-
sentially showing half of each. This doesn’t work well for high trace speeds
because the display gets too dim because you’re only showing half of the
trace at any given time.

In addition, the View panel also has a couple of other controls. One is
a knob which allows you to change the Horizontal position of the traces. In
fact, if you turn this knob enough, you should be able to move the trace
right off the screen.

The other control is a magnification switch which is rarely used. This
is usually a x 10 Magnification which multiplies the speed of the trace by a
factor of 10. Typically, this magnified trace will be shown in addition to the
regular trace.

A couple of extra things...

There are a couple of things that I’ve left out here. The first is an option
on the Time control knob called X-Y mode. This changes the function of
the oscilloscope somewhat, turning off the time control of the dot. When
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this mode is selected, the vertical movement of the dot is determined by the
Channel 1 input in a normal fashion. The difference is that the horizontal
movement of the dot is determined by the Channel 2 input, positive voltage
moving the dot to the right, and negative to the left. This permits you
to measure the phase relationship of two signals using what is known as a
Lissajous pattern. This is discussed elsewhere in this book.

The last thing to talk about with oscilloscopes is a minor issue related to
grounding. Although the signal input to the ‘scope has an infinite impedance
to ground, its ground input is directly connected to the third pin in the AC
connector for the device. This means that, if you’re using it to measure
typical pro audio gear, the ground on the ‘scope is likely already connected
to the ground on the gear through your AC power connections (unless your
gear has a floating ground). Consequently, you can’t just put the ground
connection anywhere in your circuit as you can with a free-floating DMM.

6.1.4 Function Generators

More often than not, you’ll be trying to measure a piece of audio equipment
that doesn’t have an output without a signal being sent to its input. For
example, a mixing console or an equalizer doesn’t (or at least shouldn’t)
have an output when there’s no input. Consequently, you need something
to simulate a signal that would normally be fed into the input portion of the
Device Under Test (also known as a DUT ). This device is called a Signal
Generator or a Function Generator .

A function generator produces an analog voltage output with a wave-
form, amplitude and frequency determined by the user. In addition, there
are also probably controls for adding a DC voltage component to the sig-
nal as well as a VCF input for controlling the frequency using an external
voltage.

The great thing about a good function generator is that you can set it to
a chosen output amplitude and then sweep its frequency without any effect
on the output level. You’ll find that this is a very useful characteristic.

Figure 6.3 shows a simple function generator with a dial-type control.
Newer models will have a digital readout which allows the user to precisely
set the frequency.

Frequency and Range

On the far left of the panel is a dial that is used to control the frequency of
the output. This knob usually has a limited range on its own, so it’s used in
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Figure 6.3: A simple function generator.

conjunction with a number of selector switches to determine the range. For
example, in this case, if you wanted the output at 12 kHz, then you’d set
the dial to 1.2 and press the range button marked 10 k. This would mean
1.2 * 10 k = 12 kHz.

Function

On the far right of the panel is a section marked “Function” which contains
the controls for various components of the waveform. In the top middle are
three buttons for selecting between a square, triangle or sine wave. To the
left of this is a button which allows the user to invert the polarity of the
signal. On the far right is a button which provides a -20 dB attenuation.
This button is used in conjunction with the Amplitude control knob just
below it. On the bottom left is the knob which controls the DC Offset.
Typically, this is turned off by pushing the knob in and turned on by pulling
away from the panel.

The final control here is for the Duty Cycle of the waveform. This is a
control which determined the relative time spent in the positive and negative
portions of the waveform. For example, a square wave has a duty cycle of
50% because it is high for 50% of the cycle and low for the remaining 50%.
If this relationship is changed, the wave approaches a pulse wave. Similarly,
a triangle wave has a 50% duty cycle. If this is reduced to 0% then you have
a sawtooth wave.

Output

The average function generator will have two outputs. One, which is usually
marked “Main” is the normal output of the device. The second is a pulse
wave with the same frequency as the main output. This can be used for
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externally triggering an oscilloscope rather than triggering from the signal
itself – a technique which is useful when measuring delay times, for example.

Input

Finally, some function generators have a VCF input which permits the user
to control the frequency of the generator with an external voltage source.
This may be useful in doing swept sine tone measurements, where the fre-
quency of the sine wave is swept from a very low to very high frequency to
see the entire range of the DUT.

6.1.5 Automated Testing Equipment

Unfortunately, measuring a DUT using these devices is typically a tediious
affair. For example, if you wanted to do a frequency response measurement
of an equalizer, you’d have to connect a function generator to its input and
its output to an oscilloscope. Then you’d have to go through the frequency
range of the device, sweeping from a low to a high frequency, checking for
changes in the output level on the oscilloscope.

Fortunately, there are a number of various automated testing devices
which do all the hard work for you. These are usually computer-controlled
systems that use different technqiues to arrive at a reliable measurement of
the device. Two of these are the Swept Sine Tone and the Maximum Length
Sequence techniques.

6.1.6 Swept Sine Tone

NOT YET WRITTEN

6.1.7 MLS-Based Measurements

Back in Section 3.3.2 we looked at a mathematical concept called a maximum
length sequence or MLS . An MLS is a series of values (1’s and -1’s) that have
a very particular order. We’re not going to look at how these are created –
too complicated. We’ll just look at some of their properties. We’ve already
seen that they can be used to make diffusion panels for your studio walls. It
turns out that they can also be used to make electroacoustic measurements.

Let’s take a small MLS of 15 values (in other words, N = 15). This
sequence is shown below.

+ + + - - - + - - + - +
If we were to graph this sequence, it would look like Figure 6.4.
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Figure 6.4: A graphic representation of the MLS shown above (N=15)

Later on in the section on DSP we’re going to learn about a special
mathematical process called a cross-correlation function. For the purposes
of this discussion, we’re not going to worry about what that means – as far
as we’re concerned for now, it’s math that’s done to a bunch of numbers that
result in another bunch of numbers. Basically, a cross-correlation function
tells you how much two signals are alike if you compare them to each other
at different times.

There’s a wonderful property of an MLS that makes it so special. If
you take an MLS and do a cross-correlation function on it with itself, magic
occurs. Now, at first it might seem strange to do math to figure out how
much a signal is like itself – of course it’s identical to itself... but remember
that the cross-correlation function also checks to see how alike the signals
are if they are not time-aligned.

Let’s begin by using the MLS with N = 15 shown in Figure 6.4 as a
digital audio signal. If we do a cross-correlation function on this with itself,
we get the result shown in Figure 6.5.

What does this tell us? Reading from left to right on the graph, we can
see that if the MLS is compared to itself with a time offset of 14 samples,
then they have a correlation of about 0.1 which means that they’re not very
similar (a correlation of 0 means that they are completely different). As we
make the time offset smaller and smaller, the correlation stays very low (less
than 0.2) until we get to an offset of 0. At this point, the two signals are
identical, so they have a correlation of 1.

If we used a longer MLS sequence, the correlation values at time offsets
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Figure 6.5: The cross correlation function of the MLS sequence shown in Figure 6.4 with itself.

other than 0 would become very small. For example, Figure 6.6 shows the
cross-correlation function of an 8191-point MLS.
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Figure 6.6: The cross correlation function of an 8191-point MLS sequence with itself.

If we idealize this graph, we could say that, at a time offset of 0 we
have a correlation coefficient of 1, and at all other time offsets, we have
a correlation coefficient of 0. If we think of this as a time signal instead
of a cross-correlation function, then it’s an impulse. This has some pretty
significant implications on our lives.

Let’s say that you wanted to make an impulse response measurement of
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a room. You’d have to make an impulse, record it and look at the recording.
So, you snap your fingers and magically, you can see direct sound, reflections
and reverberation in your recording. Unfortunately, this won’t work. You
see, in the real world, there’s noise, and if you snap your fingers, you won’t be
able to distinguish the finger snap from the noise because your impulse isn’t
strong enough – your signal-to-noise ratio is far too small. “No problem!” I
hear you cry. “We make a bigger impulse. I’ll get my gun.”

In fact, this would work pretty well. For many years, acousticians carried
around pistols and buckets of sand to fire bullets into in order to make im-
pulse response measurements. There are some drawbacks to this procedure,
however. You have to own a gun, you need a microphone that can handle a
VERY big signal, you need to buy ear protection... All sorts of reasons that
work against this option.

There is a better way. Play an MLS out of a loudspeaker. (It will sound
a bit like white noise – in fact the signal is sometimes called a pseudo-random
signal because it sounds random but it isn’t.) Record the signal in the room
with a microphone. Then go home.

When you get home, do a cross-correlation function on the MLS signal
that you sent to the loudspeaker with the signal that came into the micro-
phone. When you do, the resulting output will be an impulse response of
the room with a very good signal-to-noise ratio.

Let’s look at a brief example. I made a 1023-point MLS. Then I mul-
tiplied by 0.5 delayed it by 500 samples and added the result back to the
original. So, we have two overlapping MLS’s with a time offset of 500 sam-
ples, and the second one is lowered in level by 6 dB. I then did a cross
correlation function of the two signals using the xcorr function in MAT-
LAB. The result is shown in Figure 6.7. As you can see here, the result is
a noisy representation of the impulse response of the resulting signal. If I
wanted to improve my signal-to-noise ratio, all I have to do is to increase
the length of the MLS.

All of this was a lot of work that you don’t have to do because you can
buy measurement systems that do all the math for you. The most popular
one is the MLSSA system (pronounced “Melissa”) from DRA Laboratories
(www.mlssa.com), but other companies make them. For example, the Au-
dioPrecision system has it as an option on their devices (www.ap.com). Of
course, if you have MATLAB and the option to playback and record digital
audio from your computer, you could just do it yourself.

6.1.8 Suggested Reading List

http://www.mlssa.com
http://www.ap.com
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Figure 6.7: The cross correlation function of an 1023-point MLS sequence with a modified version
of itself (see text for details).
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6.2 Electrical Measurements

6.2.1 Output impedance

The output impedance of a device under test (DUT) is measured through
the comparison of a given signal being output by the device with and without
a load of a known impedance. For example, if we send a 1 kHz sine tone
though a DUT and measure its output to be 0 dBV (1 VRMS) with an
oscilloscope and no other load, then we put a 600 Ω resistor across the
output and measure its new output level (we’ve changed nothing but the
load on the output) to be -6.02 dBV (0.5 VRMS), then we know that the
DUT has a 600 Ω output impedance at 1 kHz. Effectively, we have built a
voltage divider using the output of the DUT and a 600 Ω resistor. The less
the output drops when we add the resistor, the lower the output impedance
(expect values around 50Ω nowadays...).

The equation for calculating this could be something like

ZOUT = 600 ∗ V1

V2
− 1 (6.1)

Where ZOUT is the output impedance of the DUT (in Ω)
V1 is the level of the unloaded output signal of the DUT (in volts)
and
V2 is the level of the output signal of the DUT loaded with a 600 Ω

resistor (in volts)

6.2.2 Input Impedance

The input impedance of a device is measured in a similar fashion to the
output impedance, except that we are now using the DUT as the load on a
function generator with a known impedance, usually 600 Ω. For example,
if we produce a 1 kHz, 0 dBV sine tone with a function generator with a
600 Ω output impedance and the output of the generator drops by 6.02 dB,
then we know that the input impedance of the device is 600 Ω.

The equation for calculating this could be something like

ZIN =
600

V1
V2
− 1

(6.2)

Where ZIN is the input impedance of the DUT (in Ω)
V1 is the level of the unloaded output signal of the function generator

(with a 600 Ω output impedance) (in volts)
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and
V2 is the level of the output signal of the same funtion generator loaded

with the input of the DUT (in volts)

6.2.3 Gain

The gain of a DUT is measured by comparing its input to its output. This
gain can either be expressed as a multiplier or in decibels.

For example : if the input of a DUT is a 1 kHz sine tone with an ampli-
tude of 100mVRMS and its output is a 1 kHz sine tone with an amplitude
of 1VRMS , then the gain is

1VRMS

100mVRMS
(6.3)

1
0.1

(6.4)

Gain = 10 (6.5)

This could also be expressed in decibels as follows

20 log10

(
1VRMS

100mVRMS

)
(6.6)

20 log10(10) (6.7)

Gain = 20dB (6.8)

6.2.4 Gain Linearity

In theory, a DUT should have the same gain on a signal irrespective of the
level of the input (assuming that we’re not measuring a DUT that is sup-
posed to make dynamic gain changes, like a compressor, limiter, expander
or gate, for example...). Therefore, the gain, once set to a value of 2 using
a 0 dBV 1kHz sine tone should be 2 for all other amplitudes of a 1 kHz
sine tone (it may change at other frequencies, as in the case of a filter, for
example, but we’ll come to that...) If this is indeed the case, then the DUT
is said to have a linear gain response. This will likely not be the case –
so we measure the gain of the DUT using various amplitudes at its input.
The resulting measurement is most easily graphed on an X-Y plot, with the
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input amplitude on the x-axis and the deviation from the nominal gain on
the y-axis.

This measurement is useful for showing the distortion of low-level signals
caused by digital converters in a DUT, for example.

6.2.5 Frequency Response

A frequency response measurement is much like a gain linearity measurement
with the exception that we are now sweeping through various frequencies,
keeping the amplitude of the input signal constant rather than vice versa.
This is probably the most common and most commly abused measurement
for audio equipment (for example, when a manufacturer states that a device
has a frequency response from 20 Hz to 20 kHz... this means anothing
without some indication of a deviation in gain)

We make this measurement by calculating the gain of a DUT at a num-
ber of frequencies and plotting them on an X-Y graph, showing frequency
(usually plotted logarithmically) on the X-axis and the gain on the Y-axis.
The more frequencies we use for the measurement, the more accurate the
graph. If we are using a computer based measurement device such as the
Audio-Precision or the MLSSA, keep in mind that the frequencies plotted
are the result of an FFT-analysis of a time measurement, therefore the fre-
quencies displayed are equally spaced linearly.

6.2.6 Bandwidth

All DUT’s will exhibit a roll off in their frequency response at low and high
frequencies. The bandwidth of the DUT is the width in Hz between the low
and high points where we first reach a gain of -3 dB relative to the nominal
gain measured at a mid frequency (usually 1 kHz).

6.2.7 Phase Response

The phase response of a DUT is similar to the frequency response, with the
exception that we are now looking for a change in phase of a signal at various
frequencies rather than a change in gain. It is measured by again, comparing
the input of a DUT to its output at various frequencies. There are frequently
cases when the group delay of the DUT must also be considered in making
a phase response measurement. This will be discussed below.

Phase response measurements are usually graphed similarly to frequency
response measurements, on a semi-log graph, showing frequency on the X-
axis and phase on the Y-axis. The phase will usually be plotted in degrees,
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either wrapped or unwrapped . If the phase is wrapped, then the graph is
limited from -180◦ to 180◦. any phase measured to be outside of that window
is then wrapped around to the other side of the window – for example, -
190◦ is plotted as 170◦, since 190◦ behind and 170◦ ahead will have the same
result. If the plot is unwrapped, the phase will be plotted as measured.

6.2.8 Group Delay

NOT YET WRITTEN

6.2.9 Slew Rate

The slew rate of a device, whether it’s a big unit like a mixing console or
a little unit like an op amp, is the rate at which it can change from one
voltage level to another voltage level. In theory (and in a perfect world),
we’d probably like all of our devices to be able to change from any voltage
to any other voltage instantly. This, however, is not the case for a number
of reasons.

In order to measure the slew rate of a DUT, connect a function generator
generating a pulse wave to its input. The greater the amplitude of the
signal (assuming that we’re not clipping anything) the easier to make this
measurement. Look at the transition between the two voltage levels in the
pulse wave both at the input and output of the DUT. Set the scope to a
trace time fast enough that the transition no longer looks vertical – this will
likely be somewhere in the microsecond range.

If the output of the function generator has instantaneous transitions
between voltages, then, looking at the slope of the transition of the output
signal, measure the change in voltage in 1 microsecond. This is your slew
rate – usually expressed in Volts per microsecond.

6.2.10 Maximum Output

Almost every device has some maximum positive voltage (and minimum
negative voltage) level which cannot be exceeded. This level is determined
by a number of factors including (but not limited to) the voltage levels
of the power supply rails, the operational amplifiers being used, and the
gain structure of the device. The principal question in discussing the term
“maximum output” is how we define “maximum” – we can say that it’s the
absolute maximum voltage which the device is able to output, although this
is not usually the case. More often, the maximum output is defined to be
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the level at which some pre-determined value of distortion of the signal is
incurred.

If we send a sine wave into our DUT and start turning things up (either
the gain of the DUT or the level of the input signal) while monitoring the
output, eventually we’ll reach a level where the DUT is unable to produce
a high enough voltage to accurately reproduce the sine waveform (make
sure that the fault lies in the DUT and not the function generator). This
appears visually as a flattening of the peaks and troughs in the sine wave
– called clipping because the wave is “clipped.” If we continue to increase
the level, the flat sections will occupy more and more of the period of the
signal, approaching a square wave. The more we approach the square wave,
the more we are distorting the original shape of the wave. Obviously, the
now-flat section of the wave is the maximum level. This is generally not the
method of making this measurement.

If we go back to a level just before the wave started clipping and measure
the amount of distortion (we’ll talk about how to do this a little later) we’ll
find that the distortion of the wave occurs before we can see it on an oscillo-
scope display. In fact, at the level at which start to see the clipping, you’ve
already reached approximately 10% distortion. Usually, the maximum out-
put level is the point when we have either 0.1% or 1% distortion, although
this will change from manufacturer to manufacturer. Usually, when a max-
imum output voltage is given, the percentage of distortion will be included
to tell you what the company in question means by the word “maximum.”

Remember that the maximum output of the device is independent of its
gain (because we won’t know the level of the input signal). It’s simply a
maximum level of the output signal.

6.2.11 Noise measurements

Every device produces noise. Even resistors cause some noise (caused by
the molecules moving around due to heat – hence the term thermal noise) If
there’s no input (see next paragraph) to a DUT and we measure its output
using a true RMS meter, we’ll see a single number expressing its total output
noise. This value, however, isn’t all that useful to us, since much of the noise
the meter is measuring is outside of the audio range. Consequently, it’s
common (and recommended) practice to limit the bandwidth of the noise
measurement. Unfortunately, there is no standard bandwidth for this, so
you have to rely on a manufacturer to tell you what the bandwidth was. If
you’re doing the measurement, pick your frequency band, but tell be sure to
include that information when you’re specifying the noise level of the device
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How do ensure that there’s no signal coming into a device? This is
not as simple as simply disconnecting the previous device. If we just leave
the input of our DUT unterminated (a fancy word for “not connected to
anything”) then we could be incurring some noise in the device that we
normally wouldn’t get if we were plugged into another unit. (Case in point:
listen to the hum of a guitar amp when you plug in an input cable that’s not
connected to an electric guitar.) Most people will look after this problem by
grounding the input – that is to say they just connect the input wire(s) to the
ground wire. This is done most frequently, largely due to convenience. If you
want to get a more accurate measurement, then you’ll have to terminate the
input with an impedance that matches the output impedance of the device
that’s normally connected to it.

Remember, when specifying noise measurements, include the bandwidth
and the input termination impedance.

6.2.12 Dynamic Range

The dynamic range of a device is it the difference in level (usually expressed
in dB) between its maximum output level and its noise floor (below which,
your audio signal is effectively unusable). This gives you an idea of the abso-
lute limits of the dynamics of the signal you’ll be sending through the DUT.
Since a DNR measurement relys in part on the noise floor measurement,
you’ll have to specify the bandwidth and input termination impedance.

Also, in spite of everything you see, don’t confuse the dynamic range of
a device with its signal to noise ratio.

6.2.13 Signal to Noise Ratio (SNR or S/N Ratio)

The signal to noise ratio is similar to the dynamic range measurement in that
it expresses a difference in dB between the noise floor of a DUT and another
level. Unlike the dynamic range measurement, however, the signal to noise
expresses the difference between the nominal recommended operating level
and the noise floor. Usually, this operating level will be shown as 0 dB VU
on the meters of the device in question and will correspond at the output
to either +4 dBu or -10 dBV, depending on the device.

6.2.14 Equivalent Input Noise (EIN)

There is one special case for noise measurements which occurs when you’re
trying to measure the input noise for a micropone preamplifier. In this
case, the input noise levels will be so low that they’re difficult to measure
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accurately (if the input noise levels aren’t too low to measure accurately,
then you need a new mic pre...). Luckily, however, we have lots of gain
available to us in the preamp itself which we can use to boost the noise in
order to measure it. The general idea is that we set the preamp to some
known amount of gain, measure the output noise, and then subtract the
gain from our noise measurement to calculate what the level is – this is the
reason for the “equivalent” in the title, because it’s not actually measured
– it’s caluclated.

There a couple of things to worry about when making an EIN measure-
ment. The first thing is the gain of the microphone preamplifier. Using
a function generator with a very small output level, set the gain of the
preamp to +60 dB. This is done by simultaneously measuring the input
and the output on an oscilloscope and changing the gain until the output is
1000 times greater in amplitude than the input. Then you disconnect the
function generator and the oscilloscope (but don’t change the gain of the
preamp!).

Since it’s a noise measurement, we’re concerned with the input impedance.
In this case, it’s common practice to terminate the input of the microphone
preamp with a 150 Ω resistor to match the output impedance of a typical
microphone. The easiest way to do this is to solder a 150 Ω resistor between
pins 2 and 3 of a spare male XLR connector you have lying around the
house. Then you can just plug that directly into the mic preamp input with
a minimum of hassle.

With the 150 Ω termination connected, and the gain set to +60 dB,
measure the level of the noise at the output of the mic preamp using a
true RMS meter, with a band-limited imput. Take the measurement of the
output noise (expressed in dBu) and subract 60 dB (for the gain of the
preamp). That’s the EIN – usually somewhere around -120 dBu.

6.2.15 Common Mode Rejection Ratio (CMRR)

Any piece of “professional” audio gear has what we commonly term “bal-
anced” inputs (be careful – you may not necessarily know what a balanced
input is – if you can define it without using the word “impedance” you’ll be
wrong). One of the components that makes a balanced input balanced is
what is called a differential input. This means that there are two input legs
for a single audio signal, one labelled “positive” or “non-inverting” and the
other “negative” or “inverting.” If the differential input is working properly,
it will subtract the voltage at the inverting input from the voltage at the
non-inverting input and send the resulting difference into the DUT. This
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works well for audio signals because we usually send a balanced input a bal-
anced signal which means that we’re sending the audio signal on two wires,
with the voltages on each of theose wires being the negative of the other
– so when one wire is at +1 V, the other is at -1 V. The +1 V is sent to
the non-inverting input, and the -1 V is sent to the inverting input and the
differential input does the math +1 – -1 = 2 and gets the signal out with a
gain of 6.02 dB.

The neat thing is that, since any noise picked up on the balanced trans-
mission cable before the balanced input will theoretically be the same on
both wires, the differential input subtracts the noise from itself and therefore
eliminates it. For more info on this (and the correct definition of “balanced”)
see the chapter on grounding and sheilding in the electronics section

Since the noise on the cable is common to both inputs (the inverting
and the non-inverting) we call it a common mode and since this common
mode cancels itself, we say that it has been rejected. Therefore, the ability
for a differential input to eliminate a signal sent to both input legs is called
the common mode rejection ratio. It’s expressed in dB, and here’s how you
measure it.

Take a function generator emitting a sine wave. Send the output of the
generator to both input legs of the balanced input of the DUT (pins 2 and
3 on an XLR). Measure the input level and the output level of the DUT.
Hopefully, the level of the output will be considerably lower (at least 60 dB
lower) than the level of the input. The difference between them, in dB is
the CMRR.

This method is the common way to find the CMRR but there is a slight
problem with it. Since a balanced input is designed to work best when
connected to a balanced output (meaning that the impedances of the two legs
to ground are matched – not necessarily that the voltages are symmetrical)
the CMRR of our DUT’s input may change if we connected it to unmatched
impedances. Two people I have talked to regarding this subject have both
commented on the necessity to implement a method of testing the CMRR of
a device under unmatched impedances. This may become a recommended
standard...

6.2.16 Total Harmonic Distortion (THD)

If you go out to the waveform store and throw out a lot of money on the
perfect sine wave, take it home and analyze it, you’ll find that it has very
few interesting characteristics beyond its simplicity. The thing that makes
it useful to us is that it is an irreducible component – the quarks (NOTE:
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are quarks irreducible?) of the audio world. What this means is that a sine
wave has no energy in any of its harmonics above the fundamental. It is the
fundamental and that’s that.

If you then take your perfect sine wave and send it to the input of a
DUT and look at the output, you’ll find that the shape of your wave has
been modified slightly. Just enough to put some energy in the harmonics
above the fundamental. The distortion of the shape of the wave results in
energy in the upper harmonics. Therefore, if we measure the total amount
of energy in the harmonics relative to the level of the fundamental, we have a
quantifiable method of determining how much the signal has been distorted.
The greater the amplitude of the harmonics, the greater the distortion.

This measurement is not a common one, but its counterpart, explained
below is seen everywhere. It’s made by sending a perfect sine wave into
the input of the DUT, and looking at an FFT of the output (which shows
the amplitudes of individual frequency “bins”). You add the squares of
the amplitudes of the harmonics other than the fundamental, and take the
square root of this sum and divide it by the amplitude of the fundamental at
the output. If you multiply this value by 100, you get the THD in percent.
If you take the log of the number and multiply by 20, you’ll get it in dB.

A couple of things about THD measurements – usually the person doing
the measurement will only measure the amplitudes of the harmonics up to
a given harmonic, so you’ll see specifications like “THD through to the 7th
harmonic” meaning that there is more energy above that, but it’s probably
too low or close to the noise floor to measure.

Secondly, unless you have a smart comptuer which is able to do this
measurement, you probably will notice that’s relative time-consuming and
not really worth the effort. This is especially true when you compare the
procedure to getting a THD+N measurement as is explained below. That’s
why you rarely see it.

6.2.17 Total Harmonic Distortion + Noise (THD+N)

The distortion of a signal isn’t the only reason why a DUT will make things
sound worse than when they came in. The noise (meaning wide-band noise
as well as hums and buzzes and anything else that you don’t expect) incurred
by the signal going through the device is also a contributing factor to signal
degredation. As a result, manufacturers use a measurement to indicate the
extra energy coming out of the DUT other than the original signal. This
is measured using a similar method to the THD measurement, however, it
takes considerably less time.
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Since we’re looking for all of the energy other than the original, we’ll
send a perfect sine wave into the input of the DUT. We then acquire a
notch-filter tuned to the frequency of the input sine, which theoretically
eliminates the original inputted signal, leaving all other signal (distortion
produces and noise which is produced by the DUT itself) to get through.
This filtered output is measured using a true RMS meter (we usually band-
limit the signal as well, because it’s a noise measurement – see above). This
measurement is divided by the RMS level of the fundamental which gives a
ratio which can either be converted to a percentage or a dB equivalent as
explained above.

6.2.18 Crosstalk

6.2.19 Intermodulation Distortion (IMD)

NOT YET WRITTEN

6.2.20 DC Offset

NOT YET WRITTEN

6.2.21 Filter Q

See section 5.1.2.

6.2.22 Impulse Response

NOT YET WRITTEN

6.2.23 Cross-correlation

NOT YET WRITTEN

6.2.24 Interaural Cross-correlation

NOT YET WRITTEN

6.2.25 Suggested Reading List
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6.3 Loudspeaker Measurements

Measuring the characteristics of a loudspeaker is not an simple task. There
are two basic problems that cause us to be unsure that we are getting a clear
picture of what the loudspeaker is actually doing.

The first of these is the microphone that you’re using to make the mea-
surement. The output of the loudspeaker is converted to a measurable elec-
trical signal by a microphone which cannot be a perfect transducer. So,
for example, when you make a frequency response measurement, you are
not only seeing the frequency response of the loudspeaker, but the response
of the microphone as well. The answer to this problem is to spend a lot
of money on a microphone that includes extensive documentation of its
particular characteristics. In many cases today, this documentation is in-
cluded in the form of measurement data that can be incorporated into your
measurement system and subtracted from your measurements to make the
microphone effectively “invisible.”

The second problem is that of the room that you’re using for the mea-
surements. Always remember that a loudspeaker is, more often than not,
in a room. That room has two effects. Firstly, different rooms make dif-
ferent loudspeakers behave differently. (Take the extreme case of a large
loudspeaker in a small room such as a closet or a car. In this case, the
“room” is more like an extra loudspeaker enclosure than a room. This will
cause the driver units to behave differently than in a large room because
the loudspeaker “sees” the load imposed on the driver by the space itself.)
Secondly, the room itself imposes resonance, reflections and reverberation
that will be recorded at the microphone position. These effects may be
indistinguishable from the loudspeaker (for example, a ringing room mode
compared to a ringing loudspeaker driver, or a ringing EQ stage in front of
the power amplifier).
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measurement 
system

Figure 6.8: A simple block diagram showing the basic setup used for typical loudspeaker measure-
ments. The measurement device may be anything from a signal generator and oscilloscope to a
sophisticated self-contained automated computer system.

6.3.1 Frequency Response

6.3.2 Phase Response

6.3.3 Distortion

6.3.4 Off-Axis Response

6.3.5 Power Response

6.3.6 Impedance Curve

6.3.7 Sensitivity

6.3.8 Suggested Reading List
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6.4 Microphone Measurements

NOT YET WRITTEN

6.4.1 Polar Pattern

6.4.2 Frequency Response

6.4.3 Phase Response

6.4.4 Off-Axis Response

6.4.5 Sensitivity

6.4.6 Equivalent Noise Level

6.4.7 Impedance

6.4.8 Suggested Reading List
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6.5 Acoustical Measurements

NOT YET WRITTEN

6.5.1 Room Modes

6.5.2 Reflections

6.5.3 Reflection and Absorbtion Coefficients

6.5.4 Reverberation Time (RT60)

6.5.5 Noise Level

6.5.6 Sound Transmission

6.5.7 Intelligibility

6.5.8 Suggested Reading List



Chapter 7

Digital Audio

7.1 How to make a (PCM) digital signal

7.1.1 The basics of analog to digital conversion

Once upon a time, the only way to store or transmit an audio signal was
to use a change in voltage (or magnetism) that had a waveform that was
analagous to the pressure waveform that was the sound itself. This analog
signal (analog because the voltage wave is an analog of the pressure wave)
worked well, but suffered from a number of issues, particulary the unwanted
introduction of noise. Then someone came up with the great idea that those
issues could be overcome if the analog wave was converted into a different
way of representing it.

Figure 7.1: The analog waveform that we’re going to convert to digital representation.

The first step in digitizing an analog waveform is to do basically the same
thing film does to motion. When you sit and watch a movie in a cinema, it

441
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appears that you are watching a moving picture. In fact, you are watching
24 still pictures every second – but your eyes are too slow in responding to
the multiple photos and therefore you get fooled into thinking that smooth
motion is happening. In technical jargon, we are changing an event that
happens in continuous time into one that is chopped into slices of discrete
time.

Unlike a film, where we just take successive photographs of the event
to be replayed in succession later, audio uses a slightly different procedure.
Here, we use a device to sample the voltage of the signal at regular intervals
in time as is shown below in Figure 7.2.

Figure 7.2: The audio waveform being sliced into moments in time. A sample of the signal is taken
at each vertical dotted line.

Each sample is then temporarily stored and all the information regarding
what happened to the signal between samples is thrown away. The system
that performs this task is what is known as a sample and hold circuit because
it samples the original waveform at a given moment, and holds that level
until the next time the signal is sampled as can be seen in Figure 7.3.

Our eventual goal is to represent the original signal with a string of num-
bers representing measurements of each sample. Consequently, the next step
in the process is to actually do the measurement of each sample. Unfortu-
nately, the “ruler” that’s used to make this measurement isn’t infinitely
precise – it’s like a measuring tape marked in millimeters. Although you
can make a pretty good measurement with that tape, you can’t make an
accurate measurement of something that’s 4.23839 mm long. The same
problem exists with our measuring system. As can be seen in Figure 7.4, it
is a very rare occurance when the level of each sample from the sample and
hold circuit lands exactly on one of the levels in the measuring system.

If we go back to the example of the ruler marked in millimeters being



7. Digital Audio 443

Figure 7.3: The output of the sample and hold circuit. Notice that, although we still have the basic
shape of the original waveform, the smooth details have been lost.

Figure 7.4: The output of the sample and hold circuit shown against the allowable levels plotted
as horizontal dotted lines.
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used to measure something 4.23839 mm long, the obvious response would be
to round off the measurement to the nearest millimeter. That’s really the
best you could do... and you wouldn’t worry too much because the worst
error that you could make is about a half a millimeter. The same is true
in our signal measuring circuit – it rounds the level of the sample to the
nearest value it knows. This procedure of rounding the signal level is called
quantization because it is changing the signal (which used to have infinite
resolution) to match quanta, or discrete values. (Actually, a “quantum”
according to my dictionary is “the minimum amount by which certain prop-
erties ... of a system that can change. Such properties do not, therefore,
vary continuously, but in integral multiples of the relevant quantum.” (A
Concise Dictionary of Physics – Oxford))

Of course, we have to keep in mind that we’re creating error by just
rounding off these values arbitrarily to the nearest value that fits in our
system. That error is called quantization error and is perceivable in the
output of the system as noise whose characteristics are dependent on the
signal itself. This noise is commonly called quantization noise and we’ll
come back to that later.

In a perfect world, we wouldn’t have to quantize the signal levels, but
unfortunately, the world isn’t perfect... The next best thing is to put as
many possible gradations in the system so that we have to round off as little
as possible. That way we minimize the quantization error and therefore
reduce the quantization noise. We’ll talk later about what this implies, but
just to get a general idea to start, a CD has 65,536 possible levels that it
can use when measuring the level of the signal (as compared to the system
shown in Figure 7.5 where we only have 16 possible levels...)

Figure 7.5: The output of the quantizing circuit. Notice that almost all the samples have been
rounded off to the nearest dotted line.
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At this point, we finally have our digital signal. Looking back at Figure
7.5 as an example, we can see that the values are

0 2 3 4 4 4 4 3 2 -1 -2 -4 -4 -4 -4 -4 -2 -1 1 2 3
These values are then stored in (or transmitted by) the system as a

digital representation of the original analog signal.

7.1.2 The basics of digital to analog conversion

Now that we have all of those digits stored in our digital system, how do
we turn them back into an audio signal? We start by doing the reverse of
the sample and hold circuit. We feed the new circuit the string of numbers
which it converts into voltages, resulting in a signal that looks just like the
output of the quantization circuit (see Figure 7.5).

Now we need a small extra piece of knowledge. Compare the waveform
in Figure 7.1 to the waveform in Figure 7.4. One of the biggest differences
between them is that there are instantaneous changes in the slope of the
wave – that is to say, the wave in Figure 7.4 has sharper corners in it, while
the one if Figure 7.1 is nice and smooth. The presence of those sharp corners
indicates that there are high frequency components in the signal. No high
frequencies, no sharp corners.

Therefore, if we take the signal shown in Figure 7.5 and remove the
high frequencies, we remove the sharp corners. This is done using a filter
that blocks the high frequency information, but allows the low frequencies
to pass. Generally speaking, the filter is called a low pass filter but in this
specific use in digial audio it’s called a reconstruction filter (although some
people call it a smoothing filter) because it helps to reconstruct (or smooth)
the audio signal from the ugly staircase representation as shown in Figure
7.6.

The result of the output of the reconstruction filter, shown by itself in
Figure 7.7 is the output of the system. As you can see, the result is an
continuous waveform (no sharp edges...). Also, you’ll note that it’s exactly
the same as the analog waveform we sent into the system in the first place –
well... not exactly... but keep in mind that we used an example with VERY
bad quantization error. You’d hopefully never see anything this bad in the
real world.

7.1.3 Aliasing

I remember when I was a kid, I’d watch the television show M*A*S*H every
week, and every week, during the opening credits, they’d show a shot of the
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Figure 7.6: The results of the reconstruction filter showing the original staircase waveform from
which it was derived as a dotted line.

Figure 7.7: The output of the system.
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jeep accelerating away out of the camp. Oddly, as the jeep got going faster
and faster forwards, the wheels would appear to speed up, then stop, then
start going backwards... What didn’t make sense was that the jeep was still
going forwards. What causes this phenomenon, and why don’t you see it in
real day-to-day life?

Let’s look at this by considering a wheel with only one spoke as is shown
in the top left of Figure 8. Each column of Figure 8 rerpresents a different
rotational speed for the wheel, each numbered row represents a frame of the
movie. In the leftmost column, the wheel makes one sixth of a rotation per
frame. As can be seen in the animation in Figure 9, this results in a wheel
that appears to be rotating clockwise as expected. In the second column,
the wheel is making one third of a rotation per frame and the resulting
animation is a faster turning wheel, but still in the clockwise rotation. In
the third column, the wheel is turning slightly faster, making one half of
a rotation per frame. As can be seen in the corresponding animation, this
results the the appearance of a 2-spoked wheel that is stopped.

If the wheel is turning faster than one rotation every two frames, an odd
thing happens. The wheel, making more than one half of a rotation per
frame, results in the appearance of the wheel turning backwards and more
slowly than the actual rotation... This is a problem caused by the fact that
we are slicing continuous time into discrete time, thus distorting the actual
event. This result which appears to be something other than what happened
is known as an alias.

The same problem exists in digital audio. If you take a look at the
waveform in Figure 7.9, you can see that we have less than two samples per
period of the wave. Therefore the frequency of the wave is greater than one
half the sampling rate.

Figure 7.10 demonstrates that there is a second waveform with the same
amplitude as the one in Figure 7.9 which could be represented by the same
samples. As can be seen, this frequency is lower than the one that was
recorded

The whole problem of aliasing causes two results. Firstly, we have to
make sure that no frequencies above half of the sampling rate (typically
called the Nyquist frequency) get into the sample and hold circuit. Secondly,
we have to set the sampling rate high enough to be able to capture all the
frequencies we want to hear. The second of these issues is a pretty easy one
to solve: textbooks say that we can only hear frequencies up to about 20
kHz, therefore all we need to do is to make sure that our sampling rate is
at least twice this value – therefore at least 40,000 samples per second.

The only problem left is to ensure that no frequencies above the Nyquist
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Figure 7.8: Frame-by-frame shots of a 1-spoked wheel turning at different speeds and captured by
the same frame rate.

Figure 7.9: Waveform with a frequency that is greater than one-half the sampling rate.

Figure 7.10: The resulting alias frequency caused by sampling the waveform as shown in Figure 7.9.
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frequency get into the sample and hold circuit to begin with. This is a fairly
easy task. Just before the sample and hold circuit, a low-pass filter is used
to eliminate high frequency components in the audio signal. This low-pass
filter, usually called an anti-aliasing filter because it prevents aliasing, cuts
out all energy above the Nyquist, thus solving the problem. Of course, some
people think that this creates a huge problem because it leaves out a lot of
information that no one can really prove isn’t important.

There is a more detailed discussion of the issue of aliasing and antialiasing
filters in Section 7.3.

7.1.4 Binary numbers and bits

If you don’t understand how to count in binary, please read Section 1.7.
As we’ll talk about a little later, we need to convert the numbers that

describe the level of each sample into a binary number before storing or
transmitting it. This just makes the number easier for a computer to recog-
nize.

The reason for doing this conversion from decimal to binary is that com-
puters – and electrical equipment in general – are happier when they only
have to think about two digits. Let’s say, for example that you had to in-
vent a system of sending numbers to someone using a flashlight. You could
put a dimmer switch on the flashlight and say that, the bigger the number,
the brighter the light. This would give the receiver an intuitive idea of the
size of the number, but it would be extremely difficult to represent numbers
accurately. On the other hand, if we used binary notation, we could say “if
the light is on, that’s a 1 – if it’s off, that’s a 0” then you can just switch
the light on and off for 1’s and 0’s and you send the number. (of course,
you run into problems with consecutive 1’s or 0’s – but we’ll deal with that
later...)

Similarly, computers use voltages to send signals around – so, if the
voltage is high, we call that a 1, if it’s low, we call it 0. That way we don’t
have to use 10 different voltage levels to represent the 10 digits. Therefore,
in the computer world, binary is better than decimal.

7.1.5 Two’s complement

Let’s back up a bit (no pun intended...) to the discussion on binary numbers.
Remember that we’re using those binary numbers to describe the signal level.
This would not really be a problem except for the fact that the signal is what
is called bipolar meaning that it has positive and negative components. we
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could use positive and negative binary numbers to represent this but we
don’t. We typically use a system called “two’s complement.” There are
really two issues here. One is that, if there’s no signal, we’d probably like
the digital representation of it to go to 0 – therefore zero level in the analog
signal corresponds to zeros in the digital signal. The second is, how do we
represent negative numbers? One way to consider this is to use a circular
plotting of the binary numbers. If we count from 0 to 7 using a 3-bit “word”
we have the following:

000
001
010
011
100
101
110
111
Now if we write these down in a circle starting at 12 o’clock and going

clockwise as is shown in Figure 7.11, we’ll see that the value 111 winds
up being adjacent to the value 000. Then, we kind of ignore what the
actual numbers are and starting at 000 turn clockwise for positive values and
counterclockwise for negative values. Now, we have a way of representing
positive and negative values for the signal where one step above 000 is 001
and one step below 000 is 111. This seems a little odd because the numbers
don’t really line up the way we’d like them as can be seen in Figure 7.12
– but does have some advantages. Particularly, digital zero corresponds to
analog zero – and if there’s a 1 at the beginning of the binary word, then
the signal is negative.

One issue that you may want to concern yourself here is the fact that
there is one more quantization level in the negative area than there is in the
positive. This is because there are an even number of quantization levels
(because that number is a power of two) but one of them is dedicated to the
zero level. Therefore, the system is slightly asymmetrical – so it is, in fact
possible to distort the signal in the positive before you start distorting in
the negative. But keep in mind that, in a typical 16-bit system we’re talking
about a VERY small difference.

7.1.6 Suggested Reading List
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Figure 7.11: Counting from 0 to 7 using a 3-bit word around a circle.

Figure 7.12: Binary words corresponding to quantization levels in a two’s complement system.
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7.2 Quantization Error and Dither

The fundamental difference between digital audio and analog audio is one of
resolution. Analog representations of analog signals have a theoretically
infinite resolution in both level and time. Digital representations of an
analog sound wave are discretized into quantifiable levels in slices of time.
We’ve already talked about discrete time and sampling rates a little in the
previous section and we’ll elaborate more on it later, but for now, let’s
concentrate on quantization of the signal level.

As we’ve already seen, a PCM-based digital audio system has a finite
number of levels that can be used to specifiy the signal level for a particular
sample on a given channel. For example, a compact disc uses a 16-bit binary
word for each sample, therefore there are a total of 65,536 (216) quantization
levels available. However, we have to always keep in mind that we only use
all of these levels if the signal has an amplitude equal to the maximum
possible level in the system. If we reduce the level by a factor of 2 (in other
words, a gain of -6.02 dB) we are using one fewer bits worth of quantization
levels to measure the signal. The lower the amplitude of the signal, the
fewer quantization levels that we can use until, if we keep attenuating the
signal, we arrive at a situation where the amplitude of the signal is the level
of 1 Least Significant Bit (or LSB).

Let’s look at an example. Figure 9.1 shows a single cycle of a sine wave
plotted with a pretty high degree of resolution (well... high enough for the
purposes of this discussion).

Figure 7.13: A single cycle of a sine wave. We’ll consider this to be the analog input signal to our
digital converter.
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Let’s say that this signal is converted into a PCM digital representation
using a converter that has 3 bits of resolution – therefore there are a total
of 8 different levels that can be used to describe the level of the signal. In
a two’s complement system, this means we have the zero line with 3 levels
above it and 4 below. If the signal in Figure 9.1 is aligned in level so that its
positive peak is the same as the maximum possible level in the PCM digital
representation, then the resulting digital signal will look like the one shown
in Figure 7.14.

Figure 7.14: A single cycle of a sine wave after conversion to digital using 4-bit, PCM, two’s
complement where the signal level is rounded to the nearest quantization level at each sample.
The blue plot is the original waveform, the red is the digital representation.

Not surprisingly, the digital representation isn’t exactly the same as the
original sine wave. As we’ve already seen in the previous section, the cost
of quantization is the introduction of errors in the measurement. However,
let’s look at exactly how much error is introduced and what it looks like.

This error is the difference between what we put into the system and
what comes out of it, so we can see this difference by subtracting the red
waveform in Figure 7.14 from the blue waveform.

There are a couple of characteristics of this error that we should discuss.
Firstly, because the sine wave repeats itself, the error signal will be periodic.
Also, the period of this complex waveform made up of the will be identical
to the original sine wave – therefore it will be comprised of harmonics of
the original signal. Secondly, notice that the maximum quantization error
that we introduce is one half of 1 LSB. The significant thing to note about
this is its relationship to the signal amplitude. The quantization error will
never be greater than one half of an LSB, so the more quantization levels



7. Digital Audio 454

Figure 7.15: A plot of the quantization error generated by the conversion shown in Figure 7.14.

we have, the louder we can make the signal we want to hear relative to the
error that we don’t want to hear. See Figures 7.16 through 7.18 for a graphic
illustration of this concept.

Figure 7.16: A combined plot of the original signal, the quantized signal and the resulting quanti-
zation error in a 3-bit system.

As is evident from Figures 7.16, 7.17 and 7.18, the greater the number
of bits that we have available to describe the instantaneous signal level, the
lower the apparent level of the quantization error. I use the apparent here in
a strange way – no matter how many bits you have, the quantization error
will be a signal that has a peak amplitude of one half of an LSB in the worst
case. So, if we’re thinking in terms of LSB’s – then the amplitude of the
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Figure 7.17: A combined plot of the original signal, the quantized signal and the resulting quanti-
zation error in a 5-bit system.

Figure 7.18: A combined plot of the original signal, the quantized signal and the resulting quanti-
zation error in a 9-bit system.
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quantization error is the same no matter what your resolution. However,
that’s not the way we normally think – typically we think in terms of our
signal level, so, relative to that signal, the higher the number of available
quantization levels, the lower the amplitude of the quantization error.

Given that a CD has 65,536 quantization levels available to us, do we
really care about this error? The answer is “yes” – for two reasons:

1. We have to always remember that the only time all of the bits in a
digital system are being used is when the signal is at its maximum
possible level. If you go lower than this – and we usually do – then
you’re using a subset of the number of quantization levels. Since the
quantization error stays constant at +/- 0.5 LSB and since the sig-
nal level is lower, then the relative level of the quantization error to
the signal is higher. The lower the signal, the more audible the error.
This is particularly true at the end of the decay of a note on an in-
strument or the reverberation in a large room. As the sound decays
from maximum to nothing, it uses fewer and fewer quantization levels
and the perceived quality drops because the error becomes more and
more evident because it is less and less masked.

2. Since the quantization error is periodic, it is a distortion of the signal
and is therefore directly related to the signal itself. Our brains are
quite good at ignoring unimportant things. For example, you walk
into someone’s house and you smell a new smell – the way that house
smells. After 5 minutes you don’t smell it anymore. The smell hasn’t
gone away – your brain just ignores it when it realizes that it’s a con-
stant. The same is true of analog tape noise. If you’re like most people
you pay attention to the music, you stop hearing the noise after a cou-
ple of minutes. Your brain is able to do this all by itself because the
noise is unrelated to the signal. It’s a constant, unrelated sound that
never changes with the music and is therefore unrelated – the brain
decides that it doesn’t change so it’s not worth tracking. Distortion
is something different. Distortion, like noise, is typically comprised
entirely of unwanted material (I’m not talking about guitar distortion
effects or the distortion of a vintage microphone here...). Unlike noise,
however, distortion products modulate with the signal. Consequently
the brain thinks that this is important material because it’s trackable,
and therefore you’re always paying attention. This is why it’s much
more difficult to ignore distortion than noise. Unfortunately, quanti-
zation error produces distortion – not noise.
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7.2.1 Dither

Luckily, however, we can make a cute little trade. It turns out that we can
effectively eliminate quantization error simply by adding noise called dither
to our signal. It seems counterproductive to fix a problem by adding noise –
but we have to consider that what we’re esentially doing is to make a trade –
distortion for noise. By adding dither to the audio signal with a level that is
approximately one half the level of the LSB, we generate an audible, but very
low-level constant noise that effectively eliminates the program-dependent
noise (distortion) that results from low-level signals.

Notice that I used the word “effectively” at the beginning of the last para-
graph. In fact, we are not eliminating the quantization error. By adding
dither to the signal before quantizing it, we are randomizing the error, there-
fore changing it from a program-dependent distortion into a constant noise
floor. The advantage of doing this is that, although we have added noise
to our final signal, it is constant, and therefore not trackable by our brains.
Therefore, we ignore it,

So far, all I have said is that we add “noise” to the signal, but I have not
said what kind of noise - is it white, pink, or some other colour? People who
deal with dither typically don’t use these types of terms to describe the noise
– they talk about probability density functions or PDF instead. When we
add dither to a signal before quantizing it, we are adding a random number
that has a value that will be within a predictable range. The range has to
be controlled, otherwise the level of the noise would be unnecessarily high
and therefore too audible, or too low, and therefore ineffective.

Probability density functions

Flip a coin. You’ll get a heads or a tails. Flip it again, and again and
again, each time writing down the result. If you flipped the coin 1000 times,
chances are that you’ll see that you got a heads about 500 times and a tails
about 500 times. This is because each side of the coin has an equal chance of
landing up, therefore there is a 50% probability of getting a heads, and a 50%
probability of getting a tails. If we were to draw a graph of this relationship,
with “heads” and “tails” being on the x-axis and the probability on the y-
axis, we would have two points, both at 50%.

Let’s do basically the same thing by rolling a die. If we roll it 600 times,
we’ll probably see around 100 1’s, 100 2’s, 100 3’s, 100 4’s, 100 5’s and 100
6’s. Like the coin, this is because each number has an equal probability of
being rolled. I tried this, and kept track of each number that was rolled an
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got the following numbers.

Result 1 2 3 4 5 6
Number of 111 98 101 94 92 104
times rolled

Table 7.1: The results of rolling a die 600 times.

If we were to graph this information, it would look like Figure 7.19.
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Figure 7.19: The results of 600 rolls of a die.

Let’s say that we didn’t know that there was an equal probability of
rolling each number on the die. How could we find this out experimentally?
All we have to do is to take the numbers in Table 7.1 and divide by the
number of times we rolled the die. This then tells us the probability (or the
chances) of rolling each number. If the probability of rolling a number is 1,
then it will be rolled every time. If the probability is 0, then it will never
be rolled. If it is 0.5, then the number will be rolled half of the time.

Notice that the numbers didn’t work out perfectly in this example, but
they did come close. I was expecting to get each number 100 times, but
there was a small deviation from this. The more times I roll the dice, the
more reality will approach the theoretical expectation. To check this out, I
did a second experiment where I rolled the die 60,000 times.

This graph tells us a number of things. Firstly, we can see that there
is a 0 probability of rolling a 7 (this is obvious because there is no “7” on
a die, so we can never roll and get that result). Secondly, we can see that
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Figure 7.20: The calculated probability of rolling each number on the die using the results shown
in Table 7.1.

-2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Result

P
ro

ba
bi

lit
y 

of
 b

ei
ng

 r
ol

le
d

Figure 7.21: The calculated probability of rolling each number on the die using the results after
60,000 rolls. Notice that the graph has a rectangular shape.
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there is an almost exactly equal probability of rolling the numbers from 1 to
6 inclusive. Finally, if we look at the shape of this graph, we can see that it
makes a rectangle. So, we can say that rolling a die results in a rectangular
probability density function or RPDF .

It is possible to have other probability density functions. For example,
let’s look at the ages of children in Grade 5. If we were to take all the
Grade 5 students in Canada, ask them their age, and make a PDF out of
the results, it might look like Figure 7.22.
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Figure 7.22: The calculated probability of the age of students in Grade 5 in Canada.

This is obviously not an RPDF because the result doesn’t look like a
rectangle. In fact, it is what statisticians call a normal distribution, better
known as a bell curve. What this tells us is that the probability a Canadian
Grade 5 student of being either 10 or 11 years old is higher than for being
any other age. It is possible, but less likely that the student will be 8, 9, 12
or 13 years old. It is extremely unlikely, but also possible for the student to
be 7 or 14 years old.

Dither examples

There are three typical dither PDF’s used in PCM digital audio, RPDF,
TPDF (triangular PDF and Gaussian PDF . We’ll look at the first two.

For this section, I used MATLAB to make a sine wave with a sampling
rate of 32.768 kHz. I realize that this is a strange sampling rate, but it
made the graphs cleaner for the FFT analyses. The total length of the sine
wave was 32768 samples (therefore 1 second of audio.) MATLAB typically
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calculates in 64-bit floating point, so we have lots of resolution for analyzing
an 8-bit signal, as I’m doing here.

To make the dither, I used the MATLAB function for generating random
numbers called RAND. The result of this is a number between 0 and 1
inclusive. The PDF of the function is rectangular as we’ll see below.

RPDF dither should have a rectangular probability density function with
extremes of -0.5 and 0.5 LSB’s. Therefore, a value of more than half of
an LSB is not possible in either the positive or negative directions. To
make RPDF dither, I made a vector of 32768 numbers using the command
RAND(1, n) - 0.5 where n is the length of the dither signal, in samples.
The result is equivalent to white noise.
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Figure 7.23: Histogram of RPDF dither for 32k block. MATLAB equation is RAND(1, 32768) -
0.5

TPDF dither has the highest probability of being 0, and a 0 proba-
bility of being either less than -1 LSB or more than 1 LSB. This can be
made by adding two random numbers, each with an RPDF together. Using
MATLAB, this is most easily done using the the command RAND(1, n) -
RAND(1, n) where n is the length of the dither signal, in samples. The
reason they’re subtracted here is to produce a TPDF that ranges from -1 to
1 LSB.

Let’s look at the results of three options: no dither, RPDF dither and
TPDF dither. Figure 7.27 shows a frequency analysis of 4 signals (from top
to bottom): (1) a 64-bit 1 kHz sine wave, (2) an 8-bit quantized version
of the sine wave without dither added, (3) an 8-bit quantized version with
RPDF added and (4) an 8-bit quantized version with TPDF added.
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Figure 7.24: Probability distribution function of RPDF dither for 32k block.
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Figure 7.25: Histogram of TPDF dither for 32k block. MATLAB equation is RAND(1, 32768) -
RAND(1, 32768)
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Figure 7.26: Probability distribution function of TPDF dither for 32k block.
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Figure 7.27: From top to bottom, a 64-bit sine 1 kHz wave in MATLAB, 8-bit no dither, 8-bit
RPDF dither, 8-bit TPDF dither. Fs = 32768 Hz, FFT window is rectangular, FFT length is 32768
point.



7. Digital Audio 464

One of the important things to notice here is that, although the dithers
raised the overall noise floor of the signal, the resulting artifacts are wide-
band noise, rather than spikes showing up at harmonic intervals as can be
seen in the no-dither plot. If we were to look at the artifacts without the
original 1 kHz sine wave, we get a plot as shown in Figure 7.28.
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Figure 7.28: Artifacts omitting the 1 kHz sine wave. From top to bottom, 8-bit no dither, 8-bit
RPDF dither, 8-bit TPDF dither. Fs = 32768 Hz, FFT window is rectangular, FFT length is 32768
point.

7.2.2 When to use dither

I once attended a seminar on digital audio measurements given by Julian
Dunn. I think that, in a room of about 60 or 70 people, I was the only one in
the room who was not an engineer working for a company that made gear (I
was working on my Ph.D. in music at the time...) At lunch, I sat at a table
of about 12 people, and someone asked me the simple question “what do you
think about dither?” I responded that I thought it was a good idea. Then
the question was re-phrased – “yes, but when do you use it?” The answer is
actually pretty simple – you use dither whenever you have to re-quantize a
signal. Typically, we do DSP on our audio signals using word lengths much
greater than the original sample, or the resulting output. For example, we
typically record at 16 or 24 bits (with dither built into the ADC’s), and the
output is usually at one of these two bit depths as well. However, most DSP
(like equalization, compression, mixing and reverberation) happens with an
accuracy of 32 bits (although there are some devices such as those from
Eventide that run at 64-bit internally). So, a 16-bit signal comes into your
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mixer, it does math with an accuracy of 32 bits, and then you have to get
out to a 16-bit output. The process of converting the 32-bit signal into a
16-bit signal must include dither.

Remember, if you are quantizing, you dither.

7.2.3 Suggested Reading List
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7.3 Aliasing

Back in Section 7.1.3, we looked very briefly at the problem of aliasing, but
now we have to dig a little deeper to see more specifically what it does and
how to avoid it.

As we have already seen, aliasing is an artifact of chopping continuous
events into discrete time. It can be seen in film when cars go forwards but
their wheels go backwards. It happens under fluorescent or strobe lights
that prevent us from seeing intermediate motion. Also, if we’re not careful,
it happens in digital audio.

Let’s begin by looking at a simple example: we’ll look at a single sam-
pling rate and what it does to various sine waves from analog input to analog
output from the digital system.
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Figure 7.29: INSERT CAPTION

7.3.1 Antialiasing filters

NOT YET WRITTEN

7.3.2 Suggested Reading List
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7.4 Advanced A/D and D/A conversion

NOT YET WRITTEN
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Figure 7.37: A simple 1-bit ∆− Σ (Delta-Sigma) analog to digital converter [Watkinson, 1988].

7.4.1 Suggested Reading List
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7.5 Digital Signal Transmission Protocols

7.5.1 Introduction

If we want to send a digital (we’ll assume that this, in turn means “binary”)
signal across a wire, the simplest way to do it is to have a ground reference
and some other DC voltage (5 V is good...) and we’ll call one “0” (being
denoted by ground) and the other “1” (5 V). If we then know WHEN to
look at the electrical signal on the wire (this timing can be determined by an
internal clock...), we can know whether we’re receiving a 0 or 1. This system
would work – in fact it does, but it has some inherent problems which would
prevent us from using it as a method of transmitting digital audio signals
around the real world.

Back in the early 1980’s a committee was formed by the Audio Engi-
neering Society to decide on a standard protocol for transmitting digital
audio. And, for the most part, they got it right... They decided at the
outset that they wanted a system that had the following characteristics and
the resulting implications :

The protocol should use existing cables, connectors and jackfields. In
addition, it should withstand transmission through existing equipment. The
implications of this are :

• There can be no DC content which would be wiped out by transformers
or capacitors in the transmission chain. (Think of a string of 1’s in
the 0 V / 5 V system explained above... it would be 5 V DC which
wouldn’t get through your average system)

• The signal cannot be phase-critical. That is to say, if we take the
signal and flip its polarity, it cannot change 1’s to 0’s and vice versa.
This is just in case someone plugs the wrong cable in.

• The signal must be self-clocking

• The signal must have 2 channels of audio on a single cable.

The result was the AES/EBU protocol (also known as IEC-958 Type 1).
It’s a bi-phase mark coding protocol which fulfills all of the above require-
ments. “What’s a bi-phase mark coding protocol?” I hear you cry... Well
what that means is that, rather than using two discrete voltages to denote
1 and 0, the distinction is made by voltage transitions.

In order to transmit a single bit down a wire, the AES/EBU system
carves it into two “cells.” If the cells are the same voltage, then the bit is a
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0 : if the cells are different voltages, then the bit is a 1. In other words, if
there is a transition between the cells, the bit is a 1. If there is no transition,
the bit is a 0.

BIT

cell

1 0

cell

BIT

cell cell

BIT

cell cell

BIT

cell cell

1 0

{ { { {
Figure 7.38: The relationship between cell transitions and the value of the bit in a bi-phse mark.
Note that if both cells in one bit are the same, the represented value is 0. If the two cells have a
different value, the bit value is 1. This is independent of the actual high or low value in the signal.

The peak-peak level of this signal is between 2 V and 7 V. The source
impedance is 150Ω (this is the impedance between pins 2 and 3 on the XLR
connector.

Note that there is no need for a 0 V reference in this system. The
AES/EBU receiver only looks at whether there is a transition between the
cells – it doesn’t care what the voltage is – only whether it’s changed.

The only thing we’ve left out is the “self-clocking” part... This is accom-
plished by a circuit known as a Phase-Locked Loop (or PLL to its friends...).
This circuit creates a clock using an oscillator which derives its frequency
from the transistion rate of the voltage it receives. The AES/EBU signal is
sent into the PLL which begins in a “capture” mode. This is a wide-angle
view where the circuit tries to get a basic idea of what the frequency of the
incoming signal is. Once that’s accomplished, it moves into “pull-in” mode
where it locks on the frequency and stays there. This PLL then becomes
the clock which is used by the receiving device’s internals (like buffers and
ADC’s).

7.5.2 What’s being sent?

AES/EBU data is send in Blocks which are comprised of 192 Frames. Each
frame contains 2 Sub-Frames, each of which contains 32 bits of information.
The layout goes like this :

The information in the sub-frame can be broken into two categories, the
channel code and the source code, each of which comprises various pieces of
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BLOCK

FRAME

SUBFRAME

0 1 2 3 189 190 1914 188

Sub-frame A (usually Left) Sub-frame B (usually Right)

Preamble Aux data Audio Sample Validity User Status Parity
0 3 4 7 8 27 28 29 30 31

4 bits 4 bits 20 bits 1 bit 1 bit 1 bit 1 bit

Figure 7.39: The relationship of the structures of a Block, Frame and Sub-Frame.

Code Channel Code Source Code
Contents Preamble Audio Sample

Parity Bit Auxiliary data
Validity Bit

User Bit
Status Bit

Table 7.2: The contents of the Channel Code and the Source Code

information.

Channel Code

This is information regarding the transmission itself – data that keeps the
machines talking to each other. It consists of 5 bits making up the Preamble
(or Sync Code) and the Parity Bit.

Preamble (also known as the Sync Code)
These are 4 bits which tell the receiving device that the trasmission is at

the beginning of a block or a subframe (and which subframe it is...) Different
specific codes tell the receiver what’s going on as follows...

Note that these codes violate the bi-phase mark protocol (because there
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Block

Sub-Frame A

Sub-Frame B

Figure 7.40: The structure of the preamble at the start of each Sub-Frame. Note that each of
these breaks the bi-phse mark rule that there must be a transition on every bit since all preambles
start with 3 consecutive cells of the same value.

is no transition at the beinning of the second bit.) but they do not violate
the no-DC rule.

Note as well, that these are sometimes called the X, Y, and Z preambles.
An X Preamble indicates that the Sub-Frame is an audio sample for the Left.
A Y Preamble indicates that the Sub-Frame is an audio sample for the Right.
A Z Preamble indicates the start of a Block.

Parity Bit
This is a single bit which ensures that all of the preambles are in phase.

It doesn’t matter to the receiving device whether the preambles start by
going up in voltage or down (I drew the above examples as if they are all
going up...) but all of the preambles must go the same way. The partity bit
is chosen to be a 1 or 0 to ensure that the next preamble will be headed in
the right direction.

Source Code

This is the information that we’re trying to transmit. It uses the other 27
bits of the sub-frame comprising the Audio Sample (20 bits), the Auxiliary
Data (4 bits), the Validity Bit (1 bit), the User Bit (1 bit) and the Status
Bit (1 bit).

Audio sample
This is the sample itself. It has a maximum of 20 bits, with the Least

Significant Bit sent first.
Auxiliary Data
This is 4 bits which can be used for anything. These days it’s usually

used for 4 extra bits to be attached to the audio sample – bringing the
resolution up to 24 bits.

Validity Bit
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This is simply a flag which tells the receiving device whether the data is
valid or not. If the bit is a 1, then the data is non-valid. A 0 indicates that
the data is valid.

User Bit
This is a single bit which can be used for anything the user or manufac-

turer wants (such as time code, for example).
For example, a number of user bits from successive sub-frames are strung

together to make a single word. Usually this is done by collecting all 192
user bits (one from each sub frame) for each channel in a block. If you then
put these together, you get 24 bytes of information in each channel.

Typically, the end user in a recording studio doesn’t have direct access
to how these bits should be used. However, if you have a DAT machine, for
example, that is able to send time code information on its digital output,
then you’re using your user bits.

Status Bit
This is a single-bit flag which can be used for a number of things such

as :

• Emphasis on / off

• Sampling rate

• Stereo / Mono signal

• Word length of audio sample

• ascii (8 bits) for channel origin and destination

This information is arranged in a similar method to that described for
the User Bits. 192 status bits are collected per channel per block. Therefore,
you have 192 bits for the A channel (left) and 192 for the B channel (right).
If you string these all together, then you have 24 bytes of information in each
channel. The AES/EBU standard dictates what information goes where in
this list of bytes. This is shown in the diagram in Figure ??

For specific information regarding exactly what messages are given by
what arrangement of bits, see [Sanchez and Taylor, 1998] available as Ap-
plication Note AN22 from www.crystal.com.

7.5.3 Some more info about AES/EBU

The AES/EBU standard (IEC 958 Type 1) was set in 1985.

http://www.crystal.com
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0 1 2 3 4 5 6 7

PRO=1 audio emphasis lock Fs

channel mode user bit management

aux use word length reserved

reserved

reference reserved

reserved

0

1

2
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6
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8

9

channel origin data
(alphanumeric)
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channel destination data
(alphanumeric)
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15

16

17

local sample address code
(32-bit binary)
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time of day code
(32-bit binary)

reserved relibility flags22

cyclic redundancy check character23
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Figure 7.41: The structure of the bytes made out of the status bits in the channel code in-
formation in a single Block. This is sometimes called the Channel Status Block Structure
[Sanchez and Taylor, 1998].
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The maximum cable run is about 300 m balanced using XLR connectors.
If the signal is unbalanced (using a transformer, for example) and sent using
a coaxial cable, the maximum cable run becomes about 1 km.

Fundamental Frame Rates

If the Sampling Rate is 44.1 kHz, 1 frame takes 22.7 microsec. to transmit
(the same as the time between samples)

If the Sampling Rate is 48 kHz, 1 frame takes 20.8 microsec. to transmit
At 44.1 kHz, the bit rate is 2.822 Mbit/s
At 48 kHz, the bit rate is 3.072 Mbit/s
Just for reference (or possibly just for interest), this means that 1/4

wavelength of the cell in AES/EBU is about 19 m on a wire.

7.5.4 S/PDIF

S/PDIF was developed by Sony and Philips (hence the S/P) before AES/EBU.
It uses a single unbalanced coaxial wire to transmit 2 channels of digital au-
dio and is specified in IEC 958 Type 2. The Source Code is identical to
AES/EBU with the exception of the channel status bit which is used as a
copy prohibit flag.

Some points :
The connectors used are RCA with a coaxial cable
The voltage alternates between 0V and 1V 20% (note that this is not

independent of the ground as in AES/EBU)
The source impedance is 75Ω
S/PDIF has better RF noise immunity than AES/EBU because of the

coax cable (please don’t ask me to explain why... the answer will be “dunno...
too dumb...”)

It can be sent as a “video” signal through exisiting video equipment
Signal loss will be about -0.75 dB / 35 m in video cable

7.5.5 Some Terms That You Should Know...

Synchronous

Two synchronous devices have a single clock source and there is no delay
between them. For example, the left windshield wiper on your car is syn-
chronous with the right windshield wiper.
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Asynchronous

Two asynchronous devices have absolutely no relation to each other. They
are free-running with separate clocks. For example, your windshield wipers
are asynchronous with the snare drum playing on your car radio.

Isochronous

Two isochronous devices have the same clock but are separated by a fixed
propogation delay. They have a phase difference but that difference remains
constant.

7.5.6 Jitter

Jitter is a modulation in the frequency of the digital signal being transmitted.
As the bit rate changes (and assuming that the receiving PLL can’t correct
variations in the frequency), the frequency of the output will modulate and
therefore cause distortion or noise.

Jitter can be caused by a number of things, depending on where it occurs
:

Intrinsic jitter within a device

Parasitic capacitance within a cable
Oscillations within the device
Variable timing stability

Tranmission Line Jitter

Reflections off stubs
Impedance mismatches
Jitter amounts are usually specified as a time value (for example, X

nsp − p).
The maximum allowable jitter in the AES/EBU standard is 20 ns (10

ns on either side of the expected time of the transition).
See Bob Katz’s ‘Everything you wanted to know about jitter but were

afraid to ask’ (www.digido.com/jitteressay.html) for more information.

7.5.7 Suggested Reading List

Sanchez, C. and Taylor, R. (1998) Overview of Digital Audio Interface Data
Structures. Application Note AN22REV2, Cirrus Logic Inc. (available at
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http://www.crystal.com)
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7.6 Jitter

Go and make a movie using a movie camera that runs at 24 frames per
second. Then, play back the movie at 30 fps. Things in the movie will move
faster than they did in real life because the frame rate has speeded up. This
might be a neat effect, but it doesn’t reflect reality. The point so far is that,
in order to get out what you put in, a film must be played back at the same
frame rate at which is was recorded.

Similarly, when an audio signal is recorded on a digital recording system,
it must be played back at the same sampling rate in order to ensure that you
don’t result in a frequency shift. For example, if you increase the sampling
rate by 6% on playback, you will produce a shift in pitch of a semitone.

There is another assumption that is made in digital audio (and in film,
but it’s less critical). This is that the sampling rate does not change over
time – neither when you’re recording nor on playback.

Let’s think of the simple case of a sine tone. If we record a sine wave
with a perfectly stable sampling rate, and play it back with a perfectly stable
sampling rate with the same frequency as the recording sampling rate, then
we get out what we put in (ignoring any quantization or aliasing effects...).
We know that if we change the sampling rate of the playback, we’ll shift the
frequency of the sine tone. Therefore, if we modulate the sampling rate with
a regular signal, shifting it up and down over time, then we are subjecting
our sine tone to frequency modulation or FM .
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Figure 7.42: INSERT CAPTION

NOT YET WRITTEN
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7.6.1 When to worry about jitter

There are many cases where the presence of jitter makes absolutely no dif-
ference to your audio signal whatsoever.

NOT YET WRITTEN

7.6.2 What causes jitter, and how to reduce it

NOT WRITTEN YET

7.6.3 Suggested Reading List
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7.7 Fixed- vs. Floating Point

7.7.1 Suggested Reading List

MATLAB paper
Jamie’s textbook
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7.8 Noise Shaping

NOT YET WRITTEN

7.8.1 Suggested Reading List
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7.9 “High-Resolution” Audio

Back in the days when digital audio was first developed, it was considered
that a couple of limits on the audio quality were acceptable. Firstly, it was
decided that the sampling rate should be at least high enough to provide
the capability of recording and reproducing a 20 kHz signal. This means
a sampling rate of at least 40 kHz. Secondly, a dynamic range of around
100 dB was considered to be adequate. Since a word length of 16 bits (a
convenient power of 2) gives a dynamic range of about 93 dB after proper
dithering, that was decided to be the magic number.

However, as we all know, the business of audio is all about providing
more above all else, therefore the resolution of commercially-available digital
audio, both in the temporal and level domains, had to be increased. There
are some less-cynical arguments for increasing these resolutions.

One argument is that the rather poor (sic) quality of 44.1/16 (kHz and
bits respectively) audio is inadequate for any professional recording. This
might be supportable were it not for the proliferation of mp3 files through-
out the world. Consumption indicates that the general consumer is more
and more satisfied with the quality of data-compressed audio which is con-
siderably worse than CD-quality audio. Therefore one might conclude that
it makes no sense for manufacturers to be developing systems that have a
higher audio quality than a CD.

Another argument is that it is desirable that we return to the old hierar-
chy where the professionals had access to a much higher quality of recording
and reproduction device than the consumers. Back in the old days, we had
1/2-inch 30-ips reel-reel analog tape in the studios and 33-1/3 RPM vinyl
LP’s in the consumers’ homes. This meant that the audio quality of the
studio equipment was much, much higher than that in the homes, and that
we in the studios could get away with murder. You see, if the resolution
of your playback system is so bad that you can’t hear the errors caused by
the recording, editing and mastering system then the recording, editing and
mastering engineers can hear things that the consumer can’t – an excellent
situation for quality control. The introduction of digital media to the pro-
fessional and consumer markets meant that you can could suddenly hear at
home exactly what the professionals heard. And, if you spent a little more
than they did on a DAC, amplifier and loudspeaker, you could hear things
that the pro’s couldn’t... a very bad situation for quality control...

To quote a friend of mine, I stand very firmly on both sides of the fence
– I can see that there might be some very good reasons for going to high-
resolution digital audio, but I also think that the biggest reason is probably
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marketing. I’ll try to write this section in an unbiased fashion, but you’d
better keep my personal cynicism in mind as you read...

7.9.1 “What is “High-Resolution Audio?”

As it became possible, in terms of processing power, storage and transmis-
sion bandwidth, people started demanding more from their digital audio. As
we’ve seen, there are two simple ways to describe the resolution (if not the
quality level) of digital audio – the sampling rate and the word length. In
order to make digital audio systems that were better (or at least appeared
on paper to be better) these two numbers had to get bigger. As ADC and
DAC design improved, it became easier to increase the word length to 24
bits. Twenty-four was chosen to be a good number since the AES/EBU
protocol was designed to support a 24-bit word length and since 141 dB
was decided to be an adequate signal to noise ratio. In order to increase
the sampling rate, we just started multiplying by 2, starting with the two
standard sampling rates. We now have 88.1, 96, 176.4 and 192 kHz, among
others.

When the folks that came up with DVD-Audio sat down to decide on
the specifications for the media, they made it possible for the disc to support
24 bits and the various sampling rates listed above. (However, people were
using higher sampling rates before DVD-Audio came around – it was just
harder to get it into people’s homes.) The term “high resolution” audio was
already being thrown around by the time of the introduction of DVD-Audio
to describe sampling rates higher than 44.1 or 48 kHz and word lengths
longer than 16 bits.

One of the problems with DVD-Audio is a marketing problem – it is not
backwards compatible with the CD format. Although a DVD-Audio player
can play a CD, a CD player cannot play a DVD-Audio. So, the folks at Sony
and Philips saw a marketing niche. Instead of supporting the DVD-Audio
format, they decided to come up with a competing format called Super
Audio Compact Disc or SACD. As is described below, this format is based
on Delta-Sigma conversion at a very high sampling rate of approximately
2.83 MHz. Through some smart usage of the two layers on the disc, the
format was designed with a CD-compatible layer so that a hybrid disc could
be manufactured – one that could play on an old-fashioned CD player.

We’ll look at the specifics of the formats in later sections.
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7.9.2 Wither High-Resolution audio?

It didn’t take long for the fascination with compact discs and Digital Audio
Tapes to wear off and for people to want more. There were many complaints
in the early 80’s about all of the problems with digital audio. Words like
“harsh” and “brittle” were being thrown around a lot. There are a couple
of reasonable explanations for this assessment. The early ones suggested
that digital audio inherently produced symmetrical distortion (producing
artifacts in odd harmonics) whereas analog produced asymmetrical distor-
tion (therefore producing even harmonics). People say that even harmonic
distortion sounds “better” than odd harmonic distortion, therefore analog
is better than digital. This argument may not necessarily be the case, but it
gave people something to talk about. (In fact, this argument is a throwback
to the reasons for buying tubes (or valves, depending on which side of the
Atlantic Ocean you’re from) versus transistors.)

Some other explanations hinged on the general idea of distortion. Namely,
that analog reproduction systems, particularly vinyl, distorted the recorded
signal. Things like wow and flutter or analog tape compression were com-
monplace in the days of analog recording. When CD’s hit the scene, these
things disappeared (except maybe for tape compression from the original
analog recordings...). It is possible that people developed a preference for
such types of distortion on their audio, so when the distortion was removed,
they didn’t like it as much.

Another reason that might be attributable to the problems in early dig-
ital audio was the quality of the converters. Twenty years ago, it wasn’t so
easy to build a decent analog-to-digital converter with an accuracy equiva-
lent to 16 bits. In fact, if you do a measurement of some of the DAT machines
from the early 80’s you’ll find that the signal-to-noise ratio was equivalent
to about 12 or 13 bits. On top of this, people really didn’t know how to
implement dither properly, so the noise floor was primarily distortion. This
automatically puts you in the areas of harsh and brittle...

Yet another possible explanation for the problems in early digital audio
lies in the anti-aliasing filters used in the DAC’s. Nowadays, we use ana-
log filters with gentle slopes feeding oversampled DAC’s followed by digital
filters before the digital signal is downsampled to the required resolution
for storage or transmission. Early converters were slightly different because
we didn’t have enough computational power to run either the oversampled
DAC or the digital filters, so the filters were implemented in analog circuitry.
These analog filters had extremely high slopes, and therefore big phase shifts
around the cutoff frequency, resulting in ringing. This ringing is still audible
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in the recordings that were made in that era.
Today, many people still aren’t happy with the “standard” sampling

rates of 44.1 and 48 kHz, nor are they satisfied with a 16-bit word length,
although to the best of my knowledge, there haven’t been any trustworthy
listening tests whose results have conclusively proven that going to higher
resolutions produces audible results.

There are a number of suggestions that people have put forward regard-
ing why higher resolutions are necessary – or at least desirable in digital
audio. I’ve listed a couple of these reasons below with some explanations as
to why they may or may not be worth listening to.

Extended frequency range

This is one of the first arguments you’ll hear for higher sampling rates.
Many people claim that there are multiple benefits to increasing the upper
cutoff frequency of our recording systems, requiring higher sampling rates.
Remember that the original sampling rates were chosen to be adequate to
record audio content up to and including 20 kHz. This number is ubiquitous
in our literature regarding the upper limits of human hearing – every student
that learns anything about psychoacoustics starts off on day one learning
that audible sound ranges from 20 Hz to 20 kHz, as if we had two brick wall
filters in our ears.

One group makes its claims on frequency response measurements of the
outputs of instruments. (REFERENCE TO BOYK ARTICLE) The logic
is that since the instruments (such as a trumpet with a harmon mute as a
notable example) produce relatively high-level content above 20 kHz, our
recording systems must capture this content. Therefore, we need higher
sampling rates. One can show that humans are unable to hear sine tones of
a reasonable level with frequencies above 20 kHz. However, it is possible that
complex tones with harmonic content above 20 kHz produce resultant tones
that may or may not be audible. It could be argued that these resultant
tones are not audible with real sources in real life, but would be audible
but undesirable in loudspeakers resulting from intermodulation distortion
(described in Section ??). (If you would like to test yourself in this area, do
and experiment where you’re asked to tell the difference between a square
wave and a sine wave, both with a fundamental frequency of 7 kHz. If you
can hear the difference between these two (make sure that they’re the same
level!) then these people have a point. You see, the only difference between
a sine wave a square wave is the energy in the odd harmonics above the
fundamental in the square wave. Since the first odd harmonic above the
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fundamental is 3 times the fundamental, then all of the differences between
the two tones at 7 kHz will be content at 21 kHz and higher. In cased you’re
interested, I tried this experiment and none of my subjects (including me)
were able to tell the difference with any reliability.)

Another group relies on the idea that our common understanding of
human limits of hearing is incorrect. For many years, many people have
argued that our hearing does not stop at 20 kHz, regardless of what the
tests and textbooks tell us. These folks say that we are actually able to per-
ceive spectral content above 20 kHz in one way or another. When it proved
to be impossible to get people to identify such things in standard listening
tests (i.e. can you hear the difference between two sounds, one band-limited
and one not) people resorted to looking at EKG’s to see if high-frequency
content changed Alpha-waves (CHECK DETAILS – REFERENCE TO YA-
MAMOTO ARTICLE).

Passband ripple

Once upon a time, there was a voice of sanity in the midst of the noise.
Listserves and newgroups on Usenet would be filled with people spouting
opinions on why bigger was better when it came to numbers describing
digital audio. All sorts of strange ideas were (are) put forward by people
who don’t know the quote by George Eliot – “Blessed is the man who,
having nothing to say, abstains from giving in words evidence to that fact”
or a similar piece of advice from Abraham Lincoln – “Better to be thought
a fool than to open your mouth and remove all doubt.” That lonely voice
belonged to a man named Julian Dunn. Mr. Dunn wrote a paper that
suggested that there was a very good reason why higher sampling rate may
result in better sounding audio even if you can’t hear above 20 kHz. He
showed that the antialiasing filters used within ADC’s do not have a flat
frequency response in their passband. And, not only was their frequency
response not flat, but they typically have a periodic ripple in the frequency
domain. Of course, there’s a catch – the ripple that we’re talking about is on
the order of 0.1 dB peak-to-peak, so we’re not talking about a big problem
here...

The interesting thing is that this frequency response irregularity can
be reduced by increasing your sampling rate and reducing the slope of the
antialiasing filters. Therefore, it’s possible that higher sampling rates sound
better because of reduced artifacts caused by the filters.

Dunn also noted that, if you’re smart, you can design your reconstruction
filter in your DAC to have the same ripple with the opposite phase (in the
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frequency domain), thus canceling the effects of both filters and producing
a perfectly flat response of the total system. Of course, this would mean
that all manufacturers of ADC’s and DAC’s would have to use the same
filters and that would, in turn mean that no converter would sound better
than another which would screw up the pricing structure of that market...
So most people that make converters (especially expensive ones) probably
think that this is a bad idea.

You can download a copy of this paper from the web at www.nanophon.com.

The myth of temporal resolution

When students are learning PCM digital audio for the very first time, an
analogy is made to film. Film takes 24 snapshots per second of the action
and plays them back at the same speed to resemble motion. Similarly, PCM
digital audio takes a much larger number of “snapshots” of the voltage level
of the signal each second and plays them back later in the same order to
reconstruct the signal.

This is a pretty good analogy (which is why I used it as well in Section
??). However, it causes a misconception later on. If we stick with thinking
about film for a moment, we have a limited temporal resolution. For exam-
ple, if an even happens, lasting for a very short period of time and occurring
between two frames of the film, then the event will never be recorded on
the film. Let’s say that you’re making a movie of a wedding and somebody
snaps a photograph with a flash. Let’s also pretend that the flash lasts only
for 1/60th of a second (faster than your 1/24th of a second frame rate) and
that flash happens between frames of your movie. When you play back the
movie, you’ll never see the flash because it happened at a moment in time
that your film didn’t record.

There are a large number of people in the audio world who are under the
misconception that this also holds true in digital audio. The belief is that an
event that happens between two samples will not be recorded. Consequently,
things like precise time of arrival at a microphones or multiple reflections
arriving at very closely spaced intervals will not be recorded because their
arrival doesn’t correspond to a sample time. Or, another belief is that the
time of arrival is quantized in time to the nearest sample, so differences in
times of arrival of a wavefront at two microphones will be slightly altered,
rounding off to the nearest sample.

I want to express this as explicitly as possible... These beliefs are just
plain wrong. In fact, if these people were right, then there would be no
such thing as an interpolated delay, and we know that those exist.

http://www.nanophon.com
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The sampling period has no relationship whatsoever with the ability of
a digital recording system (either PCM or Delta-Sigma) to resolve the time
of a signal. This is because the signal is filtered by the anti-aliasing filters.
A discrete time audio system (i.e. digital) has an infinite resolution in the
temporal domain if the signal is properly band-limited (REFERENCES TO
GO HERE).

Sampling Rate Sampling Period
44.1 kHz 22.7 µsec
48 kHz 20.8 µsec

88.2 kHz 11.3 µsec
96 kHz 10.4 µsec
192 kHz 5.3 µsec
384 kHz 2.6 µsec

2.83 MHz 0.35 µsec

Table 7.3: Sampling periods for various standard sampling rates. You will see these listed as the
temporal resolution of the various sampling rates. This is incorrect. The temporal resolutions of all
of these sampling rates and systems are the same – infinite.

7.9.3 Is it worth it?

Do not take everything I’ve said in this chapter as the definitive reference
on the subject of high-resolution audio. Go read the papers by Julian Dunn
and Malcom Hawkesford and a bunch of other people before you make up
your mind on whether it’s worth the disc space to do recordings at 96 kHz or
higher. However, don’t base your decisions on one demo from a marketing
rep of a company who’s trying to sell you a product. And don’t get sucked
in by the simple marketing ploy that “more” and “better” are equivalent
terms.

7.9.4 Suggested Reading List

Malcolm Hawkesford
Julian Dunn
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7.10 Data Compression and Reduction

NOT YET WRITTEN

7.10.1 History

NOT YET WRITTEN

7.10.2 ATRAC

NOT YET WRITTEN

7.10.3 PASC

NOT YET WRITTEN

7.10.4 Dolby

NOT YET WRITTEN

AC-1 & AC-2

NOT YET WRITTEN

AC-3 (aka Dolby Digital)

NOT YET WRITTEN

7.10.5 MPEG
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7.10.7 Suggested Reading List
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7.11 Transmission Techniques for Internet Distri-
bution

NOT YET WRITTEN

7.11.1 Suggested Reading List
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7.12 CD – Compact Disc

Back in 1983, a new format for playing audio was introduced to the consumer
market that represented a radical shift in the relationship between profes-
sional and consumer quality. The advertisements read “Perfect sound...
forever...” Of course, we now know that most early digital recordings were
far from “perfect” (whatever that word entails) and that compact discs don’t
last forever.

The CD format was developed as a cooperative effort between Sony and
Philips. It was intended from the very beginning to be a replacement format
for vinyl LP’s – a position that it eventually secured in all but two markets
(being the DJ and the hard-core audiophile markets).

In initially developing the CD format, Sony and Phillips had to make
many decisions regarding the standard. Three of the most basic require-
ments that they set were the sampling rate, the bit depth and the total
maximum playing time.

7.12.1 Sampling rate

Nowadays, when we want to do a digital recording, we either show up with
a DAT machine, or a laptop with an audio input, writing data straight to
our hard drives. Back in the 1980’s however, DAT hadn’t been invented
yet, and hard discs just weren’t fast enough to cope with the data rate
required by digital audio. The only widely-available format that could be
used to record the necessary bandwidth was a video recorder. Consequently,
machines were built that took a two-channel audio input, converted that to
digital and sent a video output designed to be recorded on either a Beta
tape if you didn’t have a lot of money (yes... Beta... if you’re too young,
you may not have even heard of this format. If you’re at least as old as me,
you probably have some old recordings still lying around on Beta tapes...)
or U-Matic if you did. (U-Matic is an old analog professional-format video
tape that uses 3/4” tape.)The process of converting from digital audio to
video was actually pretty simple, a 1 was a white spot and a 0 was a black
spot. So, if you looked at your digital audio recording on a television, you’d
see a bunch of black and white strips, looking mostly like noise (or snow as
it’s usually called when you see noise on a TV).

Since the recording format (video tape) was already on the market, the
conversion process was, in part, locked to that format. In addition, the
manufacturers had to ensure that tapes could be shipped across the Atlantic
Ocean and still be useable. This means that the sampling rate had to be
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derived from, among other things, the frame rates of NTSC and PAL video.
To begin with, it was decided that the minimum sampling rate was 40

kHz to allow for a 20 kHz minimum Nyquist frequency. Remember that the
audio samples were stored as black and white stripes in the video signal, so
a number above 40 kHz had to be found that fit both formats nicely. NTSC
video has 525 lines per frame (of which 490 are usable lines for recording
signals) at a frame rate of 29.97 Hz. This can be further divided into 245
usable lines per field (there are 2 fields per frame) at a field rate of 59.95
Hz. If we put 3 audio samples on each line of video, then we arrive at the
following equation [Watkinson, 1988]:

59.94 Hz * 245 lines per field * 3 samples per line = 44.0559 Hz
PAL is slightly different. Each frame has 625 lines (with 588 usable lines)

at 25 Hz. This corresponds to 294 usable lines per field at a field rate of
50 Hz. Again, with 3 audio samples per line of video, we have the equation
[Watkinson, 1988]:

50.00 * 294 lines per field * 3 samples per line = 44.1000 Hz
These two resulting sampling rates were deemed to be close enough (only

a 0.1% difference in sampling rate) to be compatible (this difference in sam-
pling rate corresponds to a pitch shift of about 0.0175 of a semitone).

This is perfect, but we’re forgetting one small thing... most people record
in stereo. Therefore, the EIAJ format was developed from these equations,
resulting in 6 samples per video line (3 for each channel).

There is one odd addition to the story. Technically speaking, the com-
pact disc format really had no ties with video (back in 1983, you couldn’t
play video off a CD yet) but the equipment that was used for recording and
mastering was video-based. Interestingly, NTSC professional video gear (the
U-Matic format) can run at frame rate of 30 fps, and is not locked to the
29.97 of your television at home. Consequently, if you re-do the math with
this frame rate, you’ll find that the resulting sampling rate is exactly 44.1
kHz. Therefore, to ensure maximum compatibility and still keep a techni-
cally achievable sampling rate, 44.1 kHz was chosen to be the standard.

7.12.2 Word length

The next question was that of word length. How many bits are enough
to adequately reproduce an audio signal? And, possibly more importantly,
what is technically feasible to implement, both in terms of storing the data as
well as converting it from and back to the analog domain. We have already
seen in Section ?? that there is a direct connection between the number of
bits used to describe the signal level and the signal-to-noise ratio incurred
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in the conversion process.
NOT YET WRITTEN

7.12.3 Storage capacity (recording time)

NOT YET WRITTEN

7.12.4 Physical construction

A compact disc is a disc make primarily of a polycarbonate plastic made by
Bayer and called Makrolon [Watkinson, 1988]. This is supplied to the CD
manufacturer as small beads shipped in large bags. The disc has a total
outer diameter of 120 mm with a 15 mm hole, and the thickness is 1.2 mm.

The data on the disc plays from the inside to the outside and has a
constant bit rate. As a result, as the laser tracks closer and closer to the edge
of the disc, the rotational speed must be reduced to ensure that the disc-to-
laser speed remains constant at between 1.2 and 1.4 m/s [Watkinson, 1988].
At the very start of the CD, the disc spins at about 230 rpm and at the very
end of a long disc, it’s spinning at about 100 rpm. On a full CD, the total
length of the spiral path read by the laser is about 5.7 km [Watkinson, 1988].

ADD MORE HERE ABOUT PITS AND LANDS, OR BUMPS...

Path tracked by laser

Laser spot

Laser beam

Figure 7.43: A single 14-bit channel word represented as “bumps” on the CD. Notice that the spot
formed by the laser beam is more than twice as wide as the width of the bump. This is intentional.
The laser spot diameter is approximately 1.2 µm. The bump width is 0.5 µm, and the bump height
is 0.13 µm. The track pitch (the distance between this row of bumps and an adjacent row) is 1.6
µm [Watkinson, 1988]. Also remember that, relative to most CD players, this drawing is upside
down – typically the laser hits the CD from below.

The wavelength λ of the laser light is 0.5 µm. The bump height is 0.13
µm, corresponding to approximately λ

4 for the laser. As a result, when the
laser spot is hitting a bump on the disc, the reflections from both the bump
and the adjacent lands (remember that the laser spot is wider than the
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bump) results in destructive interference and therefore cancellation of the
reflection. Therefore, seen from the point of view of the pickup, there is no
reflection from a bump.

7.12.5 Eight-to-Fourteen Modulation (EFM)

There is a small problem in this system of representing the audio data with
bumps on the CD. Let’s think about a worst-case situation where, for some
reason, the audio data is nothing but a string of alternating 1’s and 0’s.
If we were representing each 0 with a bump and each 1 with a not-bump,
then, even if we didn’t have additional information to put on the disc (and
we do...), we’d be looking at 1,411,200 bump-to-not-bump transitions per
second or a frequency of about 1.4 MHz (44.1 kHz x 16 bits per sample x
2 channels). Unfortunately, it’s not possible for the optical system used in
CD’s to respond that quickly – there’s a cutoff frequency for the data rate
imposed by a couple of things (such as “the numerical aperture of the optics
and the track velocity” [Watkinson, 1988]). In addition, we want to keep
our data rate below this cutoff to gain some immunity from problems caused
by “disc warps and focus errors” [Watkinson, 1988].

So, one goal is to somehow magically reduce the data rate from the disc
as low as possible. However, this will cause us another problem. The data
rate of the bits going to the DAC is still just over 705 kHz (44.1 kHz x
16 bits per sample). This clock rate has to be locked to, or derived from
the data coming off the disc itself, which we have already established, can’t
go that fast... If the data coming off the disc is too slow, then we’ll have
problems locking our slow data rate from the disc with the fast data rate of
information getting to the DAC. If this doesn’t make sense at the moment,
stick with me for a little while and things might clear up.

So, we know that we need to reduce the amount of data written to (and
read from) the disc without losing any audio information. However, we also
know that we can’t reduce the data rate too much, or we’ll introduce jitter
at best and locking problems at worst. The solution to this problem lies in
a little piece of magic called eight to fourteen modulation or EFM .

To begin with, eight to fourteen modulation is based on a lookup table.
A small portion of this table is shown in Table 7.4.

We being by taking each 16-bit sample that we want to put on the disc
and slice it into two 8-bit bytes. We then go to the table and look up the
8-bit value in the middle column of Table 7.4. The right-hand column shows
a different number containing 14 bits, so we write this down.

For example, let’s say that we want to put the number 01101001 on the
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Laser

Sensor One-way 
mirror

Figure 7.44: Simplified diagram showing how the laser is reflected off the CD. The laser shines
through a semi-reflective mirror, bounces off the CD, reflects off the mirror and arrives at the
sensor [Watkinson, 1988].
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1.2 mm polycarbonate plastic

protective laquer coat
aluminium coat

Silkscreened labeling on this side

Focusing lens

Laser beam
(incoming and reflected)

27°

17°

0.7 mm

Figure 7.45: Cross section of a CD showing the polycarbonate base, the reflective aluminum coating
as well as the protective lacquer coating. The laser has a diameter of 0.7 mm when it hits the surface
of the disc, therefore giving it a reasonable immunity to dirt and scratches [Watkinson, 1988].

disc. We go to the table, look up that number and we get the corresponding
number 10000001000010.

Data value Data bits Channel bits
(decimal) (binary) (binary)

101 01100101 00000000100010
102 01100110 01000000100100
103 01100111 00100100100010
104 01101000 01001001000010
105 01101001 10000001000010
106 01101010 10010001000010
107 01101011 10001001000010
108 01101100 01000001000010
109 01101101 00000001000010
110 01101110 00010001000010

Table 7.4: A small portion of the table of equivalents in EFM. The value that we are trying to put
on the disc is the 8-bit word in the middle column. The actual word printed on the disc is the
14-bit word in the right column [Watkinson, 1988].

Okay, so right about now, you should be saying “I thought that we
wanted to reduce the amount of data... not increase it from 8 up to 14
bits...” We’re getting there.

What we now do is to take our 14-bit word 10000001000010 and draw an
irregular pulse wave where we have a transition (from high to low or low to
high) for every “1” in the word. This is illustrated in Figure 7.46. Compare
the examples in this figure with the corresponding 14-bit values in Table
7.4.

Okay, we’re not out of the woods yet. We can still have a problem. What
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101

102

103

T 1 143 5 7 9 11 1312108642

Figure 7.46: Three examples of the representation of the data word from Table 7.4 being repre-
sented as pits and lands using EFM.

if the 14-bit word has a string of 1’s in it? Aren’t we still stuck with the
original problem, only worse? Well, yes. But, the clever people that came up
with this idea were very careful about choosing their 14-bit representative
words. They made sure that there are no 14-bit values with 1’s separated
be less than two 0’s. Huh? For example, non of the 14-bit words in the
lookup table contain the codes 11 or 101 anywhere. Take a look at the
small example in Table 7.4. You won’t find any 1’s that close together -
minimum separation of two 0’s at any time. In real textbooks they talk
about a minimum period between transitions of 3T where T is the period of
1 bit in the 14-bit word. (This period T is 231.4 ns, corresponding to a data
rate of 4.3218 MHz [Watkinson, 1988] – but remember, that’s the data rate
of the 14-bit word, not the signal stamped on the disc.) This guarantees that
the transition rate on the disc cannot exceed 720 kHz, which is acceptably
high.

So, that looks after the highest frequency, but what about the lowest
possible frequency of bump transitions? This is looked after by setting a
maximum period between transitions of 11T , therefore there are no 14-bit
words with more than ten 0’s between 1’s. This sets our minimum transition
frequency to 196 kHz which is acceptably low.

Let’s talk a little more about why we have this low-frequency limitation
on the data rate. Remember that when we talk about a “period between
transitions of 11T” we’re directly talking about the length of the bump (or
not-bump) on the disc surface. We’re already seen that the rotational speed
of the disc is constantly changing as the laser gets further and further away
from the centre. This speed change is done in order to keep the data rate
constant – the physical length of a bump of 9T at the beginning of the disc
is the same as that of a bump of 9T at the end of the disc. The problem is,
if you’re the sensor responsible for converting bump length into a number,
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T < 3

T > 11

T 1 143 5 7 9 11 1312108642

Figure 7.47: Two examples of invalid codes. The errors are circled. The top code cannot be used
since one of the pits is shorter than 3T . The bottom code is invalid because the land is longer then
11T .

you really need to know how to measure the bump length. The longer the
bump, the more difficult it is to determine the length, because it’s a longer
time since the last transition.

To get an idea of what this would be like, stand next to a train track and
watch a slowing train as it goes by. Count the cars, and get used to the speed
at which they’re going by, and how much they’re slowing down. Then close
your eyes and keep counting the cars. If you had to count for 3 cars, you’d
probably be pretty close to being right in synch with the train. If you had
to count 9 cars, you’d probably be wrong, or at least losing synchronization
with the train. This is exactly the same problem that the laser sensor has
in estimating pit lengths. The longer the pit, the more likely the error, so
we keep a maximum of 11T to minimize the likelihood of errors.

7.12.6 Suggested Reading List
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7.13 DVD-Audio

NOT YET WRITTEN

7.13.1 Suggested Reading List
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7.14 SACD and DSD

Super Audio Compact Disc and Direct Stream Digital
NOT YET WRITTEN

7.14.1 Suggested Reading List
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7.15 Hard Disk Recording

7.15.1 Bandwidth and disk space

One problem that digital audio introduces is the issue of bandwidth and
disk space. If you want to record something to tape and you know that it’s
going to last about an hour and a half, then you go and buy a two-hour
tape. If you’re recording to a hard drive, and you have 700 MB available,
how much time is that?

In order to calculate this, you’ll need to consider the bandwidth of the
signal you’re going to send. Consider that, for each channel of audio, you’re
going to some number of samples, depending on the sampling rate, and each
of those samples is going to have some number of bits, depending on the
word length.

Let’s use the example of CD to make a calculation. CD uses a sampling
rate of 44.1 kHz (44100 samples per second) and 16-bit word lengths for two
channels of audio. Therefore, each second, in each of two channels, 44100,
16-bit numbers come through the system. So:

2 channels
* 44100 samples per second
* 16 bits per sample
= 1,411,200 bits per second
What does this mean in terms of disc space? In order to calculate this,

we just have to convert the number of bits into the typical storage unit for
computers – a byte (eight bits).

1,411,200 bits per second
/ 8 bits per byte
= 176,400 bytes per second
divide that by 1024 (bytes per kilobyte) and we get the value in kilobytes

per second, resulting in a value of 172.27 kB per second.
From there we can calculate into what are probably more meaningful

terms:
172.27 kB per second
* 60 seconds per minute
= 10,335.94 kilobyte per minute
/ 1024 kilobyte per megabyte
= 10.1 MB per minute.
So, when you’re storing uncompressed, CD-quality audio on your hard

drive, it’s occupying a little more than 10 MB per minute of space, so 700
MB of free space is about 70 minutes of music.
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7.15.2 Suggested Reading List
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7.16 Digital Audio File Formats

NOT YET WRITTEN

7.16.1 AIFF

NOT YET WRITTEN

7.16.2 WAV

NOT YET WRITTEN

7.16.3 SDII

NOT YET WRITTEN

7.16.4 mu-law

NOT YET WRITTEN

7.16.5 Suggested Reading List
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Chapter 8

Digital Signal Processing

8.1 Introduction to DSP

One of my first professors in Digital Signal Processing (better known as DSP)
summarized the entire field using the simple flowchart shown in Figure 8.1.

signal input

signal output

math

Figure 8.1: DSP in a very small nutshell. The “math” that is done is the processing done to the
digital signal. This could be a delay, an EQ or a reverb unit – either way, it’s just math.

Essentially, that’s just about it. The idea is that you have some signal
that you have converted from analog to a discrete representation using the
procedure we saw in Section 7.1. You want to change this signal somehow
– this could mean just about anything... you might want to delay it, filter
it, mix it with another signal, compress it, make reverberation out of it –
anything... Everything that you want to do to that signal means that you
are going to take a long string of numbers and turn them into a long string of
different numbers. This is processing of the digital signal or, Digital Signal
Processing – it’s the math that is applied to the signal to turn it into the

509
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other signal that you’re looking for.

8.1.1 Block Diagrams and Notation

Usually, a block diagram of a DSP algorithm won’t run from top to bottom
as is shown in Figure 8.1. Just like analog circuit diagrams, DSP diagrams
typically run from left to right, with other directions being used either when
necessary (to make a feedback loop, for example) or for different signals like
control signals as in the case of analog VCA’s (See section 5.2.2).

Let’s start by looking at a block diagram of a simple DSP algorithm.

x[t] y[t]

Z
a

+

-k

Figure 8.2: Basic block diagram of a comb filter implemented in the digital domain.

Let’s look at all of the components of Figure 8.2 to see what they mean.
Looking from left to right you can see the following:

• xt This actually has a couple of things in it that we have to talk about.
Firstly, there’s the x which tells us that this is an input signal with
a value of x (x is usually used to indicate that it’s an input, y for
output). The subscript t is the sample number of the signal – in other
words, it’s the time that the signal’s value is x.

• z−k This is an indication of a delay of k samples. We know that t is
a sample number, and we’re just subtracting some number of samples
to that (in fact, we’re subtracting k samples). Subtracting k from the
sample number means that we’re getting earlier in time, so [t-k] means
that we’re delaying the signal at time [t] by k samples. We use a delay
to hear something now that actually came in earlier. So, this block
is just a delay unit with a delay time of k samples. Since the delay
time is expressed in a number of samples, we call it an integer delay
to distinguish it from other types that we’ll see later. We’ll also talk
later (in Section 8.7) about why it’s written using a z.

• a There is a little triangle with an a over it in the diagram. This
is a gain function where a is the multiplier. Everything that passes
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through that little triangle (which means, in this case, everything that
comes out of the delay box) gets multiplied by a.

• The circle with the + sign in it indicates that the two signals coming
in from the left and below are added together and sent out the right.
Sometimes you will also see this as a circle with a Σ in it instead. This
is just another way of saying the same thing.

• yt As you can probably guess, this is the value of the sample at time
t at the output (hence the y) of the system.

There is another way of expressing this block diagram using math. Equa-
tion 8.1 shows exactly the same information without doing any drawing.

yt = xt + axt−k (8.1)

8.1.2 Normalized Frequency

If you start reading books about DSP, you’ll notice that they use a strange
way of labeling the frequency of a signal. Instead of seeing graphs with
frequency ranges of 20 Hz to 20 kHz, you’ll usually see something called a
normalized frequency ranging from 0 to 0.5 and no unit attached (it’s not 0
to 0.5 Hz).

What does this mean? Well, think about a digital audio signal. If we
record a signal with a 48 kHz sample rate and play it back with a 48 kHz
sampling rate, then the frequency of the signal that went in is the same as
the frequency of the signal that comes out. However, if we play back the
signal with a 24 kHz sampling rate, then the frequency of the signal that
comes out will be one half that of the recorded signal. The ratio of the input
frequency to the output frequency of the signal is the same as the ratio of
the recording sampling rate to the playback sampling rate. This probably
doesn’t come as a surprise.

What happens if you really don’t know the sampling rate? You just have
a bunch of samples that represent a time-varying signal. You know that the
sampling rate is constant, you just don’t know its frequency. This is the
what a DSP processor “knows.” So, all you know is what the frequency
of the signal is relative to the sampling rate. If the samples all have the
same value, then the signal must have a frequency of 0 (the DSP assumes
that you’ve done your anti-aliasing properly...). If the signal bounces back
between positive and negative on every sample, then its frequency must be
the Nyquist Frequency – one half of the sampling rate.



8. Digital Signal Processing 512

So, according to the DSP processor, where the sampling rate has a fre-
quency of “1”, the signal will have a frequency that can range from 0 to 0.5.
This is called the normalized frequency of the signal.

There’s an important thing to remember here. Usually people use the
word “normalize” to mean that something is changed (you normalize a mix-
ing console by returning all the knobs to a default setting, for example).
With normalized frequency, nothing is changed – it’s just a way of describ-
ing the frequency of the signal.

PUT A SHORT DISCUSSION HERE REGARDING THE USE OF ωt

8.1.3 Suggested Reading List
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8.2 FFT’s, DFT’s and the Relationship Between
the Time and Frequency Domains

NOTE TO SELF: CHECK ALL THE COMPLEX NUMBERS IN THIS
SECTION

Note:

If you’re unhappy with the concepts of real and imaginary components in
a signal, and how they’re represented using complex numbers, you’d better
go back and read Chapter 1.5.

8.2.1 Fourier in a Nutshell

We saw briefly in Section 3.1.16 that there is a direct relationship between
the time and frequency domains for a given signal. In face, if we know
everything there is to know about the frequency domain, we already know its
shape in the time domain and vice versa. Now let’s look at that relationship
a little more closely.

Take a sine wave like the top plot shown in Figure 8.3 and add it to an-
other sine wave with one third the amplitude and three times the frequency
(the middle plot, also in Figure 8.3). The result will be shaped like the
bottom plot in Figure 8.3.

Figure 8.3: The bottom plot is the sum of the top two plots.

If we continue with this series, adding a sine wave at 5 times the fre-
quency and 1/5th the amplitude, 7 times the frequency and 1/7th the am-
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plitude and so on up to 31 times the frequency (and 1/31 the amplitude)
you get a waveform that looks like Figure 8.4.

Figure 8.4: The sum of odd harmonics of a sine wave where the amplitude of each is 1/n where
‘n’ is the harmonic number up to the 31st harmonic.

As is beginning to become apparent, the result starts to approach a
square wave. In fact, if we kept going with the series up to ∞ Hz, the sum
would be a perfect square wave.

The other issue to consider is the relative phase of the harmonics. For
example, if we take the same sinusoids as are shown in Figures 8.3 and 8.4
and offset each by 90◦ before summing, we get a very different result as can
be seen in Figures 8.5 and 8.6.

This isn’t a new idea – in fact, it was originally suggested by a guy named
Jean Baptiste Fourier that any waveform (such as a square wave) can be
considered as a sum of a number of sinusoidal waves with different frequen-
cies and phase relationships. This means that we can create a waveform
out of sinusoidal waves like we did in Figures 8.3 and 8.4, but it also means
that we can take any waveform and look at its individual components. This
concept will come as no surprise to musicians, who call these components
“harmonics” – the timbres of a violin and a viola playing the same note
are different because of the different relationships of the harmonics in their
spectra (one spectrum, two spectra)

Using a lot of math – and calculus, it is possible to calculate what is
known as a Fourier Transform of a signal to find out what its sinusoidal
components are. We won’t do that. There is also a way to do this quickly –
called a Fast Fourier Transform or FFT . We won’t do that either. The FFT
is used for signals that are continuous in time. As we already know, this is
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Figure 8.5: The bottom plot is the sum of the top two plots. Note that the frequencies and
amplitudes of the two components are identical to those shown in Figure 1, however, the result of
adding the two produces a very different waveform.

Figure 8.6: The sum of odd harmonics of a sine wave where the amplitude of each is 1/n where
‘n’ is the harmonic number up to the 31st harmonic.
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not the case for digital audio signals, where time and amplitude are divided
into discrete divisions. Consequently, in digital audio we use a variation on
the FFT called a Discrete Fourier Transform or DFT. This is what we’ll
look at. One thing to note is that most people in the digital world use the
term FFT when they really mean DFT – in fact, you’ll rarely hear someone
talk about DFT’s – even through that’s what they’re doing. Just remember,
if you’re doing what you think is an FFT to a digital signal, you’re really
doing a DFT.

8.2.2 Discrete Fourier Transforms

Let’s take a digital audio signal and view just a portion of it, shown in
Figure 8.7. We’ll call that portion the window because the audio signal
extends on both sides of it and it’s as if we’re looking at a portion of it
through a window. For the purposes of this discussion, the window length,
usually expressed in points is only 1024 samples long (therefore, in this case
we have a 1024-point window).

Figure 8.7: A plot of a digital audio signal 1024 samples long.

As we already know, this signal is actually a string of numbers, one for
each sample. To find the amount of 0 Hz in this signal, all we need to do
is to add the values of all the individual samples. Technically speaking,
we really should make it an average and divide the result by the number
of samples, but we’re in a rush, so don’t bother. If the wave is perfectly
symmetrical around the 0 line (like a sinusoidal wave, for instance...) then
the total will be 0 because all of the positive values will cancel out all of the
negative values. If there’s a DC component in the signal, then adding the
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values of all the samples will show us this total level.
So, if we add up all the values of each of the 1024 samples in the signal

shown, we get the number 4.4308. This is a measure of the level of the 0
Hz component (in electrical engineering jargon, the DC offset) in the signal.
Therefore, we can say that the bin representing the 0 Hz component has a
value of 4.4308. Note that the particular value is going to depend on your
signal, but I’m giving numbers like “4.4308” just as an example.

We know that the window length of the audio signal is, in our case, 1024
samples long. Let’s create a cosine wave that’s the same length, counting
from 0 to 2π (or, in other words, 0 to 360◦). (Technically speaking, its
period is 1025 samples, and we’re cutting off the last one...) Now, take the
signal and, sample by sample, multiply it by its corresponding sample in the
cosine wave as shown in Figure 8.8.

Figure 8.8: The top plot is the original signal. The middle plot is one period of a cosine wave
(minus the last sample). The bottom plot is the result when we multiply the top two, sample by
sample.

Now, take the list of numbers that you’ve just created and add them
all together (for this particular example, the result happens to be 6.8949).
This is the “real” component at a frequency whose period is the length of
the audio window. (In our case, the window length is 1024 samples, so the
period for this component is fs

1024 where fs is the sampling rate.)
Repeat the process, but use a sine wave instead of a cosine and you get

the imaginary component for the same frequency, shown in Figure 8.9.
Take that list of numbers and add them and the result is the “imaginary”

component at a frequency whose period is the length of the sample (for this
particular example, the result happens to be 0.9981).
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Figure 8.9: The top plot is the original signal. The middle plot is one period of an inverted sine
wave (minus the last sample). The bottom plot is the result when we multiply the top two, sample
by sample.

Let’s assume that the sampling rate is 44.1 kHz, this means that our bin
representing the frequency of 43.0664 Hz (remember, 44100/1024) contains
the complex value 6.8949 + 0.9981i. We’ll see what we can do with this in
a moment.

Now, repeat the same procedure using the next harmonic of the cosine
wave, shown in Figure 8.10.

Take that list of numbers and add them and the result is the “real”
component at a frequency whose period is the one half the length of the
audio window (for this particular example, the result happens to be -4.1572).

And again, we repeat the procedure with the next harmonic of the sine
wave, shown in Figure 8.11.

Take that list of numbers and add them and the result is the “imaginary”
component at a frequency whose period is the length of the sample (for this
particular example, the result happens to be -1.0118).

If you want to calculate the frequency of this bin, it’s 2 times the fre-
quency of the last bin (because the frequency of the cosine and sine waves
are two times the fundamental). Therefore it’s 2

(
fs

1024

)
, or, in this example,

2 * (44100/1024) = 86.1328 Hz.
Now we have the 86.1328 Hz bin containing the complex number -4.1572

– 1.0118i.
This procedure is repeated, using each harmonic of the cosine and sine

until you get up to a frequency where you have 1024 periods of the cosine
and sine in the window. (Actually, you just go up to the frequency where
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Figure 8.10: The top plot is the original signal. The middle plot is two periods of a cosine wave
(minus the last sample). The bottom plot is the result when we multiply the top two, sample by
sample.

Figure 8.11: The top plot is the original signal. The middle plot is two periods of an inverted sine
wave (minus the last sample). The bottom plot is the result when we multiply the top two, sample
by sample.



8. Digital Signal Processing 520

the number of periods in the cosine or the sine is equal to the length of the
window in samples.)

Using these numbers, we can create Table 8.1.

Bin Frequency (Hz) Real Imaginary
Number component component
0 0 Hz 4.4308 N/A
1 43.0664 Hz 6.8949 0.9981i
2 86.1328 Hz -4.1572 -1.0118i

Table 8.1: The results of our multiplication and averaging described above for the first three bins.
These are just the first three bins of 1024 (bin numbers 0 to 1023).

How can we use this information? Well, remember from the chapter on
complex numbers that the magnitude of a signal – essentially, the amplitude
of the signal that we see – is calculated from the real and imaginary compo-
nents using the Pythagorean theorem. Therefore, in the example above, the
magnitude response can be calulated by taking the square root of the sum
of the squares of the real and imaginary results of the DFT. Huh? Check
out Table 8.2.

Bin Number Frequency (Hz)
√

real2 + imag2 Magnitude
0 0 Hz

√
4.43082 4.4308

1 43.0664 Hz
√

6.89492 + 0.99812 6.9668
2 86.1328 Hz

√
−4.15722 +−1.01182 4.2786

Table 8.2: The magnitude of each bin, calculated using the data in Table 8.1

If we keep filling out this table up to the 1024th bin, and graphed the
results of Magnitude vs. Bin Frequency we’d have what everyone calls the
Frequency Response of the signal. This would tell us, frequency by frequency
the amplitude relationship of the various harmonics in the signal. The one
thing that it wouldn’t tell us is what the phase relationship of the vari-
ous harmonics are. How can we caluclate that? Well, remember from the
chapter on trigonometry that the relative levels of the real and imaginary
components can be calulated using the phase and amplitude of a signal.
Also, remember from the chapter on complex numbers that the phase of the
signal can be calculated using the relative levels of the real and imaginary
components using the equation:
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φ = arctan(
imaginary

real
) (8.2)

So, now we can create a table of phase relationships, bin by bin as shown
in Table 8.3:

Bin Number Frequency (Hz) arctan( imaginary
real ) Phase (degrees)

0 0 Hz arctan 0
4.4308 0◦

1 43.0664 Hz arctan 0.9981
6.8949 8.2231◦

2 86.1328 Hz arctan −1.0118
−4.1572 13.6561◦

Table 8.3: The phase of each bin, calculated using the data in Table 8.1

So, for example, the signal shown in Figure 3 has a component at 86.1328
Hz with a magnitude of 4.2786 and a phase offset of 13.6561◦.

Note that you’ll sometimes hear people saying something along the lines
of the real component being the signal and the imaginary component con-
taining the phase information. If you hear this, ignore it – it’s wrong. You
need both the real and the imaginary components to determine both the
magnitude and the phase content of your signal. If you have one or the
other, you’ll get an idea of what’s going on, but not a very good one.

8.2.3 A couple of more details on detail

When you do a DFT, there’s a limit on the number of bins you can calculate.
This total number is dependent on the number of samples in the audio signal
that you’re using, where the number of bins equals the number of samples.
Just to make computers happier (and therefore faster) we tend to do DFT’s
using window lengths which are powers of 2, so you’ll see lengths like 256
points, or 1024 points. So, a 256-point DFT will take in a digital audio
signal that is 256 samples long and give you back 256 bins, each containing
a complex number representing the real and imaginary components of the
signal.

Now, remember that the bins are evenly spaced from 0 Hz up to the
sampling rate, so if you have 1024 bins and the sampling rate is 44.1 kHz
then you get a bin every 44100/1024 Hz or 43.0664 Hz. The longer the
DFT window, the better the resolution you get because you’re dividing the
sampling rate by a bigger number and the spacing in frequency gets smaller.
Intuitively, this makes sense. For example, let’s say that we used a DFT
length of 4 points. At a very low frequency, there isn’t enough change in
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4 samples (which is all the DFT knows about...) to see a difference, so
the DFT can’t calculate a low frequency. The longer the window length,
the lower the frequency we can look at. If you wanted to see what was
happening at 1 Hz, then you’re going to have to wait for at least 1 full
period of the waveform to understand what’s going on. This means that
your DFT window length as to be at least the size of all the samples in
one second (because the period of a 1 Hz wave is 1 second). Therefore, the
better low-frequency resolution you want, the longer a DFT window you’re
going to have to use.

This is great, but if you’re trying to do this in real time, meaning that
you want a DFT of a signal that you’re listening to while you’re listening
to it, then you have to remember that the DFT can’t be calculated until all
of the samples in the window are known. Therefore, if you want good low-
frequency resolution, you’ll have to wait a little while for it. For example,
if your window size is 8192 samples long, then the first DFT result won’t
come out of the system until 8192 samples after the music starts. Essentially,
you’re always looking at what has just happened – not what is happening.
Therefore, if you want a faster response, you need to use a smaller window
length.

The moral of the story here is that you can choose between good low-
frequency resolution or fast response – but you really can’t have both (but
there are a couple of ways of cheating...).

8.2.4 Redundancy in the DFT Result

If you go through the motions and do a DFT bin by bin, you’ll start to
notice that the results start mirroring themselves. For example, if you do
an 8-point DFT, then bins 0 up to 4 will all be different, then bin 5 will
be identical to bin 3, bins 6 and 2 are the same, and bins 7 and 1 are the
same. This is because the frequencies of the DFT bins go from 0 Hz to
the sampling rate, but the audio signal only goes to half of the sampling
rate, normally called the Nyquist frequency. Above the Nyquist, aliasing
occurs and we get redundant information. The odd thing here is the fact
that we actually eliminated information above the Nyquist frequency on the
conversion from analog to digital, but there is still stuff there – it’s just a
mirror image of the signal we kept.

Consequently, when we do a DFT, since we get this mirror effect, we
typically throw away the redundant data and keep a little more than half
the number of bins – in fact, it’s one more than half the number. So, if you
do a 256-point DFT, then you are really given 256 frequency bins, but only
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129 of those are usable (256/2 + 1). In real books on DSP, they’ll tell you
that, for an N-point DFT, you get N/2+1 bins. These bins go from 0 Hz up
to the Nyquist frequency or fs

2 .
Also, you’ll notice that at the first and last bins (at 0 Hz and the Nyquist

frequency) only contain real values – no imaginary components. This is
because, in both cases, we can’t calculate the phase. There is no phase
information at 0 Hz, and since, at the Nyquist frequency, the samples are
always hitting the same point on the sinusoid, we don’t see its phase.

8.2.5 What’s the use?

Good question. Well, what we’ve done is to look at a signal represented
in the Time domain (in other words, what does the signal do if we look
at it over a period of time) and convert that into a representation in the
Frequency domain (in other words, what are the represented frequencies in
this signal). These two domains are completely inter-related. That is to say
that if you take any signal in the time domain, it has only one representation
in the frequency domain. If you take that signal’s representation in the
frequency domain, you can convert it back to the time domain. Essentially,
you can calulate one from the other because they are just two different ways
of expressing the same signal.

For example, I can use the word “two” or the symbol “2” to express a
quantity. Both mean exactly the same thing – there is no difference between
“2 chairs” and “two chairs.” The same is true when you’re moving back and
forth between the frequency domain and time domain representations of the
same signal. The signal stays the same – you just have two different ways
of writing it down.

8.2.6 Suggested Reading List

[Strawn, 1985]
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8.3 Windowing Functions

Now that we know how to convert a time domain signal into a frequency
domain representation, let’s try it out. We’ll start by creating a simple sine
wave that lasts for 1024 samples and is comprised of 4 cycles as is shown in
Figure 8.12.
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Figure 8.12:

If we do a 1024-point DFT of this signal and show the modulus of each
bin (not including the redundancy in the mirror image), it will look like
Figure 8.13.
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Figure 8.13:
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You’ll notice that there’s a big spike at one frequency and a little noise
(very little... -350 dB is a VERY small number) in all of the other bins.
In case you’re wondering, the noise is caused by the limited resolution of
MATLAB which I used for creating these graphs. MATLAB calculates
numbers with a resolution of 64 bits. That gives us a dynamic range of
about 385 dB or so to work with – more than enough for this textbook...
More than enough for most things, actually...

Now, what would happen if we had a different frequency? For example,
Figure 8.14 shows a sine wave with a frequency of 0.875 times the one in
Figure 8.12.
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Figure 8.14:

If we do a 1024-point DFT on this signal and just look at the modulus
of the result, we get the plot shown in Figure 8.15.

You’ll probably notice that Figure 8.13 is very different from Figure 8.15.
We can tell from the former almost exactly what the signal is, and what it
isn’t. In the latter, however, we get a big much of information. We can see
that there’s more information in the low end than in the high end, but we
really can’t tell that it’s a sine wave. Why does this happen?

The problem is that we’ve only taken a slice of time. When you do a
DFT, it assumes that the time signal you’re feeding it is periodic. Let’s
make the same assumption on our two sine waves shown above. If we take
the first one and repeat it, it will look like Figure 8.16. You can see that
the repetition joins smoothly with the first presentation of the signal, so the
signal continues to be a sine wave. If we kept repeating the signal, you’d get
smooth connections between the signals and you’d just make a longer and
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Figure 8.15:

longer sine wave.
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Figure 8.16:

If we take the second sine wave and repeat it, we get Figure 8.17. Now,
we can see that things aren’t so pretty. Because the length of the signal is
not an integer number of cycles of the sine wave, when we repeat it, we get
a nasty-look change in the sine wave. In fact, if you look at Figure 8.17, you
can see that it can’t be called a sine wave any more. It has some parts that
look like a sine wave, but there’s a spike in the middle. If we keep repeating
the signal over and over, we’ve get a spike for every repetition.

That spike (also called a discontinuity in the time signal contains energy
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Figure 8.17:

in frequency bins other than where the sine wave is. in fact, this energy can
be seen in the DFT that we did in Figure 8.15.

The moral of the story thus far is that if your signal’s period is not the
same length as 1 more sample than the window of time you’re doing the
DFT on, then you’re going to get a strange result. Why does it have to be 1
more sample? This is because if the period was equal to the window length,
then when you repeated it, you’d get a repetition of the signal because the
first sample in the window is the same as the last. (In fact, if you look
carefully at the end of the signal in Figure 8.12, you’ll see that it doesn’t
quite get back to 0 for exactly this reason.

How do we solve this problem? Well, we have to do something to the
signal to make sure that the nasty spike goes away. The concept is basically
the same as doing a crossfade between two sounds – we’re just going to make
sure that the signal in the window starts at 0, fades in, and then fades away
to 0 before we do the DFT. We do this by introducing something called a
windowing function. This is a list of gains that are multiplied by our signal
as is shown in Figure 8.18.

Let’s take the signal in Fire 8.14 – the one that caused us all the problems.
If we multiply each of the samples in that signal with its corresponding gain
shown in Figure 8.18, then we get a signal that looks like the one shown in
Figure 8.19.

You’ll notice that the signal still has the sine wave from Figure 8.14, but
we’ve changed its level over time so that it starts and ends with a 0 value.
This way, when we repeat it, the ends join together seamlessly. Now, if we
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Figure 8.18: An example of a windowing function. The X-value of the signal corresponds to a
position within the window. The Y-value is a gain multiplier used to change the level of the signal
we’re measuring.
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Figure 8.19: The result of the signal in Figure 8.14 multiplied by the gain function shown in Figure
8.18.
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do a 1024-point DFT on this signal we get Figure 8.20.
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Figure 8.20:

Okay, so the end result isn’t perfect, but we’ve attenuated the junk
information by as much as 100 dB, which, if you ask me is pretty darned
good.

Of course, like everything in life, this comes at a cost. What happens if
we apply the same windowing function to the well-behaved signal in Figure
8.12 and do a DFT? The result will look like Figure 8.21.
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Figure 8.21:

So, you can see that applying the windowing function made bad things
better but good things worse. The moral here is that you need to know that
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using a windowing function will have an effect on the output of your DFT
calculation. Sometimes you should use it, sometimes you shouldn’t. If you
don’t know whether you should or not, you should try it with and without
and decide which worked best.
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Figure 8.22:

So, we’ve seen that applying a windowing function will change the result-
ing frequency response. The good thing is that this change is predictable,
and different for different functions, so you can not only choose whether or
not to window your signal, but you can also choose what kind of window to
use according to your requirements.

There are essentially an infinite number of different windowing functions
available for you, but there are a number of standard ones that everyone uses
for different reasons. We’ll look at only three – the rectangular, Hanning
and Hamming functions.

8.3.1 Rectangular

The rectangular window is the simplest of all the windowing functions be-
cause you don’t have to do anything. If you multiply each value in your time
signal by 1 (or do nothing to your signal) then your gain function will look
like Figure 8.23. This graph looks like a rectangle, so we call doing nothing
a rectangular window.

What does this do to our frequency response? Take a look at Figure
8.24 which is an 8192-point DFT of the signal in Figure ??.

This shows the general frequency response curve that is applied to the
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Figure 8.23: Time vs. gain response of rectangular windowing function 8192 samples long.
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Figure 8.24: Frequency response of rectangular windowing function. The holes in the response are
where the magnitude drops to −∞.
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DFT of your signal. In essence, you can sort of consider this to be an EQ
curve that is added to the frequency response measurement of your signal.
In fact, if you take a look at Figure 8.15, you’ll see a remarkable similarity
to the general shape of Figure 8.24.

DISCUSSION GOES HERE WHY IT’S DELTA FREQUENCY IN THESE
PLOTS.

Now, let’s zoom in on the middle of Figure ?? as is shown in Figure
8.25. Here, you can see that the frequency response of the rectangular
window consists of multiple little lobes, with the biggest and widest in the
middle. In between each of these lobes, the level drops to 0 (or −∞ dB).
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Figure 8.25: Frequency response of rectangular windowing function.

8.3.2 Hanning

You have already seen one standard windowing function in Figure 8.18.
This is known as a Hanning window and is defined using the equation below
[Morfey, 2001].

w(t) =
{

1
2

(
1 + cos2πt

T

)
for− 1

2T 6 t 6 1
2T

0 otherwise

This looks a little complicated, but if you spend some time with it, you’ll
see that it is exactly the same math as a cardioid microphone. It says that,
within the window, you have the same response as a cardioid microphone,
and outside the window, the gain is 0. This is shown in Figure 8.26.
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Figure 8.26: Time vs. gain response of Hanning windowing function 8192 samples long.

If we do a DFT of the signal in Figure 8.26, we get the plot shown in
Figure 8.27. You can see here that, compared to the rectangular window, we
get much more attenuation of unwanted signals far away from the frequencies
we’re interested in. But this comes at a cost...
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Figure 8.27: Frequency response of Hanning windowing function.

Take a look at Figure 8.28 which shows a close-up of the frequency
response of a Hanning window. You can see here that the centre lobe is much
wider than the one we saw for a rectangular window. So, this means that,
although you’ll get better rejection of signals far away from the frequencies
that you’re interested in, you’ll also get more garbage leaking in very close
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to those frequencies. So, if you’re interested in a broad perspective, this
window might be useful, if you’re zooming in on a specific frequency, you
might be better off using another.
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Figure 8.28: Frequency response of Hanning windowing function.

8.3.3 Hamming

Our third windowing function is known as the Hamming window. The
equation for this is

EQUATION FOR HAMMING TO GO HERE
This gain response can be seen in Figure 8.29. Notice that this one is

slightly weird in that it never actually reaches 0 at the ends of the window,
so you don’t get a completely smooth transition.

The frequency response of the Hamming window is shown in Figure
8.30. Notice that the rejection of frequencies far away from the centre is
better than with the rectangular window, but worse than with the Hanning
function.

So, why do we use the Hamming window instead of the Hanning if its
rejection is worse away from the 0 Hz line? The centre lobe is still quite
wide, so that doesn’t give us an advantage. However, take a look at the lobes
adjacent to the centre in Figure 8.31. Notice that these are quite low, and
very narrow, particularly when they’re compared to the other two functions.
We’ll look at them side-by-side in one graph a little later, so no need to flip
pages back and forth at this point.
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Figure 8.29: Time vs. gain response of Hamming windowing function 8192 samples long.
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Figure 8.30: Frequency response of Hamming windowing function.
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Figure 8.31: Frequency response of Hamming windowing function.

8.3.4 Comparisons

Figure 8.32 shows the three standard windows compared on one graph. As
you can see, the rectangular window in blue has the narrowest centre lobe
of the three, but the least attenuation of its other lobes. The Hanning
window in black has a wider centre lobe but good rejection of its other lobes,
getting better and better as we get further away in frequency. Finally, the
Hamming window in red has a wide centre lobe, but much better rejection
in its adjacent lobes.
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Figure 8.32: Frequency response of three common windowing functions. Rectangular (blue), Ham-
ming (red) and Hanning (black).
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8.3.5 Suggested Reading List
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8.4 FIR Filters

We’ve now seen in Sections 8.2 that there is a direct link between the time
domain and the frequency domain. If we make a change in a signal in the
time domain, then we must incur a change in the frequency content of the
signal. Way back in the section on analog filters we looked at how we can use
the slow time response of a capacitor or an inductor to change the frequency
response of a signal passed through it.

Now we are going to start thinking about how to intentionally change the
frequency response of a signal by making changes to it in the time domain
digitally.

8.4.1 Comb Filters

We’ve already seen back in Section 3.2.4 that a comb filter is an effect that is
caused when a signal is mixed with a delayed version of itself. This happens
in real life all the time when a direct sound meets a reflection of the same
sound at your eardrum. These two signals are mixed acoustically and the
result is a change in the timbre of the direct sound.

So, let’s implement this digitally. This can be done pretty easily using
the block diagram shown in Figure 8.33 which corresponds to Equation 8.3.

x[t] y[t]

Z
a

+

1

a0

-k

Figure 8.33: Basic block diagram of a comb filter implemented in the digital domain.

yt = a0xt + a1xt−k (8.3)

This implementation is called a Finite Impulse Response comb filter or
FIR comb filter because, as we’ll see in the coming sections, its impulse
response is finite (meaning it ends at some predictable time) and that its
frequency response looks a little like a hair comb.

As we can see in the diagram, the output consists of the addition of two
signals, the original input and a gain-modified delayed signal (the delay is the
block with the Z−k in it. We’ll talk later about why that notation is used,
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but for now, you’ll need to know that the delay time is k samples.). Let’s
assume for the remainder of this section that the gain value a is between -1
and 1, and is not 0. (If it was 0, then we wouldn’t hear the output of the
delay and we wouldn’t have a comb filter, we’d just have a “through-put”
where the output is identical to the input.)

If we’re thinking in terms of acoustics, the direct sound is simulated by
the non-delayed signal (the through-put) and the reflection is simulated by
the output of the delay.

Delay with Positive Gain

Let’s take an FIR comb filter as is described in Figure 8.46 and Equation
8.3 and make the delay time equal to 1 sample, and a = 1. What will this
algorithm do to an audio signal?

We’ll start by thinking about a sine wave with a very low frequency –
in this case the phase difference between the input and the output of the
delay is very small because it’s only 1 sample. The lower the frequency, the
smaller the phase difference until, at 0 Hz (DC) there is no phase difference
(because there is no phase...). Since the output is the addition of the values
of the two samples (now, and 1 sample ago), we get more at the output
than the input. At 0 Hz, the output is equal to exactly two times the input.
As the frequency goes higher, the phase difference caused by the delay gets
bigger and the output gets smaller.

Now, let’s think of a sine wave at the Nyquist frequency (see Section
7.1.3 if you need a definition). At this frequency, a sample and the previous
sample are separated by 180◦, therefore, they are identical but opposite in
polarity. Therefore, the output of this comb filter will be 0 at the Nyquist
Frequency because the samples are cancelling themselves. At frequencies
below the Nyquist, we get more and more output from the filter.

If we were to plot the resulting frequency response of the output of the
filter it would look like Figure 8.34. (Note that the plot uses a normalized
frequency, explained in Section 8.1.2.)

What would happen if the delay in the FIR comb filter were 2 samples
long? We can think of the result in the same way as we did in the previous
description. At DC, the filter will behave in the same way as the FIR comb
with a 1-sample delay. At the Nyquist Frequency, however, things will be
a little different... At the Nyquist frequency (a normalized frequency of
0.5), every second sample has an identical value because they’re 360◦ apart.
Therefore, the output of the filter at the Nyquist Frequency will be two
times the input value, just as in the case of DC.
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Figure 8.34: Frequency response of an FIR comb filter with a delay of 1 sample, a0 = 1, and a1 = 1

At one-half the Nyquist Frequency (a normalized frequency of 0.25) there
is a 90◦ phase difference between samples, therefore there is a 180◦ phase
difference between the input and the output of the delay. Therefore, at this
frequency, our FIR comb filter will have no output.

The final frequency response is shown in Figure 8.35.
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Figure 8.35: Frequency response of an FIR comb filter with a delay of 2 samples, a0 = 1, and
a1 = 1

As we increase the delay time in the FIR comb filter, the first notch in
the frequency response drops lower and lower in frequency as can be seen in
Figures 8.36 and 8.37.
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Figure 8.36: Frequency response of an FIR comb filter with a delay of 3 samples, a0 = 1, and
a1 = 1
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Figure 8.37: Frequency response of an FIR comb filter with a delay of 4 samples, a0 = 1, and
a1 = 1
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Up to now, we have been looking at the frequency response graphs on
a linear scale. This has been to give you an idea of the behaviour of the
FIR comb filter in a mathematical sense, but it really doesn’t provide an
intuitive feel for how it will sound. In order to get this, we have to plot
the frequency response on a semi-logarithmic plot (where the X-axis is on
a logarithmic scale and the Y-axis is on a linear scale). This is shown in
Figure 8.38.

10
-3

10
-2

10
-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Normalized Frequency

G
ai

n

Figure 8.38: Frequency response of an FIR comb filter with a delay of 3 samples, a0 = 1, and
a1 = 1. Note that this is the same as the graph in Figure 8.36

So far, we have kept the gain on the output of the delay at 1 to make
things simple. What happens if this is set to a smaller (but still positive)
number? The bumps and notches in the frequency response will still be in
the same places (in other words, the won’t change in frequency) but they
won’t be as drastic. The bumps won’t be as big and the notches won’t be
as deep.

Delay with Negative Gain

In the previous section we limited the value of the gain applied to the delay
component to positive values only. However, we also have to consider what
happens when this gain is set to a negative value. In essence, the behaviour
is the same, but we have a reversal between the constructive and destructive
interferences. In other words, what were bumps before become notches, and
the notches become bumps.

For example, let’s use an FIR comb filter with a delay of 1 sample and
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Figure 8.39: Frequency response of an FIR comb filter with a delay of 3 samples, a0 = 1. Black
a1 = 1, blue a1 = 0.5, red a1 = 0.25.
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Figure 8.40: Frequency responses of an FIR comb filter with a delay of 3 samples, a0 = 1. Black
a1 = 1, blue a1 = 0.5, red a1 = 0.25.
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Figure 8.41: Frequency responses of an FIR comb filter with a delay of 3 samples, a0 = 1. Black
a1 = 1, blue a1 = 0.5, red a1 = 0.25.

where a0 = 1, and a1 = −1. At DC, the output of the delay component will
be identical to but opposite in polarity with the non-delayed component.
This means that they will cancel each other and we get no output from the
filter. At a normalized frequency of 0.5 (the Nyquist Frequency) the two
components will be 180◦ out of phase, but since we’re multiplying one by
-1, they add to make twice the input value.

The end result is a frequency response as is shown in Figures 8.42.
If we have a longer delay time, then we get a similar behaviour as is

shown in Figure ??.
If the gain applied to the output of the delay is set to a value greater

than -1 but less than 0, we see a similar reduction in the deviation from a
gain of 1 as we saw in the examples with FIR comb filters with a positive
gain delay component.

8.4.2 Frequency Response Deviation

If you want to get an idea of the effect of an FIR comb filter on a frequency
response, we can calculate the levels of the maxima and minima in its fre-
quency response. For example, the maximum value of the frequency response
shown in Figure ?? is 6 dB. The minimum value is -∞ dB. Therefore a total
peak-to-peak variation in the frequency response is ∞ dB.

We can calculate these directly using Equations 8.4 and 8.5 [Martin, 2002a].

magmax = 20 log10 (a0 + a1) (8.4)
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Figure 8.42: Frequency response of an FIR comb filter with a delay of 1 sample, a0 = 1, and
a1 = −1
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Figure 8.43: Frequency response of an FIR comb filter with a delay of 4 samples, a0 = 1, and
a1 = −1
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magmin = 20 log10 (a0 − a1) (8.5)

In order to find the total peak-to-peak variation in the frequency response
of the FIR comb filter, we can use Equation 8.6.

magp−p = 20 log10

∣∣∣∣a0 + a1

a0 − a1

∣∣∣∣ (8.6)

8.4.3 Impulse Response vs. Frequency Response

We have seen in earlier sections of this book that the time domain and the
frequency domain are just two different ways of expressing the same thing.
This rule holds true for digital filters as well as signals.

Back in Section 3.5.3 that we used an impulse response to find the be-
haviour of a string on a musical instrument. We can do the same for a filter
implemented in DSP, with a little fudging here and there... First we have to
make the digital equivalent of an impulse. This is fairly simple, we just have
to make an infinite string of 0’s with a single 1 somewhere. Usually when
this signal is described in a DSP book, we think of the “1” as happening
now, therefore we see a description like Equation 8.4.3.

δ =


0 n < 0
1 n = 0
0 n > 0

This digital equivalent to an impulse is called a Dirac impulse (named
after Paul Dirac, a French mathematician. FIND OUT MORE ABOUT
DIRAC). Although in the digital domain it looks a lot like an impulse, it
really isn’t because it isn’t infinitely short of infinitely loud. On the other
hand, it behaved in a very similar way to a real impulse since, in the digital
domain, it has a flat frequency response from DC to the Nyquist Frequency.

What happens at the output when we send the Dirac impulse through
the FIR comb filter with a 3-sample delay? First, we see the Dirac come
out the output at the same time it arrives at the input, but multiplied by
the gain value a0 (up to now, we have used 1 for this value). Then, three
samples later, we see the impulse again at the output, this time multiplied
by the gain value a1.

Since nothing happens after this, the impulse response has ended (we
could keep measuring it, but we would just get 0’s forever...) which is why
we call these FIR (for finite impulse response) filters. If an impulse goes in,
the filter will stop giving you an output at a predictable time.
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Figure 8.44 shows three examples of different FIR comb filter impulse
responses and their corresponding frequency responses. Note that the delay
values for all three filters are the same, therefore the notches and peaks in
the frequency responses are all matched. Only the value of a1 was changed,
therefore modifying the amount of modulation in the frequency responses.
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Figure 8.44: Impulse and corresponding frequency responses of FIR comb filters with a delay of 3
samples. Black a1 = 1, blue a1 = 0.5, red a1 = 0.25.

8.4.4 More complicated filters

So far, we have only looked at one simple type of FIR filter – the FIR comb.
In fact, there are an infinite number of other types of FIR filters but most
of them don’t have specific names (good thing too, since there is an infinite
number of them... we would spend forever naming things...).

Figure 8.45 shows the general block diagram for an FIR filter. Notice
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x[t] y[t]

Z
a1

a0

-k1

a2

a3

ad

+

Z -k2

Z -k3

Z -kn

Figure 8.45: General block diagram for an FIR filter.

that there can be any number of delays, each with its own delay time and
gain.

8.4.5 Suggested Reading List

[Steiglitz, 1996]
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8.5 IIR Filters

Since we have a class of filters that are specifically called “Finite Impulse
Response” filters, then it stands to reason that they’re called that to dis-
tinguish them from another type of filter with an infinite impulse response.
If you already guess this, then you’d be right. That other class is called
Infinite Impulse Response (or IIR) filters for reasons that will be explained
below.

8.5.1 Comb Filters

We have already seen in Section 8.4.1 that a comb filter is one with a fre-
quency response that looks like a hair comb. In an FIR comb filter, this is
accomplished by adding a signal to a delayed copy of itself.

This can also be accomplished as an IIR filter, however, both the imple-
mentation and the results are slightly different.

Figure 8.46 shows a simple IIR comb filter

x[t] y[t]

Z
a

+

1

a0

-k

Figure 8.46: Basic block diagram of an IIR comb filter implemented in the digital domain.

As can be seen in the block diagram, we are now using feedback as a
component in the filter’s design. The output of the filter is fed backwards
through a delay and a gain multiplier and the result is added back to the
input, which is fed back through the same delay and so on...

Since the output of the delay is connected (through the gain and the
summing) back to the input of the delay, it keeps the signal in a loop forever.
That means that if we send a Dirac impulse into the filter, the output of
the filter will be busy until we turn off the filter, therefore it has an infinite
impulse response.

The feedback loop can also be seen in Equation 8.8 which shows the
general equation for a simple IIR comb filter. Notice that there is a y on
both sides of the equation – the output at the moment yt is formed of two
components, the input at the same time (now) xt and the output from k
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samples ago indicated by the yt−k. Of course, both of these components are
multiplied by their respective gain factors.

yt = a0xt + a1yt−k (8.7)

Positive Feedback

Let’s use the block diagram shown in Figure 8.33 and make an IIR comb.
We’ll make a0 = 1, a1 = 0.5 and k = 3. The result of this is that a Dirac
impulse comes in the filter and immediately appears at the output (because
a0 = 1). Three samples later, it also comes out the output at one-half the
level (because a1 = 0.5 and k = 3).

The resulting impulse response will look like Figure 8.47.
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Figure 8.47: The impulse response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1, a1 = 0.5 and k = 3.

Note that, in Figure 8.47, I only plotted the first 20 samples of the
impulse response, however, it in fact extends to infinity.

What will the frequency response of this filter look like? This is shown
in Figure 8.48.

Compare this with the FIR comb filter shown in Figure 8.39. There are
a couple of things to notice about the similarity and difference between the
two graphs.

The similarity is that the peaks and dips in the two graphs are at the
same frequencies. They aren’t the same basic shape, but they appear at the
same place. This is due to the matching 3-sample delays and the fact that
the gain applied to the delays are both positive.
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Figure 8.48: The frequency response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1, a1 = 0.5 and m = 3.

The difference between the graphs is obviously the shape of the curve
itself. Where the FIR filter had broad peaks and narrow dips, the IIR filter
has narrow peaks and broad dips. This is going to cause the two filters to
sound very different. Generally speaking, it is much easier for us to hear a
boost than a cut. The narrow peaks in the frequency response of an IIR filter
are immediately obvious as boosts in the signal. This is not only caused by
the fact that the narrow frequency bands are boosted, but that there is a
smearing of energy in time at those frequencies known as ringing. In fact,
if you take an IIR filter with a fairly high value of a1 – say between 0.5 and
0.999 of a0, and put in an impulse, you’ll hear a tone ringing in the filter.
The higher the gain of a1, the longer the ringing and the more obvious the
tone. This frequency response change can be seen in Figure 8.49.

Negative Feedback

Just like the FIR counterpart, an IIR comb filter can have a negative gain
at the delay output. As can be seen in Figure 8.48, positive feedback causes
a large boost in the low frequencies with a peak at DC. This can be avoided
by using a negative feedback value.

The interesting thing here is that the result of the negative feedback
through a delay causes the impulse response to flip back and forth in polarity
as can be seen in Figure 8.50.

The resulting frequency response for this filter is shown in Figure 8.51.
IIR comb filters with negative feedback suffer from the same ringing
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Figure 8.49: The frequency response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1 and m = 3. Black a0 = 0.999, Red a0 = 0.5 and blue a0 = 0.25.
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Figure 8.50: The frequency response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1, a1 = −0.5 and m = 3.



8. Digital Signal Processing 553

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Normalized Frequency

G
ai

n

Figure 8.51: The frequency response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1, a1 = −0.5 and m = 3.

problems as those with positive feedback as can be seen in the frequency
response graph in Figure 8.52.

8.5.2 Danger!

There is one important thing to beware of when using IIR filters. Always
remember that feedback is an angry animal that can lash out and attack you
if you’re not careful. If the value of the feedback gain goes higher than 1,
then things get ugly very quickly. The signal comes out of the delay louder
than it went it, and circulates back to the input of the delay where it comes
out even louder and so on and so on. Depending on the delay time, it will
take a small fraction of a second for the filter to overload. And, since it
has an infinite impulse response, even if you pull the feedback gain back to
less than 1, the distortion that you caused will always be circulating in the
filter. The only way to get rid of it is to drop a1 to 0 until the delay clears
out and then start again. (Although some IIR filters allow you to send a
clear command, telling them to forget everything that’s happened before
now, and to continue on as if you were normal. Take a look at some of the
filters in Max/MSP, for example.)

8.5.3 Biquadratic

While it’s fun to make comb filters to get started (every budding guitarist
has a flanger or a phaser in their kit of pedal effects. The rich kids even have

http://www.cycling74.com
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Figure 8.52: The frequency response of the IIR comb filter shown in Figure 8.33 and Equation 8.8
with a0 = 1 and k = 3. Black a0 = 0.999, Red a0 = 0.5 and blue a0 = 0.25.

both and claim that they know the difference!) IIR filters can be a little more
useful. Now, don’t get me wrong, FIR filters are also useful, but as you’ll see
if you ever have to start working with them, they’re pretty expensive in terms
of processing power. Basically, if you want to do something interesting, you
have to do it for a long time (sort of Zen, no?). If you have an FIR filter
with a long, impulse response, then that means a lot of delays (or long ones)
and lots of math to do. We’ll see a worst-case scenario in Section 8.6.

A simple IIR filter has the advantage of having only three operations (two
multiplies and one add) and one delay, and still having an infinite impulse
response, so you can do interesting things with a minimum of processing.

One of the most common building blocks in any DSP algorithm is a little
package called a biquadratic filter or biquad for short. This is a sort of mini-
algorithm that contains a just small number of delays, gains and additions
as is shown in Figure 8.53, but it turns out to be a pretty powerful little
tool – sort of the op amp of the DSP world in terms of usefulness. CHECK
THIS DIAGRAM. I DON”T THINK THAT IT’S CORRECT

Okay, let’s look at what a biquad does, going through it, gain by gain.

• Take a look at a0. The signal xt comes in, gets multiplied by a0 and
gets added the output at the same time. This is just a gain applied to
the input.

• Now let’s look at a1. The signal xt comes in, gets delayed by 1 sample,
multiplied by a1 and added to the output. By itself, this is just the
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Figure 8.53: Block diagram of one implementation of a biquad filter. There are other ways to
achieve the same algorithm, but we won’t discuss that in this book. Check this reference for more
information [].

feed-forward component of an FIR comb filter with a delay of 1 sample.

• a2. The signal xt comes in, gets delayed by 2 samples, multiplied by
a2 and added to the output. By itself, this is just the feed-forward
component of an FIR comb filter with a delay of 2 samples.

• b1. The signal xt comes in, gets delayed by 1 sample, multiplied by b1

and added to the input. By itself, this is just the feeback component
of an IIR comb filter with a delay of 1 sample.

• b2. The signal xt comes in, gets delayed by 2 samples, multiplied by b1

and added to the input. By itself, this is just the feedback component
of an IIR comb filter with a delay of 2 samples.

The end result is an algorithm described by Equation ??.

yt = a0xt + a1xt−1 + a2xt−2 + b1yt−1 + b1xt−2 (8.8)

CHECK THIS EQUATION. I DON”T THINK THAT IT’S CORRECT
So, what we’ve seen is that a biquad is an assembly of two FIR combs

and two IIR combs, all in one neat little package. The interesting thing is
that this algorithm is extremely powerful. So, I’ll bet you’re sitting there
wondering what it’s used for? Let’s look at just a couple of examples.

INTRODUCTION TO GO HERE ABOUT HOW YOU’LL NEED THE
FOLLOWING EQUATIONS TO CONTINUE

A =
√

10
gain
20 (8.9)

where gain is in dB.
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ω = 2πfc (8.10)

where fc is the cutoff frequency (or centre frequency in the case of peaking
filters or the shelf midpoint frequency for shelving filters). Note that the
frequency fc here is given as a normalized frequency between 0 and 0.5. If
you prefer to think in terms of the more usual way of describing frequency,
in Hertz, then you’ll need to do an extra little bit of math as is shown in
Equation 8.11.

ω =
2πfc

fs
(8.11)

where fc is the cutoff frequency (or centre frequency in the case of peaking
filters or the shelf midpoint frequency for shelving filters) in Hz and fs is
the sampling rate in Hz. Important note: You should use either Equation
8.10 or Equation 8.11, depending on which way you prefer to state the
frequency. However, I would recommend that you get used to thinking in
terms of normalized frequency, so you should be happy with using Equation
8.10.

cs = cos ω (8.12)

sn = sinω (8.13)

Q =
sn

ln(2)bwω
(8.14)

Use the previous equation to convert bandwidth or bw into a Q value.

α = sn sinh
(

1
2Q

)
(8.15)

β =

√
A2 + 1

S
− (A− 1)2 (8.16)

where S is a shelf slope parameter. “When S = 1, the shelf slope is as
steep as you can get it and remain monotonically increasing or decreasing
gain with frequency (for lowShelf or highShelf).” [?]
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Low-pass filter

We already know from Section ?? what a low-pass filter is. One way to im-
plement this in a DSP chain is to insert a biquad and calculate its coefficients
using the equations below.

b0 =
1− cs

2
(8.17)

b1 = 1− cs (8.18)

b2 =
1− cs

2
(8.19)

a0 = 1 + α (8.20)

a1 = −2cs (8.21)

a2 = 1− α (8.22)

Low-shelving filter

Likewise, we could, instead, create a low-shelving filter using coefficients
calculated in the equations below.

b0 = A((A + 1)− (A− 1)cs + βsn) (8.23)

b1 = 2A((A− 1)− (A + 1)cs) (8.24)

b2 = A((A + 1)− (A− 1)cs− βsn) (8.25)

a0 = (A + 1) + (A− 1)cs + βsn (8.26)

a1 = −2((A− 1) + (A + 1)cs) (8.27)

a2 = (A + 1) + (A− 1)cs− βsn (8.28)
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Peaking filter

The following equations will result in a reciprocal peak-dip filter configura-
tion.

b0 = 1 + αA (8.29)

b1 = −2cs (8.30)

b2 = 1− αA (8.31)

a0 = 1 +
α

A
(8.32)

a1 = −2cs (8.33)

a2 = 1− α

A
(8.34)

High-shelving filter

The following equations will produce a high-shelving filter.

b0 = A((A + 1)− (A− 1)cs + βsn) (8.35)

b1 = −2A((A− 1)− (A + 1) ∗ cs) (8.36)

b2 = A((A + 1)− (A− 1)cs− βsn) (8.37)

a0 = (A + 1) + (A− 1)cs + βsn (8.38)

a1 = 2((A− 1) + (A + 1)cs) (8.39)

a2 = (A + 1) + (A− 1)cs− βsn (8.40)
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High-pass filter

Finally, the following equations will produce a high-pass filter.

b0 =
1 + cs

2
(8.41)

b1 = −1− cs (8.42)

b2 =
1 + cs

2
(8.43)

a0 = 1 + α (8.44)

a1 = −2cs (8.45)

a2 = 1− α (8.46)

8.5.4 Allpass filters

There is an interesting type of filter that is frequently used in DSP that we
didn’t talk about very much in the chapter on analog electronics. This is
the allpass filter .

As its name implies, an allpass filter allows all frequencies to pass through
it without a change in magnitude. Therefore the frequency response of an
allpass filter is flat. This may sound a little strange – why build a filter that
doesn’t do anything to the frequency response? Well, the nice thing about
an allpass is that, although it doesn’t change the frequency response, it does
change the phase response of your signal. This can be useful for various
situations as we’ll see below.

FINISH THIS OFF

Decorrelation

FINISH THIS OFF

Fractional delays

FINISH THIS OFF
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Figure 8.54: Block diagram of a first-order allpass filter [Steiglitz, 1996].

Reverberation simulation

FINISH THIS OFF

8.5.5 Suggested Reading List

[Steiglitz, 1996]
[?]
[?]
[?] LIST THIS PAPER BY KNUD BANK
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8.6 Convolution

Let’s think of the most inefficient way to build an FIR filter. Back in Section
?? we saw a general diagram for an FIR that showed a stack of delays, each
with its own independent gain. We’ll build a similar device, but we’ll have an
independent delay and gain for every possible integer delay time (meaning
a delay value of an integer number of samples like 4 or 13, but not 2.4 or
15.2). When we need a particular delay time, we’ll turn on the corresponding
delay’s gain, and all the rest we’ll leave at 0 all the time.

For example, a smart way to do an FIR comb filter with a delay of 6
samples is shown in Figure 8.55 and Equation 8.47.

x[t] y[t]

Z
0.75

+
1

-6

Figure 8.55: A smart way to implement an FIR comb filter with a delay of 6 samples and where
a0 = 1 and a1 = 0.75.

yt = 1xt + 0.75xt−6 (8.47)

There are stupid ways to do this as well. For example take a look at
Figure 8.56 and Equation 8.48. In this case, we have a lot of delays that are
implemented (therefore taking up lots of memory) but their output gains
are set to 0, therefore they’re not being used.

yt = 1xt + 0xt−1 + 0xt−2 + 0xt−3 + 0xt−4 + 0xt−5 + 0.75xt−6 + 0xt−7 + 0xt−8

(8.48)
We could save a little memory and still be stupid by implementing the

algorithm shown in Figure 8.57. In this case, each delay is 1 sample long, ar-
ranged in a type of bucket-brigade, but we still have a bunch of unnecessary
computation being done.

Let’s still be stupid and think of this in a different way. Take a look at
the impulse response of our FIR filter, shown in Figure 8.58.

Now, consider each of the values in our impulse response to be the gain
value for its corresponding delay time as is shown in Figure 8.56.
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x[t] y[t]
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1

0

0

0

0

0.75

0
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Z
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Z
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Z
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Figure 8.56: A stupid way to implement the same FIR comb filter shown in Figure 8.55.
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x[t] y[t]
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Figure 8.57: A slightly less stupid way to implement the FIR comb filter.
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Figure 8.58: The impulse response of the FIR comb filter shown in Figure 8.55.
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At time 0, the first signal sample gets multiplied by the first value in in
impulse response. That’s the value of the output.

At time 1 (1 sample later) the first signal sample gets “moved” to the
second value in the impulse response and is multiplied by it. At the same
time, the second signal sample is multiplied by the first value in the impulse
response. The results of the two multiplications are added together and
that’s the output value.

At time 2 (1 sample later again...) the first signal sample gets “moved”
to the third value in the impulse response and is multiplied by it. The second
signal sample gets “moved” to the second value in the impulse response and
is multiplied by it. The third signal sample is multiplied by the first value
in the impulse response. The results of the three multiplications are added
together and that’s the output value.

As time goes on, this process is repeated over and over. For each sample
period, each value in the impulse response is multiplied by its corresponding
sample in the signal. The results of all of these multiplications are added
together and that is the output of the procedure for that sample period.

In essence, we’re using the values of the samples in the impulse response
as individual gain values in a multi-tap delay. Each sample is its own tap,
with an integer delay value corresponding to the index number of the sample
in the impulse response.

This whole process is called convolution. What we’re doing is convolving
the incoming signal with an impulse response.

Of course, if your impulse response is as simple as the one shown above,
then it’s still really stupid to do your filtering this way because we’re es-
sentially doing the same thing as what’s shown in Figure 8.57. However, if
you have a really complicated impulse response, then this is the way to go
(although we’re be looking at a smart way to do the math later...).

One reason convolution is attractive is that it gives you an identical
result as using the original filter that’s described by the impulse response
(assuming that your impulse response was measured correctly). So, if you
can go down to your local FIR filter rental store, rent a good FIR comb filter
for the weekend, measure its impulse response and return the filter to the
store on Monday. After that, if you convolve your signals with the measured
impulse response, it’s the same as using the filter. Cool huh?

The reason we like to avoid doing convolution for filtering is that it’s
just so expensive in terms of computational power. For every sample that
comes out of the convolver, its brain had to do as many multiplications as
there are samples in the impulse response, and only one fewer additions. For
example, if your impulse response was 8 samples long, then the convolver
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does 8 multiplications (one for every sample in the impulse response) and 7
additions (adding the results of the 8 multiplications) for every sample that
comes out. That’s not so bad if your impulse response is only 8 samples
long, but what if it’s something like 100,000 samples long? That’s a lot of
math to do on every sample period!

So, now you’re probably sitting there thinking, “Why would I have an
impulse response of a filter that’s 100,000 samples long?” Well, think back
to Section 3.16 and you’ll remember that we can make an impulse response
measurement of a room. If you do this, and store the impulse response,
you can convolve a signal with the impulse response and you get your sig-
nal in that room. Well, technically, you get your signal played out of the
loudspeaker you used to do the IR measurement at that particular location
in the room, picked up by the measurement microphone at its particular
placement... If you do this in a big concert hall or a church, you could easily
get up to a 4 or 5 second-long impulse response, corresponding to a 220,500-
sample long FIR filter at 44.1 kHz. This then means 440,999 mathematical
operations (multiplications and additions) for every output sample, which
in turn means 19,448,066,900 operations per second per channel of audio...
That’s a lot – far more than a normal computer can perform these days.

So, here’s the dilemma, we want to use convolution, but we don’t have
the computational power to do it the way I just described it. That method,
with all the multiplications and additions of every single sample is called
real convolution.

So, let’s think of a better way to do this. We have a signal that has
a particular frequency content (or response), and we’re sending it through
a filter that has a particular frequency response. The resulting output has
a frequency content equivalent to the multiplication of these two frequency
responses as is shown in Figure 8.59

So, we now know two interesting things:

• putting a signal through filter produces the same result as convolving
the signal with the impulse response of the filter.

• putting a signal through a filter produces the same frequency content
as multiplying the frequency content of the signal and the frequency
response of the filter.

Luckily, some smart people have figured out some clever ways to do a
DFT that don’t take much computational power. (If you want to learn
about this, go get a good DSP textbook and look up the word butterfly.)

So, what we can do is the following:
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Figure 8.59: The top graph is the frequency content of an arbitrary signal (actually it’s a recording
of Handel). The middle plot is the frequency response of an FIR comb filter with a 3-sample delay.
The bottom graph is the frequency content of the signal filtered through the comb filter. Notice
that the result is the same as if we had multiplied the top plot by the middle plot, bin by bin.

1. take a slice of our signal and do a DFT on it. This gives us the
frequency content of the signal.

2. take the impulse response of the filter and do a DFT on it.

3. multiply the results of the DFT’s keeping the real and imaginary com-
ponents separate. In other words, you multiply the real components
together, and multiply the imaginary components together, bin by bin.

4. take the resulting real and imaginary components and do an IDFT
(inverse discrete fourier transform), converting from the frequency do-
main to the time domain.

5. send the time domain out.

This procedure, called fast convolution will give you exactly the same re-
sults as if you did real convolution, however you use a lot less computational
power.

There are a couple of things to worry about when you’re doing fast
convolution.

• The window lengths of the two DFT’s must be the same.

• When you convolve two signals of length n, then the resulting output
has a length of 2n − 1. This isn’t immediately obvious, but it can
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be if we think of a situation where one of the signals is the impulse
response of reverberation and the other is music. If you play 1024
samples of music in a room with a reverb time of 1024 samples, then
the resulting total sound will be 2047 samples because we have to wait
for the last sample of music to get through the whole reverberation
tail. Therefore, if you’re doing fast convolution, then the IDFT has to
be twice the length of the two individual DFT’s to make the output
window twice the length of the input windows. This means that your
output is half-way through playing when the new input windows are
starting to get through. Therefore you have to mix the new output
with the hold. This is what’s known as the overlap-add process.

8.6.1 Correlation

NOT YET WRITTEN

8.6.2 Autocorrelation

NOT YET WRITTEN

8.6.3 Suggested Reading List
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8.7 The z-domain

8.7.1 Introduction

So far, we have seen that digital audio means that we are taking a continuous
signal and slicing it into discrete time for transmission, storage, or process-
ing. We have also seen that we can do some math on this discrete time
signal to determine its frequency content. We have also seen that we can
create digital filters that basically consist of three simple building blocks,
addition, multiplication and delay, which can be used to modify the signal.

What we haven’t yet seen, however, is how to figure out what a filter
does, just by looking at its structure. Nor have we talked about how to
design a digital filter. This is where this chapter will come in handy.

One note of warning... This whole chapter is basically a paraphrase of a
much, much better introduction to digital signal processing by Ken Steiglitz
[Steiglitz, 1996]. If you’re really interested in learning DSP, go out and buy
this book.

Okay, to get started, let’s do a little review. The next couple of equations
should be burnt into your brain for the remainder of this chapter, although
I’ll bring them back now and again to remind you.

The first equation is the one for radian frequency, discussed in Section
??.

ω = 2πf (8.49)

where f is the normalized frequency (where DC = 0, the Nyquist fre-
quency is 0.5 and the sampling rate is 1) and ω is the radian frequency
in radians / samples. Notice that we’re measuring time in samples, not in
seconds. Unfortunately, our DSP computer can’t tell time in seconds, it can
only tell time in samples, so we have to accommodate. Therefore, whenever
you see a time value listed in this section, it’s in samples.

Another equation that you probably learned in high school, and should
have read back in Section ?? states that

1
a

= a−1 (8.50)

The next equation, which we saw in Section 1.6 is called Euler’s Identity.
This states that

ejωt = cos(ωt) + j sin(ωt) (8.51)
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You might notice that I made a slight change in Equation 8.51 compared
with Equation 1.60 in that I replaced the θ with an ωt to make things a little
easier to deal with in the time domain. Remember that ω is just another
way of thinking of frequency (see section ??) and t is the time in samples.

We have to make a variation on this equation by adding an extra delay
of k samples:

ejω(t−k) = cos(ω(t− k)) + j sin(ω(t− k)) (8.52)

You should also remember that we can play with exponents as follows:

ejω(t−k) = e(jωt)(−jωk) (8.53)
= e(jωt)e(−jωk) (8.54)

Another basic equation to remember is the following

cos2(θ) + sin2(θ) = 1 (8.55)

for any value of θ
Therefore, if we make a plot where the x-axis is the value of cos(θ) and

the y-axis is the value of sin(θ) and we plot all the angles from 0 to 2π (or
0◦ to 360◦), we get a circle. (Go back to the discussion on Pythagoras in
Section ?? if this isn’t obvious.)

If we put a j in front of the sin2(θ) in the equation (so it looks like
cos2(θ) + j sin2(θ)) a similar thing happens. This means that the sin2(θ)
component is now imaginary, and can’t be mixed with the cos2(θ). We can
still use this equation to draw a perfect circle, but now we’re using a real
and an imaginary axes as we saw way back in Figure ??.

Okay... that’s about it. Now we’re ready.

8.7.2 Filter frequency response

Let’s take a very simple filter, shown in Figure 8.60 where we add the input
signal to a delayed version of the input signal that has been delayed by k
samples and multiplied by a gain of a1.

We have already seen that this filter can be written as Equation 8.56:

yt = xt + a1xt−k (8.56)

Let’s put the output of a simple phasor (see Section ??) into the input
of this filter. Remember that a phasor is just a sinusoidal wave generator
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x[t] y[t]

Z
a

+

-k 1

Figure 8.60: A simple filter using one delay of k samples multiplied by a gain and added to the
input.

that is “thinking” in terms of a rotating wheel, therefore it has a real and
imaginary component. Consequently, we can describe the phasor’s output
using cos(ωt)+j sin(ωt), which, as we saw above can also be written as ejωt.

Since the output of that phasor is connected to the input of the filter
then

xt = ejωt (8.57)

Therefore, we can rewrite Equation 8.56 for the filter as follows:

yt = ejωt + a1e
jω(t−k) (8.58)

= ejωt + a1e
jωte−jωk (8.59)

= ejωt(1 + a1e
−jωk) (8.60)

This last equation is actually pretty interesting. Remember that the
input, xt is equal to ejωt. So what? Well, this means that we can think of
the equation as is shown in Figure 8.61.

y[t] = e jωt ( )1 + a  e-jωk
1

input what the input 
is multiplied 
by to get the 

output

Figure 8.61: An intuitive way of thinking of Equation 8.60.

Notice that the end of Equation 8.60 has a lot of ω’s in it. This means
that it is frequency-dependent. We already know that if you multiply a
signal by something, that “something” is gain. We also know that if that
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gain is dependent on frequency (meaning that it is different at different
frequencies) then it will change the frequency response. So, since we know
all that, we should also see that the “what the input is multiplied by to
get the output” part of Equation 8.60 is a frequency-dependent gain, and
therefore is a mathematical description of the filter’s frequency response.

Please make sure that this last paragraph made sense before you move
on...

Let’s be lazy and re-write Equation 8.60 a little simpler. We’ll invent
a symbol that means “the frequency response of the filter.” We know that
this will be a frequency-dependent function, so we’ll keep an ω in there, so
let’s use the symbol H(ω). Although, if we need to describe another filter,
we can use a different letter, like G(ω) for example...

We know that the frequency response of our filter above is 1 + a1e
−jωk

and we’ve already decided that we’re going to use the general symbol H(ω)
to replace that messy math, but just to make things clear, let’s write it
down...

H(ω) = 1 + a1e
−jωk (8.61)

One important thing to notice here is that the above equation doesn’t
have any t’s in it. This means that it is not dependent on what time it
is, so it never changes. This is what is commonly known as a Linear Time
Invariant or LTI system. This means two things. The “linear” part means
that everything that comes in is treated the same way, no matter what.
The “time invariant” part means that the characteristics of the filter never
change (or vary) over time.

Things are still a little complicated because we’re still working with
complex numbers, so let’s take care of that. We have seen that the reason
for using complex notation is to put magnitude and phase information into
one neat little package (see Section ?? for this discussion.) We have also
see that we can take a signal represented in complex notation and pull the
magnitude and phase information back out if we need to. This can also be
done with H(ω) (the frequency response) of our filter. Equation ?? is a
general form showing how to do this.

H(ω) = |H(ω)| ejθ(ω) (8.62)

This divides the frequency response H(ω) into the filter’s magnitude
response |H(ω)| and the phase shift θ(ω) at frequency ω. Be careful here
not to just to conclusions. The phase shift is not θ, it’s θ(ω) but we can
calculate to make a little more sense intuitively.
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θ(ω) = arctan
=H(ω)
<H(ω)

(8.63)

Where the symbols = means “The imaginary component of...” and <
means “The real component of...”

Don’t panic – it’s not so difficult to see what the real and imaginary
components of the H(ω) are because the imaginary components have a j
in them. For example, if we look at the filter that we started with at the
beginning of this chapter, its frequency response was:

H(ω) = 1 + a1e
−jωk (8.64)

= 1 + a1(cos(ωk)− j sin(ωk)) (8.65)
= 1 + a1 cos(ωk)− a1j sin(ωk) (8.66)

So this means that

<H(ω) = 1 + a1 cos(ωk) (8.67)

and

=H(ω) = −a1 sin(ωk) (8.68)

Notice that I didn’t put the j in there because I don’t need to say that
it’s imaginary... I already know that it’s the imaginary component that I’m
looking for.

So, to calculate the phase of our example filter, we just put those two
results into Equation 8.63 as follows:

θ(ω) = arctan
=H(ω)
<H(ω)

(8.69)

= arctan
−a1 sin(ωk)

1 + a1 cos(ωk)
(8.70)

8.7.3 The z-plane

Let’s look at an even simpler example before we go too much further. Figure
8.62 shows a simple delay line of k samples with the result multiplied by a
gan factor of a1.

This delay can be expressed as the equation:
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x[t] y[t]Z
a

-k 1

Figure 8.62: A delay line of k samples multiplied by a gain.

yt = a1xt−k (8.71)

= x
(
a1e

−jωk
)

(8.72)

As you’ve probably noticed by noticed by now, we tend to write ejω a
lot, so let’s be lazy again and use another symbol instead – we’ll used z,
therefore

z = ejω (8.73)

What if you want to write a delay, as in e−jωk? Well, we’ll just write
(you guessed it...) z−k. Therefore z2 is a 2-sample delay because e−jω2 is a
2-sample delay as well.

Always remember that z is a complex variable. In other words,

z = ejω (8.74)
= cos(ω) + j sin ω (8.75)

Therefore, we can plot the value of z on a Cartesian graph with a real
and an imaginary axis, just like we’re always been doing.

8.7.4 Transfer function

Let’s take a signal and send it through two gain functions connected in series
as is shown in Figure 8.63.

We can think of this as two separate modules as is shown in Figure 8.64.
So, let’s calculate how yt relates to xt. Using Figure 8.64, we can write

the following equations:

w[t] = a0xt (8.76)
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x[t] y[t]
a1a0

Figure 8.63: Two gain stages in series.

x[t] y[t]
a1a0

w[t]

Figure 8.64: A simplified way of thinking of Figure 8.63.

and

yt = a1w[t] (8.77)

Therefore

yt = a1w[t] (8.78)
= a1(a0xt) (8.79)
= a0a1xt (8.80)

What I took a long while to say here is that, if you have two gain stages
(or, more generally, two filters) connected in series, you can multiply the
effects that they have on the input to find out the output.

So far, we have been thinking in terms of the instantaneous value of
each sample, sample by sample. That’s why we have been using terms like
xt and yt – we’ve been quite specific about which sample we’re talking about.
However, since we’re dealing with LTI systems, we can say that the same
thing happens to every sample in the signal. Consequently, we don’t have to
think in terms of individual samples going through the filter, we can think
of the whole signal (say, a Johnny Cash tune, for example). When we speak
of the whole signal, we use things like X and Y instead of xt and yt. That
whole signal is what is called an operator .
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In the case of the last filter we looked at (the one with the two gains in
series shown in Figure 8.63), we can write the equation in terms of operators.

Y = [a0a1]X (8.81)

In this case, we can see that the operator X is multiplied by a0a1 in order
to become Y. This is a simple way to think of DSP if you’re not working in
real time. You take the Johnny Cash tune on your hard disc. Multiply its
contents by a0a1 and you get an output, which is a Johnny Cash tune at a
different level (assuming that a0a1 6= 1).

That thing that the input operator is multiplied by is called the transfer
function of the filter and is represented by the symbol H(z). So, the transfer
function of our previous filter is a0a1.

Notice that the transfer function in the equation is held in square brack-
ets.

X YH

filter with the transfer 
function H(z)

Figure 8.65: Transfer function of a filter with operators as inputs and outputs.

Let’s look at another simple example using two 1-sample delays con-
nected in series as is shown in Figure 8.66

x[t] y[t]z-1 z-1

Figure 8.66: Two delays connected in series.

The equation for this filter would be

yt = xtz
−1z−1 (8.82)

= xtz
−2 (8.83)
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and therefore

Y = X
[
z−2
]

(8.84)

Notice that I was able to simply multiply the two delays z−1 and z−1

together to get z−2. This is one of the slick things about using z−k to
indicate a delay. If you multiply them together, you just add the exponents,
therefore adding the delay times.

Let’s do one more filter before moving on...
Figure 8.67 shows a fairly simple filter which adds a gain-modified version

of the input with a delayed, gain-modified version of the input.

x[t] y[t]

Z
a

+

-k 1

a0

Figure 8.67: A filter which adds a gain-modified version of the input with a delayed, gain-modified
version of the input.

The equation for this filter is

yt = a0xt + a1xt−k (8.85)
= a0xt + a1z

−kxt (8.86)

=
(
a0 + a1z

−k
)

xt (8.87)

Therefore

Y =
[
a0 + a1z

−k
]
X (8.88)

and so a0 + a1z
−k is the transfer function of the filter.

8.7.5 Calculating filters as polynomials

Let’s take this a step further. We’ll build a big filter out of two smaller
filters as is shown in Figure 8.68. The transfer function G(z) = a0 + a1z

−1

while the transfer function H(z) = b0 + b1z
−1.

Y = H(z)W (8.89)
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filter G filter H

W

Figure 8.68: Two filters in series.

W = G(z)X (8.90)

Therefore

Y = G(z)H(z)X (8.91)
=

(
a0 + a1z

−1
) (

b0 + b1z
−1
)
X (8.92)

= a0b0 + a0b1z
−1 + b0a1z

−1 + a1z
−1b1z

−1 (8.93)
=

(
a0b0 + (a0b1 + b0a1) z−1 + a1b1z

−1
)
X (8.94)

Therefore

yt = a0b0xt + (a0b1 + b0a1) xt−1 + a1b1xt−2 (8.95)

In other words, we could implement exactly the same filter as is shown in
Figure 8.69. Then again, this might not be the smartest way to implement
it. Just keep in mind that there are other ways to get the same result.
We know that these will give the same result because their mathematical
expressions are identical.

The thing to notice about this section was the way I manipulated the
equation for the cascaded filters. I just treated the notation as if it was a
polynomial straight out of a high-school algebra textbook. The cool thing
is that, as long as I don’t screw up, every step of the way describes the
same filter in an understandable way (as long as you remember what z−k

means...).

8.7.6 Zeros

Let’s go back to a simpler filter as is shown in Figure 8.70.
This gives us the equation
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Figure 8.69: An equivalent result to the cascaded filters shown in Figure 8.68
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Figure 8.70: A simple filter.
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yt = xt + a1xt−1 (8.96)

If we write this out the “old way” – that is, before we knew about the
letter z, the equivalent would look like this:

yt = ejωt + a1e
jωte−jω (8.97)

=
[
1 + a1e

−jω
]
ejωt (8.98)

So 1 + a1e
−jω is “what the filter does” to the input ejωt. Think of

1 + a1e
−jω as a function of frequency. It is complex (therefore it causes a

phase shift in the signal). Consequently, we say that it is a complex function
of ω. In the z-domain, the equivalent is 1− a1z

−1.
So, since we know that

1− a1z
−1 = 1 + a1e

−jω (8.99)

then we can say that

H(z) = H(ω) (8.100)

In other words, the transfer function is the same as the frequency re-
sponse of the filter.

We know that the transfer function of this filter is 1−a1z
−1. You should

also remember that 1
z = z−1. Therefore,

H(z) = 1 + a1z
−1 (8.101)

=
z

z
+

a1

z
(8.102)

=
z + a1

z
(8.103)

Okay, now I have a question. What values in the above equation make
the numerator (the top part of the fraction) equal to 0. The answer, in this
particular case is z = −a1. If the filter had been different, we would have
gotten a different answer. (Maybe we would have even gotten more than
one answer... but that comes later.) Notice that if the numerator is 0, then
H(z) = 0. This will be important later.

Another question: What values will make the denominator (the bottom
part of the equation) equal to 0? The answer, in this particular case is z = 0.
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Again, it might have been possible to get more than one answer. Notice in
this case, that if the denominator is 0, then H(z) = ∞.

Let’s graph z on a cartesian plot. We’ll make the x-axis the real axis
where we plot the real component of z, and the y-axis is the imaginary axis.

We know that

z = ejω (8.104)
= cos(ω) + j sin(ω) (8.105)

We also know that

cos2(ω) + sin2(ω) = 1 (8.106)

for any value of ω.
Therefore, if we make a Cartesian plot of z then we get a circle with a

radius of 1 as is shown in Figure 8.71. Notice that the amount of rotation
corresponds to the radian frequency, starting at DC where z = 1 (notice
that there is no imaginary component) and going to the Nyquist frequency
at z = −1. When z = j1, we are at a normalized frequency of 0.25, or
one-quarter of the sampling rate. This might not make sense yet, but stick
with me for a while.

ω = π = Nyquist ω = 0

Frequency axis

z-plane

Figure 8.71: The frequency axis in the z-plane. The top half of the circle corresponds to positive
frequencies, the bottom half corresponds to negative frequencies [?].
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If it doesn’t make sense, it might be because the problem is that it
appears that we are confusing frequency and phase. However, in one sense,
they are directly connected, because we are describing frequency in terms of
radians per sample instead of the more usual complete cycles of the waveform
per second. Normally we describe the frequency of a waveform by how
many complete cycles go by each second. For example, we say “a 1 kHz
tone” meaning that we get 1000 complete cycles each second. Alternatively,
we could say “360000 degrees per second” which says the same thing. If we
counted faster than a second, then we would say something like “360 degrees
per millisecond” or “0.36 degrees per microsecond.” These all say the same
thing. Notice that we’re using the rate of change of the phase to describe
the frequency, just like we do when we use ω.

If we back up a bit to the last filter we were working on, we said that its
transfer function was

H(z) =
z + a1

z
(8.107)

We can therefore easily calculate the magnitude of H(z) using the equa-
tion:

|H(z)| = |z + a1|
|z|

(8.108)

An important thing to remember here is that, when you’re dealing with
complex numbers, as we are at the moment, the bars on the sides of the
values do not mean “the absolute value of...” as they normally do. They
mean “the magnitude of...” instead. Also remember that you calculate
the magnitude by finding the hypotenuse of the triangle where the real and
imaginary components are the other two sides (see Figure ??).

Since

z = cos(ω) + j sin(ω) (8.109)

and

cos2(ω) + j sin2(ω) = 1 (8.110)

and, because of Pythagoras

|z| = cos2(ω) + j sin2(ω) (8.111)

then
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|z| = 1 (8.112)

So, this means that

|H(z)| =
|z + a1|
|z|

(8.113)

=
|z + a1|

1
(8.114)

= |z + a1| (8.115)

We found out from our questions and answers at the end of Section 8.7.6
that (for our filter that we’re still working on) H(z) = 0 when z = −1. Let’s
then mark that point with a “0” (a zero) on the graph of the z-plane. Note
that a1 has only a real component, therefore −a1 has only a real component
as well. Consequently, the “0” that we put on the graph sits right on the
real axis.

ω = π = Nyquist ω = 0

Frequency axis

ω

z = -a1

Figure 8.72: A zero plotted on the z-plane

Here’s where things get interesting (finally!). The magnitude response
(what most normal people call the frequency response) of this filter can be
found by measuring the distance from the “0” that we plotted to the circle
on the graph. See Figure 8.73

You might be sitting there wondering “what happens if I have more
than one zero on the plot?” This is actually pretty simple, you just pick
a value for ω, then measure the distance from each zero on the plot to the
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ω = π = Nyquist ω = 0

Frequency axis

ω

z = -a1

Figure 8.73: Finding the magnitude response of the filter using the zero plotted on the z-plane.

Frequencyω = 0 ω = π = Nyquist

Magnitude 
response

M
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Figure 8.74: An equivalent plot to 8.73, if we “unwrapped” the frequency axis from a circle to a
straight line. Note that this plot is only roughly to scale – it is not terribly accurate.
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frequency ω. Then you multiply all your distances together, and the result
is the magnitude response of the filter at that frequency.

There is another, possibly more intuitive way of thinking about this. Cut
a circle out of a sheet of heavy rubber, and magically suspend it in space.
The circle directly corresponds to the z-plane. If you have a zero on the
z-plane, you push the rubber down with a pointy stick as far as possible,
preferably infinitely. This will put a dent in the rubber that looks a bit like
a funnel. This will pull down the edge of the circle. The closer the zero is
to the edge, the more the edge will get pulled down.

If you were able to unwrap the edge of the circle, keeping its vertical
shape, you would have a picture of the frequency response.

MAKE A 3-D PLOT OF THIS IN MATHEMATICA TO ILLUSTRATE
THIS POINT.

Sampled 
time 

domain

Inverse discrete 

Fourier transform

In
ve

rs
e 

z-
tra

ns
fo

rm

D
iscrete Fourier 

transform

z-
tra

ns
fo

rm

z = exp(jθ)
z domain

Discrete 
Fourier 

(frequency) 
domainexp(jθ) = z

Figure 8.75: The relationship between the sampled time, discrete frequency and z domains
[Watkinson, 1988].

8.7.7 Poles

So far we have looked at how to calculate the frequency response (there-
fore the magnitude and phase responses) of a digital filter using zeros in
the z-plane. However, you may have noticed that we have only discussed
FIR filters in this section. We have not looked at what happens when you
introduce feedback, therefore creating an IIR filter.

So, let’s make a simple IIR filter with a single delayed feedback with
gain as is shown in Figure 8.76.
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x y

Z
a

-k1

t t
+

Figure 8.76: A simple IIR filter with one delay and one gain.

The equation for this filter is

yt = xt + a1yt−k (8.116)

Notice now that the output is the sum of the input (the xt) and a gain-
modified version (using the gain a1) of the output yt with a delay of k
samples.

We already know from the previous section how to write this equation
symbolically using operators (think back to the Johnny Cash example) as is
shown in the equation below.

Y = X + a1z
−kY (8.117)

Let’s do a little standard high-school algebra on this equation...

Y = X + a1z
−kY (8.118)

Y − a1z
−kY = X (8.119)

X = Y − a1z
−kY (8.120)

X =
[
1− a1z

−k
]
Y (8.121)

So, in a weird way, we can think of this IIR filter that relies on feedback
as a FIR filter that only contains feedforward, except that we have to think
of the filter backwards. The input, X is simply the output of the filter,
Y , minus a delayed, gain-varied version of the output. This can be seen
intuitively if you compare Figure 8.60 with Figure 8.76. You’ll notice that,
if you look at one of the diagrams backwards (following the signal path from
right to left), they’re identical.

Let’s continue with the algebra, picking up where we left off...
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X =
[
1− a1z

−k
]
Y (8.122)

X

1− a1z−k
= Y (8.123)

Y =
X

1− a1z−k
(8.124)

Y = X
1

1− a1z−k
(8.125)

Therefore, we can see right away that the transfer function of this IIR
filter is

H(z) =
1

1− a1z−k
(8.126)

because that’s what gets multiplied by the input to get the output.
This, in turn, means that the magnitude response of the filter is

|H(z)| =
∣∣∣∣ 1
1− a1z−k

∣∣∣∣ (8.127)

=
1

|1− a1e−iωk|
(8.128)

This raises an interesting problem. What happens if we make the de-
nominator equal to 0? First of all, let’s find out what values make this
happen.

0 = 1− a1z
−k (8.129)

1 = a1z
−k (8.130)

1
a1

= z−k (8.131)

1
a1

= e−jωk (8.132)

Remember Euler’s identity which states that

e−jωk = cos(ωk) + j sin(ωk) (8.133)

We therefore know that, for any value of ω and k, −1 6 e−jωk 6 1. In
other words, a sinusoidal waveform just swings back and forth over time
between -1 and 1.
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We saw that the denominator of the equation for the magnitude response
of our filter will be 0 when

1
a1

= e−jωk (8.134)

Therefore, the magnitude response of the filter will be 0 (at some values
for ω and k) when a1 > 1.

So what? Well, if the denominator in the equation describing the mag-
nitude response of the filter goes to 0, then the magnitude response goes to
∞. Therefore, no matter what the input of the filter (other than an input
of 0), the output will be ∞. This is bad because an infinite output signal
is very, very loud... An intuitive way to think of this is that the filter goes
nuts if the feedback causes it to get louder and louder over time. In the case
of a single feedback delay, this is easy to think of, since it’s just a question
of whether the gain applied to that delay outputs a bigger result than the
input, which is fed into the delay again and made bigger and bigger and
so on. In the case of a complicated filter lots of feedback and feedforward
paths (and therefore lots of poles and zeros) you’ll have to do some math to
figure out what will make the filter get out of control.

We saw that, if the numerator of the magnitude response equation of
the filter goes to 0, then we put a zero in the z-plane plot of the response.
Similarly, if the denominator of the equation goes to 0, then we put a pole
on the z-plane plot of the response. Whereas a zero can be thought of as a
deep “dent” in the 3D plot of the z-plane, a pole is a very high pointy shape
coming up off the z-plane. This is shown in Figures 8.77 and ??.

ω = π = Nyquist ω = 0

Frequency axis

ω

z   = a1
-k

Figure 8.77: A pole plotted on the z-plane
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MAKE A 3-D PLOT OF THIS IN MATHEMATICA TO ILLUSTRATE
THIS POINT.

Notice in Figure 8.77 that I have marked the pole using an “X” and
placed it where z−k = a1 This may seem odd, since we said a couple of
equations ago that the magic number is where 1

a1
= z−k. I agree – it is a

little odd, but just trust me for now. We put the pole on the plot where
z−k = the bottom half of the equation (in this case, a1) and we’ll see in a
couple of paragraphs how it ties back to 1

a1
.

As we saw before, one way to intuitively think of the result of a pole on
the magnitude response of the filter is to unwrap the edge of the circle and
see how the pole pulls up the edge. This will give you an idea of where the
total gain of the filter is higher than 1 relative to frequency.

Alternately, we can think of the magnitude response, again using the
distance from the pole’s location to the edge of the circle in the z-plane.
However, there is a difference in the way we think of this when compared
with the zeros. In the case of the zeros, the magnitude response at a given
frequency was simply the distance between the zero and the edge of the circle
as we saw in Figures 8.73 and 8.74. We also saw that, if you have more than
one zero, you multiply their distances (to the location of a single frequency
on the circle) together to get the total gain of the filter for that frequency.
The same is almost true for poles, however you divide the distance instead
of multiplying. So, in the case of a filter with only one pole, you divide 1 by
the distance from the pole’s location to a frequency on the circle to get the
gain of the filter at that frequency. This is shown in Figures 8.78 and 8.79.
(See, I told you that I’d link it back to 1

a1
...)

ω = π = Nyquist ω = 0

Frequency axis

ω

z   = a1
-k

Figure 8.78: Finding the magnitude response of the filter using the pole plotted on the z-plane.
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Figure 8.79: An equivalent plot to 8.78, if we “unwrapped” the frequency axis from a circle to a
straight line. Notice that the plot shows 1

|H(z)| . Note that this plot is only roughly to scale – it is

not terribly accurate.
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Figure 8.80: The magnitude response calculated from the plot in Figure 8.79. Note that this plot
is only roughly to scale – it is not terribly accurate.

8.7.8 Suggested Reading List

[Steiglitz, 1996]
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Chapter 9

Audio Recording

9.1 Levels and Metering

Thanks to Claudia Haase and Thomas Lischker at RTW Radio–Technische
(www.rtw.de) for their kind permission to use graphics from their product
line for this page.

9.1.1 Introduction

When you sit down to do a recording – any recording, you have two basic
objectives:

1) make the recording sound nice aesthetically
2) make sure that the technical quality of the recording is high.
Different people and record labels will place their priorities differently

(I’m not going to mention any names here, but you know who you are...)
One of the easiest ways to guarantee a high technical quality is to pay

particular attention to your gain and levels at various points in the record-
ing chain. This sentence is true not only for the signal as it passes out
and into various pieces of equipment (i.e. from a mixer output to a tape
recorder input), but also as it passes through various stages within one piece
of equipment (in particular, the signal level as it passes through a mixer).
The question is: “what’s the best level for the signal at this point in the
recording chain?”

There are two beasts hidden in your equipment that you are constantly
trying to avoid and conceal as you do your recording. On a very general
level, these are noise and distortion.

591
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Noise

Noise can be generally defined as any audio in the signal that you don’t want
there. If we restrict ourselves to electrical noise in recording equipment, then
we’re talking about hiss and hum. The reasons for this noise and how to
reduce it are discussed in a different chapter, however, the one inescapable
fact is that noise cannot be avoided. It can be reduced, but never eliminated.
If you turn on any piece of audio equipment, or any component within any
piece of equipment, you get noise. Normally, because the noise stays at
a relatively constant level over a long period of time and because we don’t
bother recording signals lower in level than the noise, we call it a noise floor.

How do we deal with this problem? The answer is actually quite simple:
we turn up the level of the signal so that it’s much louder than the noise. We
then rely on psychoacoustic masking (and, if we’re really lucky, the threshold
of hearing) to cover up the fact that the noise is there. We don’t eliminate
the noise, we just hide it – and the louder we can make the signal, the better
it’s hidden. This works great, except that we can’t keep increasing the level
of the signal because at some point, we start to distort it.

Distortion

If the recording system was absolutely perfect, then the signal at its output
would be identical to the signal at the input of the microphone. Of course,
this isn’t possible. Even if we ignore the noise floor, the signals at the two
ends of the system are not identical – the system itself modifies or distorts
the signal a little bit. The less the modification, the lower the distortion of
the signal and the better it sounds.

Keep in mind that the term “distortion” is extremely general – differ-
ent pieces of equipment and different systems will have different detrimental
effects on different signals. There are different ways of measuring this –
these are discussed in the section on electroacoustic measurements – but we
typically look at the amount of distortion in percent. This is a measure-
ment of how much extra power is included in the signal that shouldn’t be
there. The higher the percentage, the more distortion and the worse the
signal. (See the chapter on distortion measurements in the Electroacoustic
Measurements section.)

There are two basic causes of distortion in any given piece of equipment.
The first is the normal day–to–day error of the equipment in transmitting or
recording the signal. No piece of gear is perfect, and the error that’s added
to the signal at the output is basically always there. The second, however,
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is a distortion of the signal caused by the fact that the level of the signal is
too high. The output of every piece of equipment has a maximum voltage
level that cannot be exceeded. If the level of the signal is set so high that it
should be greater than the maximum output, then the signal is clipped at
the maximum voltage as is shown in Figure 9.2.

Figure 9.1: A 1 kHz sine wave without distortion worth talking about.

For our purposes at this point in the discussion, I’m going to over–
simplify the situation a bit and jump to a hasty conclusion. Distortion can
be classified as a process that generates unwanted signals that are added to
our program material. In fact, this is exactly what happens – but the un-
wanted signals are almost always harmonically related to the signal whereas
your run–of–the–mill noise floor is completely unrelated harmonically to the
signal. Therefore, we can group distortion with noise under the heading
“stuff we don’t want to hear” and look at the level of that material as com-
pared to the level of the program material we’re recording – in other words
the “stuff we do want to hear.” This is a small part of the reason that
you’ll usually see a measurement called “THD+N” which stands for “Total
Harmonic Distortion plus Noise” – the stuff we don’t want to hear.

Maximizing your quality

So, we need to make the signal loud enough to mask the noise floor, but
quiet enough so that it doesn’t distort, thus maximizing the level of the
signal compared to the level of the distortion and noise components. How
do we do that? And, more importantly, how do we keep the signal at an
optimal level so that we have the highest level of technical quality? In
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Figure 9.2: The same 1 kHz sine wave in a piece of equipment that has a maximum voltage of 15
V (and a minimum voltage of –15 V). Note that the top and bottom of the sine wave are clipped
at the voltage rails of the equipment. This clipping causes a high distortion level because the signal
is significantly changed or distorted. The green waveform is the original undistorted sine wave and
the blue is the clipped output.

order to answer this question, we have to know the exact behaviour of the
particular piece of gear that we’re using – but we can make some general
rules that apply for groups of gear. These three groups are 1) digital gear,
2) analog electronics and 3) analog tape.

9.1.2 Digital Gear in the PCM World

As we’ve seen in previous chapters, digital gear has relatively easily defined
extremes for the audio signal. The noise floor is set by the level of the
dither, typically with a level of one half of an LSB. The signal to noise ratio
of the digital system is dependent on the number of bits that are used for
the signal – increasing by 6.02 dB per bit used. Since the level of the dither
is typically half a bit in amplitude, we subtract 3 dB from our signal to noise
ratio calculated from the number of bits. For example, if we are recording
a sine wave that is using 12 of the 16 bits on a CD and we make the usual
assumptions about the dither level, then the signal to noise ratio for that
particular sine wave is:

(12 bits * 6 dB per bit) – 3 dB
= 69 dB
Therefore, in the above example, we can say that the noise floor is 69 dB

below the signal level. The more bits we use for the signal (and therefore
the higher its peak level) the greater the signal to noise ratio and therefore
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the better the technical quality of the recording. (Do not confuse the signal
to noise ratio with the dynamic range of the system. The former is the ratio
between the signal and the noise floor. The latter is the ratio between the
maximum possible signal and the noise floor – as we’ll see, this raises the
question of how to define the maximum possible level...)

We also know from previous chapters that digital systems have a very
unforgiving maximum level. If you have a 16 bit system, then the peak
level of the signal can only go to the maximum level of the system defined
by those 16 bits. There is some debate regarding what you can get away
with when you hit that wall – some people say that 2 consecutive samples
at the maximum level constitutes a clipped signal. Others are more lenient
and accept one or two more consecutively clipped samples. Ignoring this
debate, we can all agree that, once the peak of a sine wave has reached the
maximum allowable level in a digital system, any increase in level results
in a very rapid increase in distortion. If the system is perfectly aligned,
then the sine wave starts to approach a square wave very quickly (ignoring
a very small asymmetry caused by the fact that there is one extra LSB
for the negative–going portion of the wave than there is for the positive
side in a PCM system). See Figure 9.2 to see a sample input and output
waveform. The “consecutively clipped samples” that we’re talking about is
a measurement of how long the flattened part of the waveform stays flat.

If we were to draw a graph of this behaviour, we would result in the plot
shown in Figure 9.3. Notice that we’re looking at the Signal to THD+N
ratio vs. the level of the signal.

The interesting thing about this graph is that it’s essentially a graph of
the peak signal level vs. audio quality (at least technically speaking... we’re
not talking about the quality of your mix or the ability of your performers...).
We can consider that the X–axis is the peak signal level in dB FS and the
Y–axis is a measurement of the quality of the signal. Consequently, we can
see that the closer we can get the peak of the signal to 0 dB FS the better
the quality, but if we try to increase the level beyond that, we get very bad
very quickly.

Therefore, the general moral of the story here is that you should set
your levels so that the highest peak in the signal for the recording will hit
as close to 0 dB FS as you can get without going over it. In fact, there are
some problems with this – you may actually wind up with a signal that’s
greater than 0 dB FS by recording a signal that’s less than 0 dB FS in some
situations... but we’ll look at that later... this is still the introduction.
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Figure 9.3: A plot of a measurement of the signal to THD+N (caused by noise and distortion
byproducts) ratio vs. the signal level in a typical digital converter with a dither level of one half
an LSB measured with a 997 Hz sine tone. The curves are 8–bit (yellow), 12–bit (green), 16–bit
(blue) and 24–bit (red). The resolution on the input level is 1 dB. The positive slope on the left is
the result of the increase in the signal level over the static noise floor. The nasty drop on the right
is caused by the sudden increase in distortion when you try to make the sine tone go beyond 0 dB
FS.

9.1.3 Analog electronics

Analog electronics (well, operational amplifiers really... but pretty well ev-
erything these days is built with op amps, so we’ll stick with the generalized
assumption for now...) have pretty much the same distortion characteristics
as digital, but with a lower noise floor (unless you have a very high reso-
lution digital system or a really crappy analog system). As can be seen in
Figure 9.4, the general curve for an analog microphone preamplifier, mixing
console, or equalizer (note that we’re not talking about dynamic range con-
trollers like compressors, limiters, expanders and gates) looks the same as
the curve for digital gear shown in Figure 9.3. If you’ve got a decent piece
of analog gear (even something as cheap as a Mackie mixer these days) then
you should be able to hit a maximum signal to noise ratio of about 125
dB or so when the signal is at some maximum level where the peak level is
bordering on the clipping level (somewhere around +/- 13.5 V or +/- 16.5
V, depending on the power supply rails and the op amps used). Any signal
that goes beyond that peak level causes the op amps to start clipping and
the distortion goes up rapidly (and bringing the quality level down quickly).

So, the moral of the story here is the same as in the digital world. As a
general rule, it’s good for analog electronics to keep your signal as high as
possible without hitting the maximum output level and therefore clipping
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your signal.

Figure 9.4: A plot of the signal to THD+N ratio vs. the signal level for a simple analog equalizer
set to bypass mode and measured with a 1 kHz sine tone. The resolution on the input level is 1
dB. Note the similarity to the curve for PCM digital systems shown in Figure 3.

One minor problem in the analog electronics world is knowing exactly
what level causes your gear to distort. Typically, you can’t trust your meters
as we’ll see later, so you’ll either have to come up with an alternate metering
method (either using an oscilloscope, an external meter, or one of your other
pieces of gear as the meter) or just keep your levels slightly lower than
optimal to ensure that you don’t hit any brick walls.

One nice trick that you can use is in the specific case where you’re
coming from an analog microphone preamplifier or analog console into a
digital converter (depending on its meters). In this case, you can pre–set
the gain at the input stage of the mic pre such that the level that causes the
output stage of the mixer to clip is also the level that causes the input stage
of the ADC to clip. In this case, the meters on your converter can be used
instead of the output meters on your microphone preamplifier or console. If
all the gear clips at the same level and your stay just below that level at the
recording’s peak, then you’ve done a good job. The nice thing about this
setup is that you only need to worry about one meter for the whole system.

9.1.4 Analog tape

Analog tape is a different kettle of fish. The noise floor in this case is the
same as in the analog and digital worlds. There is some absolute noise floor
that is inherent on the tape (the reasons for which are discussed in the
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chapter on analog tape, oddly enough...) but the distortion characteristics
are different.

When the signal level recorded on an analog tape is gradually increased
from a low level, we see an increase in the signal to noise ratio because the
noise floor stays put and the signal comes up above it. At the same time
however, the level of distortion gradually increases. This is substantially
different from the situation with digital signals or op amps because the
clipping isn’t immediate – it’s a far more gradual process as can be seen in
Figure 9.5.

Figure 9.5: A measurement of a 1 kHz sine tone that is “clipped” by analog tape. Notice that,
although the peaks and troughs are distorted and limited to the boundaries, the clipping process
is much more gradual than was seen in Figure 9.3 with the digital gear and op amps. The blue
waveform is the original undistorted sine wave and the red is the output from the analog tape.

The result of this softer, more gradual clipping of the waveform is twofold.
Firstly, as was mentioned above, the increase in distortion is more gradual
as the level is increase. In addition, because the change in the slope of the
waveform is less abrupt, there are fewer very high frequency components
resulting from the distortion. Consequently, there are a large number of
people who actually use this distortion as an integral part of their process-
ing. This tape compression as it is commonly known, is most frequently
used for tracking drums.

Assuming that we are trying to maintain the highest possible techanical
quality and assuming that this does not include tape compression, then we
are trying to keep the signal level at the high point on the graph in Figure
5. This level of 0 dB VU is a so–called nominal level at which it has been
decided (by the tape recorder manufacturer, the analog tape supplier and
the technician that works in your studio) that the signal quality is best. Your
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Figure 9.6: A plot of the signal to noise (caused by noise and distortion byproducts) ratio vs. the
signal level in a typical analog tape recording. The blue signal is the response of the electronics
in the tape recorder (measured using the “Input” monitor). The red signal is the response of the
tape. (This is an old Revox A77 that needs a little maintenance, recording on some spare Ampex
456 tape that I had lying around, in case you’re wondering...)

goal in this case is to keep the average level of the signal for the recording
hovering around the 0 dB VU mark. You may go above or below this on
peaks and dips – but most of the time, the signal will be at an optimal level.

Notice that there are two fundamentally different ways of thinking pre-
sented above. In the case of digital gear or analog electronics, you’re deter-
mining your recording level based on the absolute maximum peak for the
entire recording. So, if you’re recording an entire symphony, you find out
what the loudest part will be and make that point in the recording as close
to maximum as possible. Look after the peak and the rest will look after
itself. In contrast, in the case of analog tape, we’re not thinking of the peak
of the signal, we’re concentrating on the average level of the signal – the
peaks will look after themselves.

9.1.5 Meters

So, now that we’ve got a very basic idea of the objective, how do we make
sure that the levels in our recording system are optimized? We use the
meters on the gear to give us a visual indication of the levels. The only
problem with this statement is that it assumes that the meter is either telling
you what you want to know, or that you know how to read the meter. This
isn’t necessarily as dumb as it sounds.

A discussion of meters can be divided into two subtopics. The first is
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the issue of scale – what actual signal level corresponds to what indication
on the meter. The second is the issue of ballistics – how the meter responds
in time to changes in level.

Before we begin, we’ll take a quick review of the difference between the
peak and the RMS value of a signal. Figure 9.7 shows a portion of a recorded
sound wave. In fact, it’s an excerpt of a recording of male speech.

Figure 9.7: The instantaneous voltage level of a recording of male speech.

One simple measurement of the signal level is to continuously look at
its absolute value. This is simply done by taking the absolute value of the
signal shown in Figure 9.8.

Figure 9.8: The absolute value of the signal shown in Figure 9.7

A second, more complex method is to use the running RMS of the signal.
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As we’ve already discussed in an earlier chapter, the relationship between
the RMS and the instantaneous voltage is dependent on the time constant
of the RMS detection circuit. Notice in Figure 9.9 that not only do the
highest levels in the RMS signals differ (the longer the time constant, the
higher the level) but their attack and decay slopes differ as well.

Figure 9.9: Two running measurements of the RMS value of the displayed signal. The blue signal
is an RMS using a time constant of 2.27 ms. The red signal uses a time constant of 5.67 ms.

A level meter tells you the level of the signal – either the peak or the
RMS value of the level depending on the meter – on a relative scale. We’ll
look at these one at a time, and deal with the respective scale and ballistics
for each.

Peak Light (also known as an Overload indicator)

Scale

If you look at a microphone preamplifier or the input module of a mixing
console, you’ll probably see a red LED. This peak light is designed to light
up as a warning signal when the peak level (the instantaneous voltage –
or more likely the absolute value of the instantaneous voltage) approaches
the voltage where the components inside the equipment will start to clip.
More often than not, this level is approximately 3 dB below the clipping
level. Therefore, if the device clips at +/– 16.5 V then the peak light will
come on if the signal hits 11.6673 V or –11.6673 V (3 dB less than 16.5 V
or 16.5 V / sqrt(2)). Remember that the level at which the peak indicator
lights is dependent on the clip level of the device in question – unlike many
other meters, it does not indicate an absolute signal strength. So, without
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Figure 9.10: The same plot as Figure 8 with the Y–axis changed to a decibel scale. There are a
couple of things to note here. Firstly, the decibel scale is relative to 1 V, similar to a dBV scale –
the difference is that this plot uses an instantaneous measurement of the voltage compared to 1 V
rather than an RMS value relative to 1VRMS as in the dBV scale. Secondly, note that the decay
curves of both RMS measurements (the red and blue plots) are more linear on this dB scale when
compared to a linear absolute voltage scale. Also, note that the red plot (with a time constant of
5.67 ms) reads a signal level that gets closer to the maxima in level whereas the blue plot (with a
time constant of 2.27 ms) gives a result that is closer to the minima. In both cases, however, there
is approximately a 10 dB error in the RMS values relative to the instantaneous peak voltages.

knowing the exact characterstics of the equipment, we cannot know what
the exact level of the signal is when the LED lights. Of course, the moral of
that issue is “know your equipment.”

Figure 9.11: Two typical peak indicators. On the left is an Overload indicator light on a GML
microphone preamplifier. On the right is a Peak light on a Sony/MCI recording console input strip.
The red LED is the peak indicator – the green LED is a signal indicator which lights at a much
lower level.

For example, take a look at Figure 9.12. Let’s assume that the signal is
passing through a piece of equipment that clips at a maximum voltage of
10 V. The peak indicator will more than likely light up when the signal is 3
dB below this level. Therefore any signal greater than 7.07 V or less than
–7.07 V will cause the LED to light up.
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Figure 9.12: The same male speech shown earlier passing through a hypothetical device that clips
at ± 10 V and has a peak level indicator that is calibrated to light at 3 dB below clipping (at ±
7.07 V). All of the signal components drawn in red are the signals that will cause the indicator to
light.

Ballistics

Note that a peak indicator is an instantaneous measurement. If all is working
properly, then any signal of any duration (no matter how short) will cause
the indicator to light if the signal strength is high enough.

Also note that the peak indicator lights when the signal level is slightly
lower than the level where clipping starts, so just because the light lights
doesn’t mean that you’ve clipped your signal... but you’re really close.

Volume Unit (VU) Meter

Scale

The Volume Unit Meter (better known as a VU Meter) shows what is the-
oretically an RMS level reading of the signal passing through it. Its display
is calibrated in decibels that range from –20 dB VU up to +3 dB VU (the
range of 0 dB VU to +3 dB VU are marked in red). Because the VU meter
was used primarily for recording to analog tape, the goal was to maintain
the RMS of the signal at the “optimal” level on the tape. As a result, VU
meters are centered around 0 dB VU – a nominal level that is calibrated by
the manufacturer and the studio technician to match the optimal level on
the tape.

In the case of an analog tape recorder, we can monitor the signal that is
bring recorded to the tape or the signal coming off the tape. Either way, the
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Figure 9.13: A typical Type A VU Meter on a Joe Meek compressor.

meter should be showing us an indication of the amount of magnetic flux on
the medium. Depending on the program material being recorded, the policy
of the studio, and the tape being used, the level corresponding to 0 dB VU
will be something like 250 nWb/m or so. So, assuming that the recorder is
calibrated for 250 nWb/m, then when the VU Meter reads 0 dB VU, the
signal strength on the tape is 250 nWb per meter. (If the term “nWb/m” is
unfamiliar, of if you’re unsure how to decide what your optimal level should
be, check out the chapter on analog tape.)

In the case of other equipment with a VU Meter (a mixing console,
for example), the indicated level on the meter corresponds to an electrical
signal level, not a magnetic flux level. In this case, in almost all professional
recording equipment, 0 dB VU corresponds to +4 dBu or, in the case of
a sine tone that’s been on for a while, 1.228VRMS . So, if all is calbrated
correctly, if a 1 kHz sine tone is passed through a mixing console and the
output VU meters on the console read 0 dB VU, then the sine tone should
have a level of 1.228VRMS between pins 2 and 3 on the XLR output. Either
pin 2 or 3 to ground (pin 1) will be half of that value.

In addition to the decibel scale on a VU Meter, it is standard to have a
second scale indicated in percentage of 0 dB VU where 0 dB VU = 100%.
VU Meters are subdivided into two types – the Type A scale has the decibel
scale on the top and the 0% to 100% in smaller type on the bottom as is
shown in Figure 9.13. The Type B scale has the 0% to 100% scale on the
top with the decibel equivalents in smaller type on the bottom.

If you want to get really technical, the offical definition of the VU Meter
specifies that it reads 0 dB VU when it is bridging a 600 Ω line and the
signal level is +4 dBm.
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Ballistics

Since VU Meters are essentially RMS meters, we have to remember that they
do not respond to instantaneous changes in the signal level. The ballistics
for VU Meters have a carefully defined rise and decay time – meaning that
we know how fast they respond to a sudden attack or a sudden decay in
the sound – slowly. These ballistics are defined using a sine tone that is
suddenly switched on and off. If there is no signal in the system and a sine
tone is suddenly applied to the VU Meter, then the indicator (either a needle
or a light) will reach 99% of the actual RMS level of the signal in 300 ms.
In technical terms, the indicator will reach 99% of full–scale deflection in
300 ms. Similarly, when the sine tone is turned off and the signal drops to
0 V instantaneously, the VU meter should take 300 ms to drop back 99%
of the way (because the meter only sees the lack of signal as a new signal
level, therefore it gets 99% of the way there in 300 ms – no matter where
it’s going).

Figure 9.14: A simplified example of the ballistics of a VU meter. Notice that the signal (plotted in
green) changes from a 0 VRMS to a 1.228 VRMS sine wave instantaneously (I know, I know... you
can’t have an instantaneous change to an RMS value – but I warned you that it was a simplified
description!) The level displayed by the VU Meter takes 300 ms to get to 99% of the signal level.
Similarly, when the signal is turned off instantaneously, it takes 300 ms for the VU Meter to drop
to 0. Notice that the attack and decay curves are reciprocals.

Also, there is a provision in the definition of a VU Meter’s ballistics
for something called overshoot. When the signal is suddenly applied to
the meter, the indicator jumps up to the level it’s trying to display, but it
typically goes slightly over that level and then drops back to the correct
level. That amount of overshoot is supposed to be no more than 1.5% of the
actual signal level. (If you’re picky, you’ll notice that there is no overshoot



9. Audio Recording 606

Figure 9.15: The same graph as is shown in Figure 9.14 plotted in a decibel scale. Note that the
logarithmic decay of the VU Meter appears as a linear drop in the decibel scale, whereas the attack
curve is not linear.

plotted in Figures 9.14 and 9.15.)

Peak Program Meter (PPM)

Scale

The good thing about VU Meters is that they show you the average level of
the signal – so they’re great for recording to analog tape or for mastering
purposes where you want to know the overall general level of the signal.
However, they’re very bad at telling you the peak level of the signal – in
fact, the higher the crest factor, the worse they are at telling you what’s
going on. As we’ve already seen, there are many applications where we
need to know exactly what the peak level of the signal is. Once upon a
time, the only place where this was necessary was in broadcasting – because
if you overload a transmitter, bad things happen. So, the people in the
broadcasting world didn’t have much use for the VU Meter – they needed
to see the peak of the program material, so the Peak Program Meter or
PPM was developed in Europe around the same time as the VU Meter was
in development in the US.

A PPM is substantially different from a VU Meter in many respects.
These days it has many different incarnations – particularly in its scale, but
the traditional one that most people think of is the UK PPM (also known
as the BBC PPM). We’ll start there.

The UK PPM looks very different from a VU Meter – it has no decibel
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markings on it – just numbered indications from “Mark 0” up to “Mark
7.” In fact, the PPM is divided in decibels, they just aren’t marked there –
generally, there are 4 decibels between adjacent marks – so from Mark 2 to
Mark 3 is an increase of 4 dB. There are two exceptions to this rule – there
are 6 decibels between Marks 0 and 1 (but note that Mark 0 is not marked).
In addition, there are 2 decibels between Mark 7 and Mark 8 (which is also
not marked).

Because we’re thinking now in terms of the peak signal level, the nominal
level is less important than the maximum, however, PPM’s are calibrated
so that Mark 4 corresponds to 0 dBu. Therefore if the PPM at the output
stage on a mixing console read Mark 5 for a 1 kHz sine wave, then the output
level is 1.228VRMS between pins 2 and 3 (because Mark 5 is 4 dB higher
than Mark 4, making it +4 dBu).

Figure 9.16: A photograph of a typical UK (or BBC) PPM on the output module of a Sony/MCI
mixing console.

Figure 9.17: An RTW UK PPM variation.

There are a number of other PPM Scales available to the buying public.
In addition to the UK PPM, there’s the EBU PPM, the DIN PPM and the
Nordic PPM. Each of these has a different scale as is shown in Table 9.1
and the corresponding Figure 9.18.
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Figure 9.18: Various scales of analog level meters for professional recording equipment. Add 4 dB
to the corresponding signal levels for professional broadcasting equipment.

Figure 9.19: INSERT CAPTION
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Figure 9.20: An RTW Nordic PPM.

Ballistics

Let’s be complete control freaks and build the perfect PPM. It would show
the exact absolute value of the voltage level of the signal all the time. The
needle would dance up and down constantly and after about 3 seconds you’d
have a terrible headache watching it. So, this is not the way to build a PPM.
In fact, what is done is the ballistics are modified slightly so that the meter
responds very quickly to a sudden increase in level, but it responds very
slowly to a sudden drop in level – the decay time is much slower even than
a VU Meter. You may notice that the PPM’s listed in Table 1 and Figure
9.18 are grouped into two “types” Type I and Type II. These types indicate
the characteristics of the ballistics of the particular meter.

Type I PPM’s

The attack time of a Type I PPM is defined using an integration time of
5 ms – which corresponds to a time constant of 1.7 ms. Therefore, a tone
burst that is 10 ms long will result in the indicator being 1 dB lower than the
correct level. If the burst is 5 ms long, the indicator will be 2 dB down, a 3
ms burst will result in an indicator that is 4 dB down. The shorter the burst,
the more inaccurate the reading. (Note however, that this is significantly
faster than the VU Meter.)

Again, unlike the VU meter, the decay time of a Type I PPM is not the
reciprocal of the attack curve. This is defined by how quickly the indicator
drops – in this case, the indicator will drop 20 dB in 1.4 to 2.0 seconds.

Type II PPM’s

The attack time of a Type II PPM is identical to a Type I PPM.
The decay of a Type II PPM is somewhat different from its Type I

cousin. The indicator falls back at a rate of 24 dB in 2.5 to 3.1 seconds. In
addition, there is a “hold” function on the peak where the indicator is held
for 75 ms to 150 ms before it starts to decay.
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Qualification Regarding Nominal Levels

There’s one important thing to note in all of this discussion. This chap-
ter assumes that we’re talking about professional equipment in a recording
studio.

Professional Broadcast Equipment

If you work with professional broadcast equipment, then the nominal level
is different – in fact, it’s 4 dB higher than in a recording studio. 0 dB VU
corresponds to +8 dBu and all of the other scales are higher to match.

Consumer–level Equipment

If we’re talking about consumer–level equipment, either for recording or just
for listening to things at home on your stereo, then the nominal 0 dB VU
point (and all other nominal levels) corresponds to a level of -10 dBV or
0.316VRMS .

Digital Meter

A digital meter is very similar to a PPM because, as we’ve already estab-
lished, your biggest concern with digital audio is that the peak of the signal is
never clipped. Therefore, we’re most interested in the peak or the amplitude
of the signal.

As we’ve said before, the noise floor in a PCM digital audio signal is
typically determined by the dither level which is usually at approximately
one half of an LSB. The maximum digital level we can encode in a PCM
digital signal is determined by the number of bits. If we’re assuming that
we’re talking about a two’s complement system, then the maximum positive
amplitude is a level that is expressed as a 0 followed by as many 1’s as are
allowed in the digital word. For example, in an 8–bit system, the maximum
possible positive level (in binary) is 01111111. Therefore, in a 16–bit system
with 65536 possible quantization values, the maximum possible positive level
is level number 32767. In a 24–bit system, the maximum positive level is
8388607. (If you’d like to do the calculation for this, it’s (2n)

2−1 where n is the
number of bits in the digital word.

Note that the negative–going signal has one extra LSB in a two’s com-
plement system as is discussed in the chapter on digital conversion.

The maximum possible value in the positive direction in a PCM digital
signal is called full scale because a sample that has that maximum value
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uses the entire scale that is possible to express with the digital word. (Note
that we’ll see later that this definition is actually a lie – there are a couple
of other things to discuss here, but we’ll get back to them in a minute.)

Figure 9.21: A PCM two’s complement digital representation of a quantized sine wave with a
frequency of 1/20th of the sampling rate. Note that three samples (numbers 5, 6 and 7) have
reached full scale and are indicated in red. By comparison, the symmetrical samples (numbers 15,
16 and 17) are technically at full scale despite the extra LSB in the negative zone.

It is therefore evident that, in the digital world, there is some absolute
maximum value that can be expressed, above which there is no way to
describe the sample value. We therefore say that any sample that hits
this maximum is “clipped” in the digital domain – however, this does not
necessarily mean that we’ve clipped the audio signal itself. For example, it
is highly unlikely that a single clipped sample in a digital audio signal will
result in an audible distortion. In fact, it’s unlikely that two consecutively
clipped samples will cause audible artifacts. The more consecutively clipped
samples we have, the more audible the distortion. People tend to settle on
2 or 3 as a good number to use as a definition of a “clipped” signal.

If we look at a rectified signal in a two’s complement PCM digital do-
main, then the amplitude of a sample can be expressed using its relationship
to a sample at full scale. This level is called dB FS or “decibels relative to
full scale” and can be calculated using the following equation:

dB FS = 20 * log (sample value / maximum possible value)
Therefore, in a 16–bit system, a sine wave that has an amplitude of 16384

(which is also the value of the sample at the positive peak of the sine wave)
will have a level of –6.02 dB FS because:

20 * log (16384 / 32767) = –6.02 dB FS
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There’s just one small catch: I lied. There’s one additional piece of
information that I’ve omitted to keep things simple. Take a close look
at Figure 9.21. The way I made this plot was to create a sine wave and
quantize it using a 4–bit system assuming that the sampling rate is 20 times
the frequency of the sine wave itself. Although this works, you’ll notice that
there are some quantization levels that are not used. For example, not one
of the samples in the digital sine wave representation has a value of 0001,
0011 or 0101. This is because the frequency of the sine wave is harmonically
related to the sampling rate. In order to ensure that more quantization levels
are used, we have to use a sampling rate that is enharmonically related to
the sampling rate. The technical definition of “full scale” uses a digitally–
generated sine tone that has a frequency of 997 Hz. Why 997 Hz? Well,
if you divide any of the standard sampling rates (32 kHz, 44.1 kHz, 48
kHz, 88.2 kHz, 96 kHz, etc...) by 997, you get a nasty number. The result is
that you get a different quantization value for every sample in a second. You
won’t hit every quantization value because the whole system starts repeating
after one second – but, if your sine tone is 997 Hz and your sampling rate
is 44.1 kHz, you’ll wind up hitting 44100 different quantization values. The
higher the sampling rate, the more quantization values you’ll hit, and the
less your error from full scale.

The other reason for using this system is to avoid signals that are actually
higher than Full Scale without the system actually knowing. If you have a
sine tone with a frequency that is harmonically related to the sampling rate,
then it’s possible that the very peak of the wave is between two samples, and
that it will always be between two samples. Therefore the signal is actually
greater than 0 dB FS without you ever knowing it. With a 997 Hz tone,
eventually, the peak of the wave will occur as close as is reasonably possible
to the maximum recordable level.

This becomes part of the definition of full scale – the amplitude of a
signal is compared to the amplitude of a 997 Hz sine tone at full scale. That
way we’re sure that we’re getting as close as we can to that top quantization
level.

There is one other issue to deal with: the definition of dB FS uses the
RMS value of the signal. Therefore, a signal that is at 0 dB FS has the same
RMS value as a 997 Hz sine wave whose peak positive amplitude reaches full
scale. There are two main implications of this definition. The first has to
do with the crest factor of your signal. Remember that the crest factor is a
measurement of the relationship between the peak and the RMS value of the
signal. In almost all cases, the peak value will be greater than RMS value
(in fact, the only time this is not the case is a square wave in which they will
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be equal). Therefore, if a meter is really showing you the signal strength
in dB FS, then it is possible that you are clipping your signal without your
meter knowing. This is because the meter would be showing you the RMS
level, but the peak level is much higher. It is therefore possible that you are
clipping that peak without hitting 0 dB FS. This is why digital equipment
also has an OVER indicator (check out Figure 9.22) to tell you that the
signal has clipped. Just remember that you don’t necessarily have to go all
the way up to 0 dB FS to clip.

Another odd implication of the dB FS definition is that, in the odd case
of a square wave, you can have a level that is greater than 0 dB FS without
clipping. The crest factor of a sine wave is 3.01 dB. This means that the RMS
level of the sine tone is 3.01 dB less than its peak value. By comparison,
the crest factor of a square wave is 0 dB, meaning that the peak and RMS
values are equal. So what? Well, since dB FS is referenced to the RMS
value of a sine wave whose maximum peak is at Full Scale (and therefore
3.01 dB less than Full Scale), if you put in a square wave that goes all the
way up to Full Scale, it will have a level that is 3.01 dB higher than the Full
Scale sine tone, and therefore a level of +3.01 dB FS. This is an odd thing
for people who work a lot with digital gear. I, personally, have never seen
a digital meter that goes beyond 0 dB. Then again, I don’t record square
waves very often either, so it doesn’t really matter a great deal.

Chances are that the digital meter on whatever piece of equipment that
you own really isn’t telling you the signal strength in dB FS. It’s more
likely that the level shown is a sample–by–sample level measurement (and
therefore not an RMS measurement) with a ballistic that makes the meter
look like it’s decaying slowly. Therefore, in such a system, 0 dB on the meter
means that the sample is at Full Scale.

I’m in the process of making a series of test tones so that you can check
your meters to see how they display various signal levels. Stay tuned!

Ballistics

As far as I’ve been able to tell, there are no standards for digital meter
ballistics or appearances, so I’ll just describe a typical digital meter. Most
of these use what is known as a dot bar mode which actually shows two levels
simultaneously. Looking at Figure 9.22, we can see that the meter shows a
bar that extends to –24 dB. This bar shows the present level of the signal
using ballistics that typically have roughly the same visual characteristics
as a VU Meter. Simultaneously, there is a dot at the –8 dB mark. This
indicates that the most recent peak hit –8 dB. This dot will be erased after
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Figure 9.22: A photograph of a typical digital meter on a Tascam DAT machine. There are a couple
of things shown here. The first is the bar graphs of the Left and Right channels just below the –24
dB mark. This is the level of the signal at the moment when the picture was taken. There are
also two “dots” at the –8 dB mark. These are the level of a recent peak and will be replaced by
a new peak in a couple of seconds. Finally, there is the “MARG” (for “margin”) indication of 6.7
dB – this indicates that the maximum peak of the entire program material since the recording was
started hit –6.7 dB. Note that we don’t know which channel that peak was on.

approximately one second or so and be replaced by a new peak unless the
signal peaks at a value greater than –8 dB in which case that value will be
displayed by the dot. This is similar to a Type II PPM ballistic with the
decay being replaced with simple erasure.

Many digital audio meters also include a function that gives a very ac-
curate measurement of the maximum peak that has been hit since we’ve
started recording (or playing). This value is usually called the margin and
is typically displayed as a numerical value near the meter, but elsewhere on
the display.

Figure 9.23: An RTW digital audio meter.

Finally, digital meters have a warning symbol to indicate that the signal
has clipped. This warning is simply called over since all we’re concerned
with is that the signal went over full scale – we don’t care how far over
full scale it went. The problem here is that different meters use different
definitions for the word “over.” As I’ve already pointed out, some meters
keep track of the number of consecutive samples at full scale and point out
when that number hits 2 or 3 (this is either defined by the manufacturer or
by the user, depending on the equipment and model number – check your
manual). On some equipment (particularly older gear), the “digital” meter
is driven by the analog conversion of the signal and is therefore extremely
inaccurate – again, check your manual. An important thing to note about
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these meters is that they rarely are aware that the signal has gone over full
scale when you’re playing back a digital signal, or if you’re using an external
analog to digital to convertor – so be very careful.

9.1.6 Gain Management

From the time the sound arrives at the diaphragm of your microphone to the
time the signal gets recorded, it has to travel a very perilous journey, usually
through a lot of wire and components that degrade the quality of the signal
every step of the way. One of the best ways to minimize this degradation is
to ensure that you have an optimal gain structure throughout your recording
chain, taking into account the noise and distortion charactersitics of each
component in the signal path. This sounds like a monumental task, but it
really hinges on a couple of very simple concepts.

The first basic rule (that you’ll frequently have to break but you’d better
have a good reason...) is that you should make the signal as loud as you
can as soon as you can. For example, consider the example of a microphone
connected through a mic preamp into a DAT machine. We know that, in
order to get the best quality digital conversion of the signal, its maximum
should be just under 0 dB FS. Let’s say that, for the particular microphone
and program material, you’ll need 40 dB of gain to get the signal up to that
level at the DAT machine. You could apply that gain at the mic preamp or
the analog input of the DAT recorder. Which is better? If possible, it’s best
to get all of the gain at the mic preamp. Why? Consider that each piece
of equipment adds noise to the signal. Therefore, if we add the gain after
the mic preamp, then we’re applying that gain to the signal and the noise
of the microphone preamp. If we add the gain at the input stage of the mic
preamp, then its inherent noise is not amplified. For example, consider the
following equations:

9.1.7 Phase and Correlation Meters

NOT WRITTEN YET

9.1.8 Suggested Reading List
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Figure 9.24: A photograph of a phase meter on the output module of a Sony/MCI mixing console.
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9.2 Monitoring Configuration and Calibration

9.2.1 Standard operating levels

Before we talk about the issue of how to setup a playback system, we have
to discuss the issue of standard operating levels. We have already seen in
Section ?? that our ears have different sensitivities to different frequencies
at different levels. Basically, at low listening levels, we can’t hear low-end
material as easily as mid-band content. The louder the signal gets, the
“flatter” the frequency response of our ears. In the practical world, this
means that if I do a mix at a low level, then I’ll mix the bass a little hot
because I can’t hear it. If I turn it up, it will sound like there’s more bass
in the mix, because my ears have a different response.

Therefore, in order to ensure that you (the listener) hear what I (the
mixing engineer) hear, one of the first things I have to specify is how loud
you should turn it up. This is the reason for a standard operating level.
That way, if you say “there’s not enough bass” I can say “you’re listening
at too low a level” – unless you aren’t, then we have to talk about issues of
taste. This subject will not be addressed in this book.

The film and television industries have an advantage that the music
people don’t. They have international standards for operating levels. What
this means is that a standard operating level on the recording medium and
in the equipment will result in a standard acoustic level at the listening
position in the mixing studio or theatre. Of course, we typically listen to
the television at lower levels than we hear at the movie theatre, so these two
levels are different.

Table 9.4 shows the standard operating levels for film and television
sound work. It also includes an approximate range for music mixing, al-
though this is not a standard level.

Medium Signal level Signal level Signal level Acoustic level
Film -20 dB FS 0 dB VU +4 dBu 85 dBspl
Television -20 dB FS 0 dB VU +4 dBu 79 dBspl
Music -20 dB FS 0 dB VU +4 dBu 79 - 82 dBspl

Table 9.3: Standard operating levels for mixing for an in-band pink noise signal. Note that the
values for music mixing are not standardized [Owinski, 1988] . Also note that the values listed here
are for a single channel. Measurements are done with an SPL meter with a C-weighting and a slow
response.

It is important to note that the values in Table 9.4 are for a single
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loudspeaker measured with an SPL meter with a C-weighting and a slow
response. So, for example, if you’re working in 5.1 surround for film, pink
noise at a level of 0 dB VU sent to the centre channel only will result in a
level of 85 dBspl at the mixing position. The same should be true of any
other main channel.

Dolby has a slightly different recommendation in that, for film work,
they suggest that each surround channel (which may be sent to multiple
loudspeakers) should produce a standard level of 82 dBspl. This difference
is applicable only to “film-style mixing rooms” [Dolby, 2000].

9.2.2 Channels are not Loudspeakers

Before we go any further, we have to look at a commonly-confused issue in
monitoring, particularly since the popularization of so-called 5.1 systems.

In a 5.1-channel mix, we have 5 main full-range channels, Left, Centre,
Right, Left Surround and Right Surround. In addition, there is a channel
which is band-limited from 0 to 120 Hz called the LFE or Low Frequency
Effects channel.

In the listening room in the real world, we have a number of loudspeakers:

1. The Left and Right loudspeakers are typically a pair that may not
match any other loudspeaker in the room.

2. The Left Surround and Right Surround loudspeakers typically match
each other, but are often smaller than the other loudspeakers in the
room, particularly lacking in low end because woofers apparently cost
money.

3. The Centre loudspeaker may be a third type of device, or in some cases
may match the Left and Right loudspeakers. In many cases in the
home situation, the Centre loudspeaker is contained in the television
and may therefore, in fact, be two loudspeakers.

4. A single subwoofer.

Of course, the situation I just described for the listening environment is
not the optimal situation, but it’s a reasonable description of the real world.
We’ll look at the ideal situation below.

If we look at a very simple configuration, then the L, R, C, LS and
RS signals are connected directly to the L, R, C, LS and RS loudspeakers
respectively, and the LFE channel is connected to the subwoofer. In most
cases, however, this is not the only configuration. In larger listening rooms,
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we typically see more than two surround loudspeakers and more than one
subwoofer. In smaller systems, people have been told that they don’t need 5
large speakers, because all the bass can be produced by the subwoofer using
a bass management system described below, consequently, the subwoofer
produces more than just the LFE channel.

So, it is important to remember that delivery channels are not directly
equivalent to loudspeakers. It is an LFE channel – not a subwoofer channel.

9.2.3 Bass management

Once upon a time, people who bought a stereo system bought two identical
loudspeakers to make the sound they listened to. If they couldn’t spend a lot
of money, or they didn’t have much space, they bought smaller loudspeakers
which meant less bass. (This isn’t necessarily a direct relationship, but that
issue is dealt with in the section on loudspeaker design... We’ll assume that
it’s the truth for this section.)

Then, one day I walked into my local stereo store and heard a demo of a
new speaker system that just arrived. The two loudspeakers were tiny little
things - two cubes about the size of a baseball stuck together on a stand
for each side. The sound was much bigger than these little speakers could
produce.. .there had to be a trick. It turns out that there was a trick...
the Left and Right channels from the CD were being fed to a crossover
system where all the low-frequency information was separated from the high-
frequency information, summed and sent to a single low-frequency driver
sitting behind the couch I was sitting on. The speakers I could see were just
playing the mid- and high-frequency information... all the low-end came
from under the couch.

This is the concept behind bass management or bass redirection. If
you have a powerful-enough dedicated low frequency loudspeaker, then your
main speakers don’t need to produce that low frequency information. There
are lots of arguments for and against this concept, and I’ll try to address a
couple of these later, but for now, let’s look at the layout of a typical bass
management system.

Figure 9.25 shows a block diagram for a typical bass management scheme.
The five main channels are each filtered through a high-pass filter with a
crossover frequency of approximately 80 Hz before being routed to their
appropriate loudspeakers. These five channels are also individually filtered
through low-pass filters with the same crossover frequency, and the outputs
of the these filters is routed to a summing buss. In addition, the LFE chan-
nel input is increased in level by 10 dB before being added to the same buss.
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Channels Loudspeakers

L L

C C

R R

LS LS

RS RS

LFE

Subwoofer

+ 10 dB

~ 80 Hz

Figure 9.25: A typical monitoring path for a bass-managed system. Note the 10 dB boost on the
LFE channel.
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The result on this summing buss is sent to the subwoofer amplifier.

There is an important item to notice here – the 10 dB gain on the LFE
channel. Why is this here? Well, consider if we send a full-scale signal to
all channels. The single subwoofer is being asked to balance with 5 other
almost-full-range loudspeakers, but since it is only one speaker competing
with 5 others, we have to boost it to compensate. We don’t need to do this
to the outputs resulting from the bass management system because they
five channels of low-frequency information are added, and therefore boost
themselves in the process. The reason this is important will be obvious in
the discussion of loudspeaker level calibration below.

9.2.4 Configuration

There are some basic rules to follow in the placement of loudspeakers in
the listening space. The first and possibly most important rule of thumb is
to remember that all loudspeakers should be placed at ear-level and aimed
at the listening position. This is particularly applicable to the tweeters in
the loudspeaker enclosure. Both of these simple rules are due to the fact
that loudspeakers beam – that is to say that they are directional at high
frequencies. In addition, you want your reproduced sound stage to be on
your horizon, therefore the loudspeakers should be at your height. If it
is required to place the loudspeakers higher (or lower) than the horizontal
plane occupied by your ears, they should be angled downwards (or upwards)
to point at your head.

The next issue is one of loudspeaker proximity to boundaries. As was dis-
cussed in Section ??, placing a loudspeaker immediately next to a boundary
such as a wall will result in a boost of the low frequency components in the
device. In addition, as we saw in Section ??, a loudspeaker placed against a
wall will couple much better to room modes in the corresponding dimension,
resulting in larger resonant peaks in the room response. As a result, it is
typically considered good practice to place loudspeakers on stands at least 1
m from any rigid surface. Of course, there are many situations where this is
simply not possible. In these cases, correction of the loudspeaker’s response
should be considered, either through post-crossover gain manipulation as is
possible in many active monitors, or using equalization.

There are a couple of other issues to consider in this regard, some of
which are covered below in Section 9.2.4.
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Two-channel Stereo

A two-channel playback system (typically misnamed “stereo”) has a stan-
dard configuration. Both loudspeakers should be equidistant from the lis-
tener and at angles of -30◦ and 30◦ where 0◦ is directly forward of the listener.
This means that the listener and the two loudspeakers form the points of
an equilateral triangle as shown in Figure 9.26, producing a loudspeaker
aperture of 60◦.

Figure 9.26: Recommended loudspeaker configuration for 2-channel stereo listening.

Note that, for all discussions in this book, all positive angles are assumed
to be on the right of centre forward, and all negative angles are assumed to
be left of centre forward.

5-channel Surround

In the case of 5.1 surround sound playback, we are actually assuming that we
have a system comprised of 5 full-range loudspeakers and no subwoofer. This
is the recommended configuration for music recording and playback[dol, 1998]
whereas a true 5.1 configuration is intended only for film and television
sound. Again, all loudspeakers are assumed to be equidistant from the
listener and at angles of 0◦, ±30◦ and with two surround loudspeakers sym-
metrically placed at an angle between ±100◦ and ±120◦. This configuration
is detailed in ITU-R BS.775.1.[ITU, 1994] (usually called “ITU775” or just
“775” in geeky conversation... say all the numbers... “seven seven five” if
you want to be immediately accepted by the in-crowd) and shown in Figure
9.27. If you have 25 Swiss Francs burning a hole in your pocket, you can
order this document as a pdf or hardcopy from www.itu.ch. Note that the
configuration has 3 different loudspeaker apertures, 30◦ (with the C/L and

http://www.itu.ch
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C/R pairs), approximately 80◦ (L/LS and R/RS) and approximately 140◦

(LS/RS).

60°120°

100°

Figure 9.27: Recommended loudspeaker configuration for 5.1-channel surround
listening[ITU, 1994].

How to set up a 5-channel system using only a tape measure
It’s not that easy to set up a 5-channel system using only angles unless

you have a protractor the size of your room. Luckily, we have trigonome-
try on our side, which means that we can actually do the set up without
ever measuring a single angle in the room. Just follow the step-by-step
instructions below.

Step 1. Mark the listener’s location in the room and determine the
desired distance to the loudspeakers (we’ll call that distance X ) Try to
keep your loudspeakers at least 2 m from the listening position and no less
than 1 m from any wall.

Step 2. Make an equalateral triangle marking the listener’s location, the
Left and the Right loudspeakers as shown in the figure on the right. See
Figure 9.28.

Step 3. Find the halfway point between the L and R loudspeakers and
mark it. See Figure 9.29.

Step 4. Find the location of the C speaker using the halfway mark you
just made, the listener’s location and the distance X. See Figure 9.30.

Step 5. Marks the locations for the LS and RS loudspeakers using the
trangle measurements shown on the right. See Figure 9.31.
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L R

Listener

X X

X

Figure 9.28: 5-channel setup: Step 1. Measure an equilateral triangle with your L and R loud-
speakers and the listening position as the three corners.

L RX/2 X/2

Figure 9.29: 5-channel setup: Step 2. Find the midpoint between the L and R loudspeakers.

L R

Listener

X

C

Figure 9.30: 5-channel setup: Step 3. Measure the distance between the listening position and the
C loudspeaker to match the distances in Step 1.
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Listener

X

C

X

1.73 X

RS

Figure 9.31: 5-channel setup: Step 4. Measure a triangle created by the C and RS loudspeakers
and the listening position using the distances indicated.

Step 6. Double check your setup by measuring the distance between the
LS and RS loudspekaers. It should be 1.73X. (Therefore the C, LS and RS
loudspeakers should make an equilateral triangle.) See Figure 9.32.

LS RS1.73 X

Figure 9.32: 5-channel setup: Step 5. Double check your surround loudspeaker placement by
measuring the distance between them. This should be the same as either surround loudspeaker to
the C.

7. If the room is small, put the sub in the corner of the room. If the
room is big, put the sub under the centre loudspeaker. Alternately, you
could just put the sub where you think that it sounds best.

Room Orientation
There is a minor debate between opinions regarding the placement of

the monitor configuration within the listening room. Usually, unless you’ve
spent lots of money getting a listening room or control room designed from
scratch, you’re probably going to be in a room that is essentially rectangular.
This then raises two important questions:

1. Should you use the room symmetrically or asymmetrically?
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2. Do you use the room so that it’s narrow, but long, or wide but shallow?

Most people don’t think twice about the answer to the first question –
of course you use the room symmetrically. The argument for this logic is to
ensure a number of factors:

1. The coupling of left / right pairs of loudspeakers to the room are
matched.

2. The early reflection patterns from left / right pairs of loudspeakers are
matched.

Therefore, your left / right pairs of speakers will “sound the same” (this
also means the left surround / right surround pair) and your imaging will
not pull to one side due to asymmetrical reflections.

Then again, the result of using a room symmetrically is that you are
sitting in the dead centre of the room which means that you are in one of
the worst possible locations for hearing room modes – the nulls are at a
minimum and the antinodes are at a maximum at the centre of the room.
In addition, if you listen for the fundamental axial mode in the width of
the room, you’ll notice that your two ears are in opposite polarities at this
frequency. Moving about 15 to 20 cm to one side will alleviate this problem
which, once heard once, unfortunately, cannot be ignored.

So, it is up to your logic and preference to decide on whether to use the
room symmetrically.

The second question of width vs. depth depends on your requirements.
Figure 9.33 shows that the choice of room orientation has implications on
the maximum distance to the loudspeakers. Both floorplans in the diagram
show rooms of identical size with a maximum loudspeaker distance for an
ITU775 configuration laid on the diagram. As can be seen, using the room as
a wide, but shallow space allows for a much larger radius for the loudspeaker
placement. Of course, this is a worst-case scenario where the loudspeakers
are placed against boundaries in the room, a practice which is not advisable
due to low-frequency boost and improved coupling to room modes.

IMAX film sound

NOT YET WRITTEN
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Figure 9.33: Two rectangular rooms of identical arbitrary dimensions showing the maximum possible
loudspeaker distance for an ITU775 configuration. Notice that the loudspeakers can be further away
when you use the room “sideways.”

10.2 Surround

From the very beginning, it was recognized that the 5.1 standard was a
compromise. In a perfect system you would have an infinite number of
loudspeakers, but this causes all sorts of budgetary and real estate issues...
So we all decided to agree that 5 channels wasn’t perfect, but it was pretty
good. There are people with a little more money and loftier ideals than the
rest of us who are pushing for a system based on the MIBEIYDIS system
(more-is-better-especially-if-you-do-it-smartly).

One of the most popular of these systems uses the standard 5.1 system
as a starting point and expands on it. Dubbed 10.2 and developed by Tom-
linson Holman (the TH in THX) this is actually a 12.2 system that uses a
total of 16 loudspeakers.

There are a couple of things to discuss about this configuration. Other
than the sheer number of loudspeakers, the first big difference between this
configuration and the standard ITU775 standard is the use of elevated loud-
speakers. This gives the mixing engineer two possible options. If used as a
stereo pair, it becomes possible to generate phantom images higher than the
usual plane of presentation, giving the impression of height as in the IMAX

http://www.thx.com
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0°

30°

45°

60°

90°

120°

180°

-30°

-45°

-60°

-90°

-120°

Figure 9.34: A 10.2 configuration. The light-gray loudspeakers match those in the ITU775 rec-
ommendation. The dark-gray speakers have an elevation of 45◦ relative to the listener as can be
seen in Figure 9.35. The speakers in boxes at ±90◦ are subwoofers. Note that all loudspeakers are
equidistant to the listener.

Figure 9.35: A simplified diagram of a 10.2 configuration seen from the side. The light-gray loud-
speakers match those in the ITU775 recommendation. The dark-gray speakers have an elevation
of 45◦ relative to the listener.
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system. If diffuse sound is sent to these loudspeakers, then the mix relies on
our impaired ability to precisely localize elevated sound sources (see Section
??) and therefore can give a better sense of envelopment than is possible
with a similar number of loudspeakers distributed in the horizontal plane [].

You will also notice that there are pairs of back-to-back loudspeakers
placed at the ±90◦ positions. These are what are called “diffuse radiators”
and are actually wired to create a dipole radiator as is described in Section
??. In essence, you simply send the same signal to both loudspeakers in the
pair, inverting the polarity of one of the two. This produces the dipole effect
and, in theory, cancels all direct sound arriving at the listener’s location.
Therefore, the listener receives only the reflected sound from the front and
rear walls predominantly, creating the impression of a more diffuse sound
than is typically available from the direct sound from a single loudspeaker.

Finally, you will note from the designation “10.2” that this system calls
for two subwoofers. This follows the recommendations of a number of people
[Martens, 1999][?] who have done research proving that uncorrelated signals
from two subwoofers can result in increased envelopment at the listening
position. The position of these subwoofers should be symmetrical, however
more details will be discussed below.

Ambisonics

NOT WRITTEN YET
NOTES:
Radially symmetrical
Panphonic (2D) ambisonics – minimum number of speakers =
Periphonic (3D) ambisonics – minimum number of speakers =

Subwoofers

NOT WRITTEN YET
NOTES
Better to have many full-range speakers than 1 subwoofer
Floyd Toole’s idea of room mode cancellation through multiple correlated

subwoofers
David Greisinger’s 2 decorrelated subwoofers driven by 1 channel
Bill Marten’s 2 subwoofer channels.
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9.2.5 Calibration

The calibration of your monitoring system is possibly one of the most sig-
nificant factors that will determine the quality of your mixes. As a simple
example, if you have frequency-independent level differences between your
two-channel monitors, then your centre position is different from the rest of
the world’s. You will compensate for your problem, and consequently create
a problem for everyone else resulting in complaints that your lead vocals
aren’t centered.

Unfortunately, it is impossible to create the perfect monitor, so you
have to realize the limitations of your system and learn to work within
those constraints. Essentially, the better you know the behaviour of your
monitoring system, the more you can trust it, and therefore the more you
can be trusted by the rest of us.

There is a document available from the ITU that outlines a recommended
procedure for doing listening tests on small-scale impairments in audio sys-
tems [ITU, 1997]. Essentially, this is a description of how to do the listening
test itself, and how to interpret the results. However, there is a section in
there that describes the minimum requirements for the reproduction sys-
tem. These requirements can easily be seen as a minimum requirement for a
reference monitoring system, and so I’ll list them here to give you an idea of
what you should have in front of you at a recording or mixing session. Note
that these are not standards for recording studios, I’m just suggesting that
their a good set of recommendations that can give you an idea of a “good”
playback system.

Note that all of the specifications listed here are measured in a free field,
1 m from the acoustic centre of the loudspeaker.

Frequency Response
The on-axis frequency response of the loudspeaker should be measured

in one-third octave bands using pink noise as a source signal. The response
should not be outside the range of ±2 dB within the frequency range of 40
Hz to 16 kHz. The frequency response measured at 10◦ off-axis should not
differ from the on-axis response by more than 3 dB. The frequency response
measured at 30◦ off-axis should not differ from the on-axis response by more
than 4 dB [ITU, 1997].

All main loudspeakers should be matched in on-axis frequency response
within 1 dB in the frequency range of 250 Hz to 2 kHz [ITU, 1997].

Directivity Index
In the frequency range of 500 Hz to 10 kHz, the directivity index, C, of

the loudspeakers should be within the limit 6 dB 6 C 6 12 dB and “should
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increase smoothly with frequency” [ITU, 1997].
Non-linear Distortion
If you send a sinusoidal waveform to the loudspeaker that produces a

90 dBspl at the measurement position, the maximum limit for harmonic
distortion components between 40 Hz and 250 Hz is 3% (-30 dB) and for
components between 250 Hz and 16 kHz is 1% (-40 dB) [ITU, 1997].

Transient Fidelity
If you send a sine wave at any frequency to your loudspeaker and then

stop the sine, it should not take more than 5 time periods of the frequency for
the output to decay to 1/e (approximately 0.37 or -8.69 dB) of the original
level [ITU, 1997].

Time Delay
The delay difference between any two loudspeakers should not exceed

100 µs. (Note that this does not include propagation delay differences at
the listening position.) [ITU, 1997]

Dynamic Range
You should be able to play a continuous signal with a level of at least

108 dBspl for 10 minutes without damaging the loudspeaker and without
overloading protection circuits [ITU, 1997].

The equivalent acoustic noise produced by the loudspeaker should not
exceed 10 dBspl, A-weighted [ITU, 1997].

Two-channel Stereo

So, you’ve bought a pair of loudspeakers following the recommendations
of all the people you know (but you bought the ones you like anyway...)
you bring them to the studio and carefully position them following all the
right rules. Now you have to make sure that the outputs levels of the two
loudspeakers is matched. How do you do this?

You actually have a number of different options here, but we’ll just look
at a couple, based on the assumption that you don’t have access to really
serious (and therefore REALLY expensive) measurement equipment.

SPL Meter Method
One of the simplest methods of loudspeaker calibration is to use pink

noise as your signal and an SPL meter as your measurement device. If an
SPL meter is not available (a cheap one is only about $50 at Radio Shack...
go treat yourself...) then you could even get away with an omnidirectional
condenser microphone (the smaller the diaphragm, the better) and the meter
bridge of your mixing console.



9. Audio Recording 634

Send the pink noise signal to the amplifier (or the crossover input if
you’re using active crossovers) for one of your loudspeakers. The level of the
signal should be 0 dB VU (or +4 dBu).

Place the SPL meter at the listening position pointing straight up. If you
are holding the meter, hold it as far away from your body as you can and
stand to the side so that the direct sound from the loudspeaker to the meter
reflects off your body as little as possible (yes, this will make a difference).
The SPL meter should be set to C-weighting and a slow response.

Adjust your amplifier gain so that you get 85 dBspl on the meter. (Feel
free to use a different value if you think that you have a really good excuse.
The 85 dBspl reference value is the one used by the film industry. Television
people use 79 dBspl and music people can’t agree on what value to use.)

Repeat this procedure with the other loudspeaker.
Remember that you are measuring one loudspeaker at a time – you

should 85 dBspl from each loudspeaker, not both of them combined.
A word of warning: It’s possible that your listening position happens

to be in a particular location where you get a big resonance due to a room
mode. In fact, if you have a smaller room and you’ve set up your room sym-
metrically, this is almost guaranteed. We’ll deal with how to cope with this
later, but you have to worry about it now. Remember that the SPL meter
isn’t very smart – if there’s a big resonance at one frequency, that’s basically
what you’re measuring, not the full-band average. If your two loudspeakers
happen to couple differently to the room mode at that frequency, then you’re
going to have your speakers matched at only one frequency and possibly no
others. This is not so good.

There are a couple of ways to avoid this problem. You could change the
laws of physics and have room modes eliminated in your room, but this isn’t
practical. You could move the meter around the listening position to see
if you get any weird fluctuations because many room modes produce very
localized problems. However, this may not tell you anything because if the
mode is a lower frequency, then the wavelength is very long and the whole
area will be problematic. Your best bet is to use a measurement device that
shows you the frequency response of the system at the listening position,
the simplest of which is a real-time analyzer. Using this system, you’ll be
able to see if you have serious problems in localized frequency bands.

Real-Time Analyzer Method
If you’ve got a real-time analyzer (or RTA) lying around, you could be a

little more precise and get a little more information about what’s happening
in your listening room at the listening position. Put an omnidirectional
microphone with a small diaphragm at the listening position and aim it at
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the ceiling. The output should go to the RTA.
Using pink noise at a level of +4 dBu sent to a single loudspeaker,

you should see a level of 70 dBspl in each individual band on the RTA
[Owinski, 1988]. Whether or not you want to put an equalizer in the system
to make this happen is your own business (this topic is discussed a little
later on), but you should come as close as you can to this ideal with the
gain at the front of the amplifier.

Other methods
There are a lot of different measurement tools out there for doing exactly

this kind of work, however, they’re not cheap, and if they are, they may not
be very reliable (although there really isn’t a direct correlation between
price and system reliability...) My personal favourites for electroacoustic
measurements are a MLSSA system from DRA Laboratories, and a number
of solutions from Brüel & Kjær, but there’s lots of others out there.

Just be warned, if you spend a lot of money on a fancy measurement
system, you should probably be prepared to spend a lot of time learning how
to use it properly... My experience is that the more stuff you can measure,
the more quickly and easily you can find the wrong answers and arrive at
incorrect conclusions.

5.1 Surround

The method for calibrating a 5-channel system is no different than the pro-
cedure described above for a two-channel system, you just repeat the process
three more times for your Centre, Left Surround and Right Surround chan-
nels. (Notice that I used the word “channels” there instead of “loudspeakers”
because some studios have more than two surround loudspeakers. For ex-
ample, if you do have more than one Left Surround loudspeaker, then your
Left Surround loudspeakers should all be matched in level, and the total
output from all of them combined should be equal to the reference value.)

The only problem that now arises is the question of how to calibrate the
level of the subwoofer, but we’ll deal with that below.

10.2 Surround

The same procedure holds true for calibration of a 10.2 system. All channels
should give you the same SPL level (either wide band with an SPL meter
or narrow band with an RTA) at the listening position. The only exception
here is the diffuse radiators at ±90◦. You’ll probably notice that you won’t
get as much low frequency energy from these loudspeakers at the listening

http://www.mlssa.com
http://www.bksv.com
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position due to the cancellation of the dipole. The easiest way to get around
this problem is to band-limit your pink noise source to a higher frequency
(say, 250 Hz or so...) and measure one of your other loudspeakers that you’ve
already calibrated (Centre is always a good reference). You’ll notice that
you get a lower number because there’s less low-end – write that number
down and match the dipoles to that level using the same band-limited signal.

Ambisonics

Again, the same procedure holds for an Ambisonics configuration.

Subwoofers

Here’s where things get a little ugly. If you talk to someone about how
they’ve calibrated their subwoofer level, you’ll get one of five responses:

1. “It’s perfectly calibrated to +4 dB.”

2. “It’s perfectly calibrated to -10 dB.”

3. “It’s perfectly calibrated to +10 dB.”

4. “I turned it up until it sounded good.”

5. “Huh?”

Oddly enough, it’s possible that the first three of these responses actually
mean exactly the same thing. This is partly due to an issue that I pointed
out earlier in Section 9.2.3. Remember that there’s a 10 dB gain applied
to the LFE input of a multichannel monitoring system for the remainder of
this discussion.

The objective with a subwoofer is to get a low-frequency extension of
your system without exaggerating the low-frequency components. Conse-
quently, if you send a pink-noise signal to a subwoofer and look at its output
level in a one-third octave band somewhere in the middle of its response, it
should have the same level as a one-third octave band in the middle of the
response of one of your other loudspeakers. Right? Well.... maybe not.

Let’s start by looking at a bass-managed signal with no signal sent to the
LFE input. If you send a high-frequency signal to the centre channel and
sweep the frequency down (without changing the signal level) you should
see not change in sound pressure level at the listening position. This is true
even after the frequency has gotten so low that it’s being produced by the
subwoofer. If you look at Figure 9.25 you’ll see that this really is just a
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matter of setting the gain of the subwoofer amplifier so that it will give you
the same output as one of your main channels.

What if you are only using the LFE channel and not using bass manage-
ment? In this case, you must remember that you only have one subwoofer
to compete with 5 other speakers, so the signal has been boosted by 10 dB
in the monitoring box. This means that if you send a pink noise to the
subwoofer and monitor it in a narrow band in the middle of its range, it
should be 10 dB louder than a similar measurement done with one of your
main channels. This extra 10 dB is produced by the gain in the monitoring
system.

Since the easiest way to send a signal to the subwoofer in your system is
to use the LFE input of your monitoring box, you have to allow for this 10
dB boost in your measurements.

Again, you can do your measurements with any appropriate system, but
we’ll just look at the cases of an SPL meter and an RTA.

SPL Meter Method
We will assume here that you have calibrated all of your main channels

to a reference level of 85 dBspl using + 4 dBu pink noise.
Send pink noise at +4 dBu, band-limited from 20 to 80 Hz, to your

subwoofer through the LFE input of your monitor box. Since the pink noise
has been band-limited, we expect to get less output from the subwoofer than
we would get from the main channels. In fact, we expect it to be about 6
dB less. However, the monitoring system adds 10 dB to the signal, so we
should wind up getting a total of 89 dBspl at the listening position, using a
C-weighted SPL meter set to a slow response.

Note that some CD’s with test signals for calibrating loudspeakers take
the 10 dB gain into account and therefore reduce the level of the LFE signal
by 10 dB to compensate. If you’re using such a disc instead of producing
your own noise, then be sure to find out the signal’s level to ensure that
you’re not calibrating to an unknown level...

If you choose to send your band-limited pink noise signal through your
bass management circuitry instead of through the LFE input, then you’ll
have to remember that you do not have the 10 dB boost applied to the
signal. This means that you are expecting a level of 79 dBspl at the listening
position.

The same warning about SPL meters as was described for the main
loudspeakers holds true here, but moreso. Don’t forget that room modes
are going to wreak havoc with your measurements here, so be warned. If
all you have is an SPL meter, there’s not really much you can do to avoid
these problems... just be aware that you might be measuring something you
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don’t want.
Real-Time Analyzer Method
If you’re using an RTA instead of an SPL meter, your goal is slightly

easier to understand. As was mentioned above, the goal is to have a system
where the subwoofer signal routed through the LFE input is 10 dB louder
in a narrow band than any of the main channels. So, in this case, if you’ve
aligned your main loudspeakers to have a level of 70 dBspl in each band
of the RTA, then the subwoofer should give you 80 dBspl in each band of
the RTA. Again, the signal is still pink noise with a level of +4 dBu and
band-limited from 20 Hz to 80 Hz.

Summary

Source Signal level RTA SPL Meter
(per band)

Main channel -20 dB FS 70 dBspl 85 dBspl
Subwoofer (LFE input) -20 dB FS 80 dBspl 89 dBspl
Subwoofer (main channel input) -20 dB FS 70 dBspl 79 dBspl

Table 9.4: Sound pressure levels at the listening position for a standard operating level for film
[Owinski, 1988]. Note that the values listed here are for a single channel. SPL Meter measurements
are done with a C-weighting and a slow response.

9.2.6 Monitoring system equalization

NOT WRITTEN YET

9.2.7 Suggested Reading List

[Owinski, 1988]
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9.3 Introduction to Stereo Microphone Technique

9.3.1 Panning

Before we get into the issue of the characteristics of various microphone
configurations, we have to look at the general idea of panning in two-channel
and five-channel systems. Typically, panning is done using a technique called
constant power pair-wise panning which is a system whose name contains a
number of different issues which are discussed in this and the next chapter.

Localization of real sources

As you walk around the world, you are able to localize sound sources with
a reasonable degree of accuracy. This basically means that if your eyes are
closed and something out there makes a sound, you can point at it. If you
try this exercise, you’ll also find that your accuracy is highly dependent on
the location of the source. We are much better at detecting the horizontal
angle of a sound source than its vertical angle. We are also much better
at discriminating angles of sound sources in the front than at the sides of
our head. This is because we are mainly relying on two basic attributes of
the sound reaching our ears. These are called the interaural time of arrival
difference (ITD’s) and the interaural amplitude difference (IAD’s).

When a sound source is located directly in front of you, the sound arrives
at your two ears at the same time and at the same level. If the source moves
to the right, then the sound arrives at your right ear earlier (ITD) and
louder (IAD) than it does in your left ear. This is due to the fact that your
left ear is farther away from the sound source and that your head gets in
the way and shadows the sound on your left side.

Interchannel Differences

Panning techniques rely on these same two differences to produce the simu-
lation of sources located between the loudspeakers at predictable locations.
If we send a signal to just one loudspeaker in a two-channel system, then the
signal will appear to come from the loudspeaker. If the signal is produced by
both loudspeakers at the same level and the same time, then the apparent
location of the sound source is at a point directly in front of the listener,
halfway between the two loudspeakers. Since there is no loudspeaker at that
location, we call the effect a phantom image.

The exact location of a phantom image is determined by the relation-
ship of the sound produced by the two loudspeakers. In order to move
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the image to the left of centre, we can either make the left channel louder,
earlier, or simultaneously louder and earlier than the right channel. This
system uses essentially the same characteristics as our natural localization
system, however, now, we are talking about interchannel time differences
and interchannel amplitude differences.

Almost every pan knob on almost every mixing console in the world is
used to control the interchannel amplitude difference between the output
channels of the mixer. In essence, when you turn the pan knob to the
left, you make the left channel louder and the right channel quieter, and
therefore the phantom image appears to move to the left. There are some
digital consoles now being made which also change the interchannel time
differences in their panning algorithms, however, these are still very rare.

9.3.2 Coincident techniques (X-Y)

This panning of phantom images can be accomplished not only with a simple
pan knob controlling the electrical levels of the two or more channels, we can
also rely on the sensitivity pattern of directional microphones to produce the
same level differences.

Crossed cardioids

For example, let’s take two cardioid microphons and place them so that
the two diaphragms are vertically aligned - one directly over the other.
This vertical alignment means that sounds reaching the microphones from
the horizontal plane will arrive at the two microphones simultaneously –
therefore there will be no time of arrival differences in the two channels.
consequently we call them coincident Now let’s arrange the microphones
such that one is pointing 45◦ to the left and the other 45◦ to the right,
remembering that cardioids are most sensitive to a sound source directly in
front of them.

If a sound source is located at 0◦, directly in front of the pair of micro-
phones, then each microphone is pointing 45◦ away from the sound source.
This means that each microphone is equally insensitive to the sound arriv-
ing at the mic pair, so each mic will have the same output. If each mic’s
output is sent to a single loudspeaker in a stereo configuration then the two
loudspeakers will have the same output and the phantom image will appear
dead centre between the loudspeakers.

However, let’s think about what happens when the sound source is not at
0◦. If the sound source moves to the left, then the microphone pointing left
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90°

Figure 9.36: A pair of XY cardioids with an included angle of 90◦.

will have a higher output because it is more sensitive to signals in directly
in front of it. On the other hand, we’re moving further away from the front
of the right-facing microphone so its output will become quieter. The result
in the stereo image is that the left loudspeaker gets louder while the right
loudspeaker gets quieter and the image moves to the left.

If we had moved the sound source towards the right, then the phantom
image would have moved towards the right.

This system of two coincidenct 90◦ cardioid microphones is very com-
monly used, patricularly in situations where it it important to maintain
what is called mono compatibility . Since the signals arriving at the two
microphones are coincident, there are no phase differences between the two
channels. As a result, there will be no comb filtering effects if the two chan-
nels are summed to a single output as would happen if your recording is
broadcast over the radio. Note that, if a pair of 90◦ coincident cardioids is
summed, then the total result is a single, virtual microphone with a sort of
weird subcardioid-looking polar plot, but we’ll discuss that later.

Another advantage of using this configuration is that, since the phantom
image locations are determined only by interchannel amplitude differences,
the image locations are reasonably stable and precise.

There are, however, some disadvantages to using this system. To begin
with, all of your sound sources located at the centre of the stereo sound
stage are located off-axis to the microphones. As a result, if you are using
microphones whose off-axis response is less than desirable, then you may
experience some odd colouration problems on your more important sources.

A second disadvantage to this technique is that you’ll find that, when
your musicians are distributed evenly in front of the pair (as in a symphony
orchestra, for example), you get sources sounding like they’re “clumping”
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in the middle of your sound stage. There are a number of different ways
of thinking of why this is the case. One explanation is presented in Sec-
tion 9.4.1. A simpler explanation is given by Jörg Wuttke of Schoeps Mi-
crophones. As he points out, a cardioid is one half omnidirectional and
one half bidirectional. Therefore, a pair of coincident cardioids gives you
a signal, half of which is a pair of coincident omnidirectionals. A pair of
coincident omni’s will give you a completely mono signal which will image
in the dead centre of your loudspeakers – therefore instruments tend to pull
to this location.

Blumlein

As we’ll see in the next chapter, although a pair of coincident cardioid mi-
crophones does indeed give you good imaging characteristics, there are many
problems associated with this technique. In particular, you will find that
the overall sound stage in a two-channel stereo playback tends to “clump”
to the centre quite a bit. in addition, there is no feeling of “spaciousness”
that can be generated with phase or polarity differences between the two
channels. Both of these problems can be solved by trading in your cardioids
for a pair of bidirectional microphones. An arrangement of two bidirection-
als in a coincident pair with one pointing 45◦ to the left and the other 45◦

to the right is commonly called a Blumlein pair , named after the man who
patented two-channel stereo sound reproduction, Alan Blumlein.

The outputs of these two bidirectional microphones have some interesting
characteristics that will be analyzed in the next chapter, however, we can
look at the basic attributes of the configuration here. To begin with, in the
area in front of the microphones, you have basically the same behaviour as we
saw with the coincident cardioid pair. Changes in the angle of incidence of
the sound source result in changes in the interchannel amplitude differences
in the channels, resulting in simple pair-wise power panning. Note however,
that this pair is more sensitive to chanes in angle, so you will experience
bigger swings in the location of sound sources with a Blumlein pair than
with 90◦ cardioids.

Let’s consider what’s happening at the rear of a Blumlein pair. Since
a bidirectional microphone has a rear lobe that is symmetrical to the front
one, but with a negative polarity, then a Blumlein pair of microphones will
have the same response in the rear as it does in the front with only two
exceptions. Sources on the rear left of the pair image on the right and
sources on the right image on the left. This is becase the rear lobe of the
left microphone is pointing towards the rear right of the pair, consequently,

http://www.schoeps.com
http://www.schoeps.com
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the left – right orientation of the sources is flipped.
The other consequence of placing sources in the rear of the pair is that

the direct sound is entering the microphones in their negative lobes. As a
result, the polarity of the signals is inverted. This will not be obvious for
many sources such as wind and string instruments, but you may be able to
make a case for the difference being audible on more percussive sounds.

The other major difference between the Blumlein technique and coin-
cident cardioids occurs when sound sources are located on the sides of the
pair. For example, in the case of a sound source located at 90◦ off-axis to
the pair on the left, then the source will be positioned in the front lobe of
the left microphone but the rear lobe of the right microphone. As a result,
the outputs of the two microphones will be matched in level, but they will
be opposite in polarity. This results in the same imaging characteristics
as we get when we wire one loudspeaker ‘out of phase’ with the other – a
very unstable, “phasey” sound that could even be considered to be located
outside the loudspeakers.

The interesting thing about this configuration, therefore, is that sound
sources in front of the pair (like an orchestra) image normally; we get a
good representation of the reverberation and audience coming from the front
and rear lobes of the microphones; and that the early reflections from the
side walls probably come in the sides of the microphone pair, thus imaging
“outside” the loudspeaker aperture.

There are many other advantages to using a Blumlein pair, but these
will be discussed in the next chapter.

There are some disadvantages to using this configuration. To begin with,
bidirectional microphones are not as available or as cheap as cardioid micro-
phones. The second is that, if a Blumlein pair is summed to mono, then the
resulting virtual microphone is a forward-facing bidirectional microphone.
This might not be a bad thing, but it does mean that you get as much from
the rear of the pair as you do from the front, which might result in a sound
that is a little too distant sounding in mono.

ES

There are many occasions where you will want to add some extra micro-
phones out in the hall to capture reverberation with very little direct sound.
This is helpful, particularly in sessions where you don’t have a lot of sound-
check time, or when the hall has problems. (Typically, you can cover up
acoustical problems by adding more microphones to smear things out.)

Many people like to use VERY widely spaced omni’s for this, but this
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technique really doesn’t make much sense. As we’ll see later, the further
apart a pair of microphones are in a diffuse field (like a reverberant concert
hall) the less correlated they are. If your microphones are stuck on opposite
sides of the hall (this is not an uncommon practice) you basically get two
completely uncorrelated signals. The result is that the reverberation (and
the audience noise, if they’re there) sits in two discrete pockets in the lis-
tening room – one pocket for each loudspeaker. This gives the illusion of a
very wide sound, but there is nothing holding the two sides together – it’s
just one big hole in the middle.

So, how can we get a nice, wide hall sound, with an even spread and
avoid picking up too much direct sound?

This is the goal of the ES (or Enhanced Surround CHECK THE NAME)
microphone technique developed by Wieslaw Woszczyk. The configuration
is simply two cardioids with an included angle of 180◦ degrees (placed back-
to-back) with one of the outputs reversed in polarity. Each microphone is
panned completely to one channel.

This technique has a number of interesting properties.
TO DISCUSS: - SURROUND MATRIX SYSTEMS - MONO (FOR

AND AGAINST) - MATRIXED VERSION WITH 1 BIDIRECTIONAL
AND 1 OMNI TO GET LOW END

9.3.3 Spaced techniques (A-B)

We have seen above that left – right localization can be achieved with in-
terchannel time differences instead of interchannel amplitude differences.
Therefore, if a signal comes from both loudspeakers at the same level, but
one loudspeaker is slightly delayed (no more than about a millisecond or so),
then the phantom image will pull towards the earlier loudspeaker.

This effect can be achieved in DSP using simple digital delays, how-
ever, we can also get a similar effect using two omnidirectional microphones,
spaced apart by some distance. Now, if a sound source is off to one side of
the spaced pair, then the direct sound will arrive at one microphone before
the other and therefore cause an interchannel time difference using distance
as our delay line. In this case, the closer the sound source is to 90◦ to one
side of the pair, the greater the time difference, with a maximum at 90◦.

There are a number of advantages to using this technique. Firstly,
since we’re using omnidirectional microphones, we are probably using mi-
crophones with well-behaved off-axis frequency responses. Secondly, we will
get a very extended low frequency response due to the natural frequency
range characteristics of an omnidirectional microphone. Finally, the re-
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sulting sound, due to the angle- and frequency-dependent phase differences
between the two channels will have “fuzzy” imaging characteristics. Sources
will not be precisely located between the loudspeakers, but will have wider,
more nebulous locations in the stereo sound stage. Of course, this may be
a disadvantage if you’re aiming for really precise imaging.

There are, of course, some disadvantages to using this technique. Firstly,
the imaging characteristics are imprecise as was discussed above. In addi-
tion, if your microphones are placed too close together, you will get a very
mono-like sound, with an exaggerated low frequency content in the listening
room due to the increased correlation at longer wavelengths. If the micro-
phones are placed too far apart, then there will be no stable centre image
at all, resulting in a hole-in-the-middle effect. In this case, all sound sources
appear at or around the loudspeakers with nothing in between.

9.3.4 Near-coincident techniques

Coincident microphone techniques rely solely on interchannel amplitude dif-
ferences to produce the desired imaging effects. Spaced techniques, in the-
ory, produce only interchannel time differences. There is, however, a hybrid
group of techniques that produce both interchannel amplitude and time of
arrival differences. These are known as near-coincident techniques, using a
pair of directional microphones with a small separation.

ORTF

As was discussed above, a pair of coincident cardioid microphones provides
good mono compatibility, good for radio broadcasts, but does not result
in a good feeling of spaciousness. Spaced microphones are the opposite.
Once upon a time, the French national broadcaster, the ORTF (L’Office
de Radiodiffusion-Télévision Française) wanted to create a happy medium
between these two worlds – to have a microphone configuration with rea-
sonable mono compatibility and some spaciousness (or is that not much
spaciousness and poor mono compatibility... I guess it depends if you’re a
glass-is-half-full or a glass-is-half-empty person. I’m a glass-is-not-only-half-
empty-but-now-it’s-also-dirty person, so I’m the wrong one to ask.)

The ORTF came up with a configuration that, it’s said, resembles the
configuration of a pair of typical human ears. You take two cardioid micro-
phones and place them at an angle of 110◦ and 17 cm apart at the capsules.
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NOS

Not to be outdone, the Dutch national broadcaster, the NOS (Nederlandsche
Omroep Stichting), created a microphone configuration recommendation of
their own. In this case, you place a pair of cardioid microphones with an
angle of 90◦ and a separation of 30 cm.

As you would expect from the larger separation between the micro-
phones, your mono compatibility in this case gets worse, but you get a
better sense of spaciousness from the output.

30 cm

90°

Figure 9.37: An NOS pair of cardioids with an included angle of 90◦ and a diaphragm separation
of 30 cm.

Faulkner

One of the problems with the ORTF and NOS configurations is that they
both have their microphones aimed away from the centre of the stage. As
a result, what are likely the more important sound sources are subjected to
the off-axis response of the microphones. In addition, these configurations
may create problems in halls with very strong sidewall reflections, since
there is very little attenuation of these sources as a result of directional
characteristics.

One option that resolves both of these problems is known as the Faulker
Technique, named after its inventor, Tony Faulkner. This technique uses a
pair of bidirectional microphones, both facing directly forward and with a
separation of 30 cm. In essence, you can consider this configuration to be
very similar to a pair of spaced omnidirectionals but with heavy attenuation
of side sources, particularly sidewall reflections.
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9.3.5 More complicated techniques

Decca Tree

Spaced omnidirectional microphones have a nice, open spacious sound. The
wider the separation, the more spacious, but if they get too wide, then you
get a hole-in-the-middle. Also, you can wind up with some problems with
sidewall reflections that are a little too strong, as was discussed in the section
on the Faulker technique.

The British record label Decca came up with a technique that solves all
of these problems. They start with a very widely spaced pair of Neumann
M50’s. This is an interesting microphone consisting of a 25 mm diameter
omnidirectional capsule mounted on the face of a 50 mm plastic sphere.
The omni capsule gives you a good low frequency response while the sphere
gives you a more directional pattern in higher frequencies. (In recent years,
many manufacturers have been trying to duplicate this by selling spheres of
various sizes that can be attached to a microphone.)

The pair of omni’s is placed too far apart to give a stable centre image,
but they provide a very wide and spacious sound. The centre image problem
is solved by placing a third M50 placed between and in front of the pair.
The output of this microphone is sent to both the left and right channels.

This configuration, known as a Decca Tree has been used by Decca for
probably all of their orchestral recordings for many many years.

a

bb
L R

L&R

Figure 9.38: A Decca Tree configuration. The size of the array varies according to your ensemble
and room, but typical spacings are around 1 m. Note that I’ve indicated cardioids here, however,
the traditional method is with omnidirectional capsules in 50 mm spheres as in the Neumann M50.
Also feel free to experiment with splaying of the L and R microphones at different angles.
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Side view

Top view

Figure 9.39: An easy way of making a Decca Tree boom using two boom stands and without going
to a lot of hassle making special equipment. Note that you’ll need at least 1 clamp (preferably 2)
to attach your mic clips to the boom ends. This diagram was drawn to be hung (as can be seen in
the side view) however, you can stand-mount this configuration as well if you have a sturdy stand.
(Lighting stands with mic stand thread adapters work well.)
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9.4 General Response Characteristics of Microphone
Pairs

Note: Before reading this section, you should be warned that a thorough
understanding of the material in Section 5.7 is highly recommended.

9.4.1 Phantom Images Revisited

It is very important to remember that the exact location of a phantom image
will be different for every listener. However, there have been a number of
studies done which attempt to get an idea of roughly where most people will
hear a sound source as we manipulate these parameters.

For two-channel systems, the study that is usually quoted was done
by Gert Simonsen during his Master’s Degree at the Technical University
of Denmark in Lyngby[Simonsen, 1984][Williams, 1990][Rumsey, 2001]. His
thesis was constrained to monophonic sound sources reproduced through a
standard two-channel setup. Modifications of the signals were restricted to
basic delay and amplitude differences, and combinations of the two. Ac-
cording to his findings, some of which are shown in Table 9.5, in order to
achieve a phantom image placement of 0◦ (or the centre-point between the
two loudspeakers) both channels must be identical in amplitude and time.
Increasing the amplitude of one channel by 2.5 dB (while maintaining the
interchannel time relationship) will pull the phantom image 10◦ off-centre
towards the louder speaker. The same result can be achieved by maintain-
ing a 0.0 dB amplitude difference and delaying one channel by 0.22 ms. In
this case, the image moves 10◦ away from the delayed loudspeaker. The
amplitude and time differences for 20◦ and 30◦ phantom image placements
are listed in Table 9.5 and represented in Figures 9.40 and 9.41.

Image Position ∆Amp. ∆Time

0◦ 0.0 dB 0.0 mS
10◦ 2.5 dB 0.2 mS
20◦ 5.5 dB 0.44 mS
30◦ 15.0 dB 1.12 mS

Table 9.5: Phantom image location vs. either Interchannel Amplitude Difference or Interchan-
nel Time Difference for two-channel reproduction[Simonsen, 1984][Rumsey, 2001][Williams, 1990].
Note that the ∆Amp. column assumes a ∆Time of 0.0 ms and that the ∆Time column assumes
a ∆Amp. value of 0.0 dB
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5 dB10 dB

Figure 9.40: Apparent angle vs. averaged interchannel amplitude differences for pair-wise power
panned sources in a standard 2-channel loudspeaker configuration. Values are based on those listed
in Table 9.5 and interpolated by the author.

0.5 ms1 ms

Figure 9.41: Apparent angle vs. averaged interchannel time differences for pair-wise power panned
sources in a standard 2-channel loudspeaker configuration. Values are based on those listed in Table
9.5 and interpolated by the author.
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A similar study was done by the author at McGill University for a 5-
channel configuration[Geoff Martin, 1999]. In this case, interchannel dif-
ferences were restricted to either the amplitude or time domain without
combinations for adjacent pairs of loudspeakers. It was found that differ-
ent interchannel differences were required to move a phantom image to the
position of one of the loudspeakers in the pair as are listed in Tables 9.6
and 9.7 Note that these values should be used with caution due to the large
standard deviations in the data produced in the test. One of the principal
findings of this research was the large variations between listeners in the
apparent location of the phantom image. This is particularly true for side
locations, and moreso for images produced with time differences.

Pair (1/2) 1 2
C / L 14 dB 12 dB
L / LS 9 dB >16 dB

LS / RS 9 dB 9 dB

Table 9.6: Minimum interchannel amplitude difference required to locate phantom image at the
loudspeaker position. For example, it requires an interchannel amplitude difference of at least 14
dB to move a phantom image between the Centre and Left loudspeakers to 0◦. The right side is
not shown as it is assumed to be symmetrical.

Pair (1/2) 1 2
C / L >2.0 ms 2.0 ms
L / LS 1.6 ms >2.0 ms

LS / RS 0.6 ms 0.6 ms

Table 9.7: Minimum interchannel time difference required to locate phantom image at the loud-
speaker position. For example, it requires an interchannel time difference of at least 0.6 ms to
move a phantom image between the Left Surround and Right Surround loudspeakers to 120◦. The
right side is not shown as it is assumed to be symmetrical.

Using the smoothed averages of the phantom image locations, polar plots
can be generated to indicate the required differences to produce a desired
phantom image position as are shown in Figures 9.42 and 9.43.

Summed power response

It is typically assumed that, when you’re sitting and listening to the the
sound coming out of more than one loudspeaker, the total sound level that
you hear is the sum of the sound powers, and not the sound pressures from
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5 dB 10 dB

Figure 9.42: Apparent angle vs. averaged interchannel amplitude differences for pair-wise power
panned sources in an ITU.R BS.775-1 loudspeaker configuration. Values taken from the raw data
acquired by the author in an experiment described in [Geoff Martin, 1999].

0.5 ms 1 ms 1.5 ms

Figure 9.43: Apparent angle vs. averaged interchannel time differences for pair-wise power panned
sources in an ITU.R BS.775-1 loudspeaker configuration. Values taken from the raw data acquired
by the author in an experiment described in [Geoff Martin, 1999].
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the individual drivers. As a result, when you pan a single sound from one
loudspeaker to another, you want to maintain a constant summed power,
rather than a constant summed pressure.

The top plot in Figure 9.44 shows the two gain coefficients determined
by the rotation of a pan knob for two output channels. Since the sum of
the two gains at any given position is 1, this algorithm is called a constant
amplitude panning curve. It works, but, if you take a look at the bottom
plot in the same figure, you’ll see the problem with it. When the signal is
panned to the centre position, there is a drop in the total summed power –
in fact, it has dropped by half (or 3 dB) relative to an image located in one
of the loudspeakers. Consequently, if this system was used for the panning
in a mixing console, as you swept an image from left to centre to right, it
would appear to get further away from you at the centre location because
it appears to be quieter.

-40 -30 -20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Pan knob angle

G
ai

n

-40 -30 -20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Pan knob angle

S
um

m
ed

 p
ow

er

Figure 9.44: The top plot shows a linear panning algorithm where the sum of the two amplitudes
will produce the same value at all rotations of the pan knob. The bottom plot shows the resulting
power response vs. pan locations.

Consequently we have to use an algorithm which gives us a constant
summed power as we sweep the location of the image from one loudspeaker
to the other. This is accomplished by using modifying the gain coefficients
as is shown in Figure 9.45.

9.4.2 Interchannel Differences

In order to understand the response of a signal from a pair of microphones
(whether they’re alone, or part of a larger array) we must begin by looking
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Figure 9.45: The top plot shows a constant power panning algorithm where the sum of the two
powers will produce the same value at all rotations of the pan knob. The bottom plot shows the
resulting power response vs. pan locations.

at the differences in the outputs of the two devices.

Horizontal plane

Cardioids
Unless you only record pop music and you never use your imagination, all

of the graphs shown above don’t really apply to what happens when you’re
recording. This is because, usually your microphone isn’t pointing directly
forward... you usually have more than one microphone and they’re usually
pointing slightly to the left or right of forward, depending on your configu-
ration. Therefore, we have to think about what happens to the sensitivity
pattern when you rotate your microphone.

Figure 9.46 shows the sensitivity pattern of a cardioid microphone that
is pointing 45◦ to the right. Notice that this plot essentially looks exactly
the same as Figure ??, it’s just been pushed to the side a little bit.

Now let’s consider the case of a pair of coincident cardioid microphones
pointed in different directions. Figure 9.48 shows the plots of two polar pat-
terns for cardioid microphones point at -45◦ and 45◦, giving us an included
angle (the angle subtended by the microphones) of 90◦ as is shown in Figure
9.47.

Figure 9.48 gives us two important pieces of information about how a
pair of cardioid microphones with an included angle of 90◦ will behave.
Firstly, let’s look at the vertical difference between the two curves. Since
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Figure 9.46: Cartesian plot of the absolute value of the sensitivity pattern of a cardioid microphone
on a decibel scale turned 45◦ to the right.

 

Figure 9.47: Diagram of two microphones with an included angle of 90◦.
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Figure 9.48: Cartesian plot of the absolute value of the sensitivity patterns of two cardioid micro-
phones on a decibel scale turned ±45◦.

this plot essentially shows us the output level of each microphone for a given
angle, then the distance between the two plots for that angle will tell us the
interchannel amplitude difference. For example, at an angle of incidence (to
the pair) of 0◦, the two plots intersect and therefore the microphones have
the same output level, meaning that there is an amplitude difference of 0
dB. This is also true at 180◦, despite the fact that the actual output levels
are different than they are at 0◦ – remember, we’re looking at the difference
between the two channels and ignoring their individual output levels.

In order to calculate this, we have to find the ratio (because we’re think-
ing in decibels) between the sensitivities of the two microphones for all angles
of incidence. This is done using Equation 9.1.

∆Amp. = 20 ∗ log10

(
S1

S2

)
(9.1)

where

Sn = Pn + Gn ∗ cos (α + Ωn) (9.2)

where Ω is the angle of rotation of the microphone in the horizontal
plane.

If we plot this difference for a pair of cardioids pointing at ±45◦, the
result will look like Figure 9.49. Notice that we do indeed have a ∆Amp.
of 0 dB at 0◦ and 180◦. Also note that the graph has positive and negative
values on the right and left respectively. This is because we’re comparing
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the output of one microphone with the other, therefore, when the values
are positive, the right microphone is louder than the left. Negative numbers
indicate that the left is louder than the right.
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Figure 9.49: Interchannel amplitude differences for a pair of coincident cardioid microphones in the
horizontal plane with an included angle of 90◦.

Now, if you’re using this configuration for a two-channel recording, if
you like, you can feel free to try and make a leap from here back to Table
9.5 to make some conclusion about where things are going to wind up being
located in the reproduced sound stage. For example, if you believe that a
signal with a ∆Amp. of 2.5 dB results in a phantom image location of 10◦,
then you can go to the graph in Figure 9.49, find out where the graph crosses
a ∆Amp. of 2.5 dB then find the corresponding angle of incidence. This then
tells you that an instrument located at that angle to the microphone pair
will show up at 10◦ off-centre between the loudspeakers. This is, of course, if
you’re that one person in the world for whom Table 9.5 holds true (meaning
you’re probably also 172.3 cm tall, you have 2.6 children and two thirds of
a dog, you live in Boise, Idaho and that your life is exceedingly... well...
average...)

We can do this for any included angle between the microphone pair, from
0◦ through to 180◦. There’s no point in going higher than 180◦ because we’ll
just get a mirror image. For example, the response for an included angle of
190◦ is exactly the same as that for 170◦, just pointing towards the rear of
the pair instead of the front.

Of course, if we actually do the calculation for an included angle of 0◦,
we’re only going to find out that the sensitivities of the two microphones are
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Figure 9.50: Interchannel amplitude differences for a pair of coincident cardioid microphones in the
horizontal plane with an included angle of 0◦.

matched, and therefore the ∆Amp. is 0 dB at all angles of incidence as is
shown in Figure 9.50. This is true regardless of microphone polar pattern.

Note that, in the case of all included angles except for 0◦, the plot of
∆Amp. for cardioids goes to ±∞ dB because there will be one angle where
one of the microphones has no output and because, on a decibel scale, some-
thing is infinitely louder than nothing.

Also note that, in the case of cardioids, every value of ∆Amp. is dupli-
cated at another angle of incidence. For example, in the case of an included
angle of 90◦, ∆Amp. = +10 dB at angles of incidence of approximately 70◦

and 170◦. This means that sound sources at these two angles of incidence
to the microphone pair will wind up in the same location in the reproduced
sound stage. Remember, however, that we don’t know the relative levels of
these two sources because, all we know is their difference. It’s quite probable
that one of these two locations will result in a signal that is much louder
than the other, but that isn’t our concern just yet.

Also note that there is one included angle (of 180◦) that results in a
response characteristic that is symmetrical (at least in each polarity) around
the ∞ dB point.

Subcardioids
Looking back at Figures ?? through ?? we can see that the lowest sen-

sitivity from a subcardioid microphone is 6 dB below its on-axis sensitivity.
As a result, unlike a pair of cardioid microphones, the ∆Amp. of a pair of
subcardioid microphones cannot exceed the ±6 dB window, regardless of
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Figure 9.51: Interchannel amplitude differences for a pair of coincident cardioid microphones in the
horizontal plane with an included angle of 45◦.
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Figure 9.52: Interchannel amplitude differences for a pair of coincident cardioid microphones in the
horizontal plane with an included angle of 135◦.
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Figure 9.53: Interchannel amplitude differences for a pair of coincident cardioid microphones in the
horizontal plane with an included angle of 180◦.
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Figure 9.54: Contour plot showing the difference in sensitivity in dB between two coincident cardioid
microphones with included angles of 0◦ to 180◦, angles of rotation from -180◦ to 180◦ and a 0◦

angle of elevation. Note that Figure 9.49 is a horizontal “slice” of this contour plot where the
included angle is 90◦.
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included angle or angle of incidence.
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Figure 9.55: Interchannel amplitude differences for a pair of coincident subcardioid microphones in
the horizontal plane with an included angle of 45◦.

As can be seen in Figures 9.55 through 9.58, a pair of subcardioid mi-
crophones does have one characteristic in common with a pair of cardioid
microphones in that there are two angles of incidence for every value of
∆Amp.

There is another aspect of subcardioid microphone pairs that should be
remembered. As has already been discussed, in the case of subcardioids, it
is impossible to have a value of ∆Amp. outside the ±6 dB window. Armed
with this knowledge, take a look back at Tables 9.5, 9.6 and 9.7. You’ll note
that in all cases of pair-wise panning, it takes more than 6 dB to swing a
phantom image all the way into one of the two loudspeakers. Consequently,
it is safe to say that, in the particular case of coincident subcardioid micro-
phones, all of the the sound stage will be confined to a width smaller than
the angle subtended by the two loudspeakers reproducing the two signals.
As a result, if you want an image that is at least as wide as the loudspeaker
aperture, you’ll have to introduce some time differences between the micro-
phone outputs by separating them a little. This will be discussed further
below.

Bidirectionals
The discussion of pairs of bidirectional microphones has to start with

a reminder of two characteristics of their polar pattern. Firstly, the nega-
tive polarity of the rear lobe can never be forgotten. Secondly, as we will
see below, it is significant to remember that, in the horizontal plane, this
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Figure 9.56: Interchannel amplitude differences for a pair of coincident subcardioid microphones in
the horizontal plane with an included angle of 90◦.
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Figure 9.57: Interchannel amplitude differences for a pair of coincident subcardioid microphones
with an included angle of 135◦ in the horizontal plane.
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Figure 9.58: Interchannel amplitude differences for a pair of coincident subcardioid microphones
with an included angle of 180◦ in the horizontal plane.

microphone has two angles which have a sensitivity of 0 (or −∞ dB).
Figure 9.59 shows the ∆Amp. of the absolute value of a pair of bidirec-

tional microphones with an included angle of 90◦. In this case, the absolute
value of the microphone’s sensitivity is used in order to avoid errors when
calculating the logarithm of a negative number. This negative is the result
of angles of incidence which produce sensitivities of opposite polarity in the
two microphones. For example, in this particular case, at an angle of in-
cidence of +90◦ (to the right), the right microphone sensitivity is positive
while the left one is negative. However, it must be remembered that the
absolute value of these two sensitivities are identical at this location.

A number of significant characteristics can be seen in Figure 9.59.
Firstly, note that there are now four angles of incidence where the ∆Amp.

reaches −∞ dB. This is due to the fact that, in the horizontal plane, bidi-
rectional microphones have two null points.

Secondly, note that the pattern in this plot is symmetrical around these
infinite peaks, just as was the case with a pair of cardioid microphones at
180◦, apparently resulting in four angles of incidence which result in sound
sources located at the same phantom image location. This, however, is not
the case due to polarity differences. For example, although sound sources
located at 30◦ and 60◦ (symmetrical around the 45◦ location) appear to
result in identical sensitivities, the 30◦ location produces similar polarity
signals whereas the 60◦ location produces opposite polarity signals.

Finally, it is significant to note that the response of the microphone pair
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is symmetrical front-to-back, with a left/right and a polarity inversion. For
example, a sound source at +10◦ results in the same ∆Amp. as a sound
source at -170◦, however, the rear source will be have a negative polarity in
both channels. Similarly, a sound source at +60◦ will have the same ∆Amp.
as a sound source at -120◦, however the former will be positive in the “right”
channel and negative in the “left” whereas the opposite is the case for the
latter.
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Figure 9.59: Interchannel amplitude differences for a pair of coincident bidirectional microphones
in the horizontal plane with an included angle of 90◦.

Various other included angles for a pair of bidirectional microphones
results in a similar pattern as was seen in Figure 9.59, with a “skewing” of
the response curves. This can be seen in Figures 9.60 and 9.61.

It is also important to note that Figures 9.60 and 9.61 are mirror images
of each other. This, however does not simply mean that the pair can be
considered to be changed from “pointing” from the front to the side in this
case. This is again due to the polarity differences between the two channels
for specific various angles of incidence.

There is one final configuration worth noting in the specific case of bidi-
rectional microphones; when the included angle is 180◦. As can be seen
in Figure 9.62, this results in the absolute values of the sensitivities being
matched at all angles of incidence. Remember however, that in this particu-
lar case, this means that the two channels are exactly matched and opposite
in polarity – theoretically, you wind up with exactly the same signal as you
would with one microphone split to two channels on the mixing console and
the polarity switch (frequently incorrectly referred to as the “phase” switch)
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Figure 9.60: Interchannel amplitude differences for a pair of coincident bidirectional microphones
in the horizontal plane with an included angle of 45◦.
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Figure 9.61: Interchannel amplitude differences for a pair of coincident bidirectional microphones
in the horizontal plane with an included angle of 135◦.



9. Audio Recording 667

engaged on one of the two channels.

−150 −100 −50 0 50 100 150
−30

−20

−10

0

10

20

30
Coincident Bidirectionals: Included angle = 180 deg

Angle of incidence (deg)

In
te

rc
ha

nn
el

 a
m

pl
itu

de
 d

iff
er

en
ce

 (
dB

)

Geoff Martin www.tonmeister.ca

Figure 9.62: Interchannel amplitude differences for a pair of coincident bidirectional microphones
in the horizontal plane with an included angle of 180◦.

Hypercardioids
Not surprisingly, the response of a pair of hypercardioid microphones

looks like a hybrid of the bidirectional and cardioid pairs. As can be seen
in Figure 9.64, there are four infinite peaks in the value of ∆Amp., similar
to bidirectional pairs, however the slope of the peaks are skewed further left
and right as in the case of cardioids.

Again, similar to the case of bidirectional microphones, changing the
included angle of the hypercardioids results in a further skewing of the re-
sponse curve to one side or the other as can be seen in Figures 9.65 and
9.66.

Figure 9.67 shows the interesting case of hypercardioid microphones with
an included angle of 180◦. In this case the maximum sensitivity point in
the rear lobe of each microphone is perfectly aligned with the maximum
sensitivity point in the other microphone’s front lobe. However, since the
rear lobe has a sensitivity with an absolute value that is 6 dB lower than
the front lobe, the value of ∆Amp. remains outside the ±6 dB window for
the larger part of the 360◦ rotation.

Spaced omnidirectionals
In the case of spaced omnidirectional microphones, it is commonly as-

sumed that the distance to the sound source is adequate to ensure that the
impinging sound can be considered to be a plane wave. In addition, it is
also assumed that there is no difference in signal levels due to differences
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Figure 9.63: Contour plot showing the difference in sensitivity in dB between two coincident bidi-
rectional microphones with included angles of 0◦ to 180◦, angles of rotation from -180◦ to 180◦

and a 0◦ angle of elevation.
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Figure 9.64: Interchannel amplitude differences for a pair of coincident hypercardioid microphones
in the horizontal plane with an included angle of 90◦.
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Figure 9.65: Interchannel amplitude differences for a pair of coincident hypercardioid microphones
in the horizontal plane with an included angle of 45◦.
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Figure 9.66: Interchannel amplitude differences for a pair of coincident hypercardioid microphones
in the horizontal plane with an included angle of 135◦.
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Figure 9.67: Interchannel amplitude differences for a pair of coincident hypercardioid microphones
in the horizontal plane with an included angle of 180◦.
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Figure 9.68: Contour plot showing the difference in sensitivity in dB between two coincident hy-
percardioid microphones with included angles of 0◦ to 180◦, angles of rotation from -180◦ to 180◦

and a 0◦ angle of elevation.
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in propagation distance to the transducers. In reality, for widely spaced
microphones and/or for sound sources closely located to any microphone,
neither of these assumptions is correct, however they will be used for this
discussion.

The difference in time of arrival of a sound at two spaced microphones
is dependent both on the separation of the transducers d and the angle of
rotation around the pair ϑ.

ϑ

d

D

Figure 9.69: Spaced omnidirectional microphones showing the microphone separation d, the angle
of rotation ϑ and the resulting extra distance D to the further microphone.

The additional distance, D, travelled by the sound wave to the further of
the two microphones, shown in Figure 9.69, can be calculated using Equation
9.3.

D = d sinϑ (9.3)

where d is the distance between the microphone capsules in cm.
The additional time ∆Time required for the sound to travel this distance

is calculated using Equation 9.4.

∆Time =
10D

c
(9.4)

where ∆Time is the interchannel time difference in ms, ϑ is the angle
of incidence of the sound source to the pair, and c is the speed of sound in
m/s.

This time of arrival difference is plotted for various microphone separa-
tions in Figures 9.70 through 9.73. Note that the general curve formed by
this calculation is a simple sine wave, scaled by the separation between the
microphones. Also note that the value of ∆Time is 0 ms for sound sources
located at 0◦ and 180◦ and a maximum for sound sources at 90◦ and -90◦.
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As was mentioned early in the section on interchannel amplitude dif-
ferences between coincident directional microphones, one might be tempted
to draw conclusions and predictions regarding image locations based on the
values of ∆Time and the values listed in the tables and figures in Section
9.3.1. Again, one shouldn’t be hasty in this conclusion unless you consider
your listeners to be average.
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Figure 9.70: Interchannel time differences for a pair of spaced microphones in the horizontal plane
with a separation of 0 cm.

Three-dimensional analysis

One of the big problems with looking at microphone polar responses in
only the horizontal plane is that we usually don’t only have sound sources
restricted to those two dimensions. Invariably, we tend to raise or lower the
microphone stand to obtain a different direct-reverberant ratio, for example,
without considering that we’re also changing the vertical angle of incidence
to the microphone pair. In almost all cases, this has significant effects on
the response of the pair which can be seen in a three-dimensional anaysis.

In order to include vertical angles in our calculations of microphone
sensitivity, we need to use a little spherical trigonometry – not to worry
though. The easiest way to do this is to follow the instructions below:

1. Put your two index fingers side by side pointing forwards.

2. Rotate your right index finger 45◦ to the right in the horizontal plane.
Your fingers should now be at an angle of 45◦.
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Figure 9.71: Interchannel time differences for a pair of spaced microphones in the horizontal plane
with a separation of 15 cm.
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Figure 9.72: Interchannel time differences for a pair of spaced microphones in the horizontal plane
with a separation of 30 cm.
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Figure 9.73: Interchannel time differences for a pair of spaced microphones in the horizontal plane
with a separation of 45 cm.

−150 −100 −50 0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Angle of Incidence (deg)

M
ic

ro
ph

on
e 

S
ep

ar
at

io
n 

(c
m

)

Spaced Microphones − Interchannel Time Difference (ms)

0

0

00

−0.25

−0.25

−0.25 −0.25

−0.25

0.25

0.25

0.25
0.25

0.25

0.25

−0.5

−0.5

−0.5

−0.5

−0.5
0.5

0.5

0.5

0.5

0.5

−0.75

−0.75

−0.75

−0.75

0.75

0.75

0.75

0.75

−1

−1
−1

−1

1

1

1

1

−1.25

−1.25

−1.25

−1.5

−1.5

−1.5
1.5

1.5

1.5

−1.75

−1.75

1.75

1.75

1.75−2

−2

2
2

Geoff Martin www.tonmeister.ca

Figure 9.74: Interchannel time differences vs. microphone separation for a pair of spaced micro-
phones in the horizontal plane.
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3. Rotate your right index finger 45◦ upwards. Make sure that this new
angle of rotation goes 90◦ off the horizontal plane.

4. The question we now need to ask is, “What is the angle subtended by
your two fingers?”

The answer to this last question is actually pretty easy. If we call the
horizontal angle of rotation ϑ, matching the angle in the horizontal plane
we talked about earlier, and the vertical angle of rotation φ, then the total
resulting angle γ can be calulated using Equation 9.5.

γ = arccos (cos(ϑ) cos(φ)) (9.5)

Now, there’s one nice little thing about this equation. Since we’re talking
about microphone sensitivity patterns, and since the only part of this pattern
is dependent on the Pressure Gradient component of the microphone, and
since this component only relies on the cosine of the angle of incidence, then
we don’t need to do as much math. For example, what we’re really interested
in is cos(γ) but we can only calculate γ by doing an arccos function. So,
instead of using Equation 9.5, we can simplify it to Equation 9.7.

cos γ = cos (arccos (cos(ϑ) cos(φ))) (9.6)
= cos(ϑ) cos(φ) (9.7)

There’s one more thing. In order to simplify our lives a bit, I’m going to
restrict the included angle between the microphones to the horizontal plane.
Basically, this means that, for all three dimensional analyses in this paper,
we’re thinking that we have a pair of microphones that’s set up parallel to the
floor, and that the instrument can be at any angle of incidence to the pair.
That angle of incidence is comprised of an angle of rotation and an angle of
elevation. We’re not going to have the luxury of tilting the microphone pair
on its side (unless you’re able to just think of that as moving the instrument
to a new position...).

So, in order to convert Equation 9.2 nto a three-dimensional version, we
combine it with Equation 9.7, resulting in Equation 9.8.

S = P + G (cos(ϑ) cos(φ)) (9.8)

This can include the horizontal rotation of the microphone, Ω as follows:

Sn = Pn + Gn (cos(ϑ + Ωn) cos(φ)) (9.9)
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Ω

ϑ φ

Sound 
Source

Figure 9.75: A three-dimensional view of a microphone showing the microphone angle of rotation,
Ω, the angle of rotation of the sound source to the pair ϑ, and the elevation angle of the sound
source φ.

3-D Polar Coordinate Systems
Some discussion should be made here regarding the issue of different

three-dimensional polar coordinate systems. Microphone polar patterns in
three dimensions are typically described using the spherical coordinate sys-
tem which uses two angles referenced to the origin on the surface of the
sphere at the location (0, 0). The first, α, is an angle of rotation in the
horizontal axis around the centre of the sphere. The second, δ, is an angle
of rotation around the axis intersecting the centre of the sphere and the ori-
gin. This is shown on the right in Figure 9.76. In the case of microphones,
the origin is thought of as being located at the centre of the diaphragm
of the microphone and the axis for the rotation δ is perpendicular to the
diaphragm.

The geographic coordinate system also uses two angles of rotation. Sim-
ilar to the spherical coordinate system, the first, ϑ, is a rotation around the
centre of a sphere in the horizontal plane from the origin at the location
(0,0). In geographic terms, this would be the measurement of longitude
around the equator. The second angle, φ, is slightly different in that it is
an orthogonal rotation off the equator, also rotating around the sphere’s
centre. The geographic equivalent of this vertical rotation is the latitude of
a location as can be seen on the left in Figure 9.76.

This investigation uses the geographic coordinate system for its eval-
uation in order to make the explanations and figures more intuitive. For
example, when a recording engineer places a microphone pair in front of
an ensemble and raises the microphone stand, the resulting change in polar
location of the instruments relative to the array is a change in elevation in
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the geographic coordinate system. These changes in the angle of elevation
of the microphone pair can correspond to changes in φ up to ±90◦.

One issue to note in the use of the geographic coordinate system is the
location of positions with values of φ outside the ±90◦ window. It must
be kept in mind that these positions produce and alternation from left to
right and vice versa. Therefore ϑ = 45◦, φ = 180◦ is in the same location as
ϑ = −135◦, φ = 0◦

Although the use of the geographic coordinate system makes the figures
and discussion of microphone pair characteristics more intuitive, this unfor-
tunately comes at the expense of a somewhat increased level of complexity
in the calculations.

Figure 9.76: A comparison of the geographic and spherical coordinate systems. The point (ϑ, φ) in
the geographic coordinate system shown on the left is identical to the point (α, δ) in the spherical
coordinate system on the right.

Cardioids
We’ll begin with a pair of coincident cardioid microphones. Figures 9.77

and 9.78 show plots of the interchannel amplitude difference of a pair of
cardioids with an included angle of 90◦. (Unfortunately, if you’re looking
at a black and white printout of this paper, you’re going to have a bit of a
problem seeing things... sorry...)

Take a look at the spherical plot in Figure 9.77. If we look at the value
in dB plotted on this sphere around its equator, we’d get exactly the same
graph as is shown in Figure 9.48. Now, however, we can see that changes in
the vertical angle might have an effect on the way things sound. For example,
if we have a sound source with a vertical elevation of 0◦ and a horizontal
rotation of 90◦, then the interchannel amplitude difference is about 18 dB,
give or take (to get this number, I cheated and looked back at Figure 9.49).
Now, if we maintain that angle of rotation and change the vertical angle,
we reduce this difference until, with a vertical angle of 90◦, the interchannel
amplitude difference is 0 dB – in other words, if the sound source is directly
above the pair, the outputs of the two mic’s are the same.
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What effect does this have on our phantom image location in the real
world? Let’s go do a live-to-two-track recording where we set up a 90◦ pair
of cardioids at eye level in front of an orchestra at the conductor’s position.
This means that your principal double bass player is at a vertical angle of
0◦ and a horizontal angle of 90◦, so that instrument will be about 18 dB
louder in the right channel than in the left. This means that its phantom
image will probably be parked in the right speaker. We start to listen to the
sound and we decide that we’re too close to the orchestra – and since we
read a rule from an unreliable source that concert halls always sound much
better if you go up about 4 or 5 m, we’ll raise the mic stand way up. This
means that the double bass is still at an angle of rotation of 90◦, but now
at a vertical angle of about 60◦ (we went really high). This means that the
interchannel amplitude difference for the instrument has dropped to about
6 dB, which would put in well inside the right loudspeaker in the recording.

So, the moral of the story is, if you have a pair of coincident cardioids
and you raise your mic stand without pointing the mic’s downwards to
compensate, your orchestra gets narrower in the stereo image. Also, don’t
forget that this doesn’t just apply to two-channel stuff. We could just as
easily be talking about the image between your surround loudspeakers.

Figure 9.78 shows a contour map of the same plot shown in Figure 9.77
which makes it a little easier to read. Now, the two angles are the X- and
Y-axes of the graph, and the lines indicate the angles where a given inter-
channel amplitude difference occurs. From this, you can see that, unless
your rotation is 0◦, then any change in the vertical angle, upwards or down-
wards, will reduce your interchannel difference. This is true for all included
angles (except for 0◦) of a pair of coincident cardioids.

There’s one more thing to consider here, and that the fact that the
microphones are not just recording an instrument – they’re recording the
room as well. So, you have to keep in mind that, in the case of coincident
cardioids, all reflections and reveberation that come from above or below the
microphones will tend to pull towards the centre of your loudspeaker pair.
Again, the greater the angle of elevation, the more the image collapses.

Subcardioids
Subcardioids have a pretty predictable behaviour, now that we’ve looked

at the response patterns of cardioid microphones. The only big difference is
that, as we’re seen before, the interchannel amplitude difference never goes
outside the ±6 dB window. Apart from that, the responses are not too
different.

Bidirectionals
Now, let’s compare those results with a pair of coincident bidirectional
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Figure 9.77: Interchannel amplitude difference response (in dB) for a pair of coincident cardioid
microphones with an included angle of 90◦.
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Figure 9.78: Interchannel amplitude difference response for a pair of coincident cardioid microphones
with an included angle of 90◦.
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Figure 9.79: Interchannel amplitude difference response for a pair of coincident cardioid microphones
with an included angle of 45◦.
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Figure 9.80: Interchannel amplitude difference response for a pair of coincident cardioid microphones
with an included angle of 135◦.
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Figure 9.81: Interchannel amplitude difference response for a pair of coincident cardioid microphones
with an included angle of 180◦.

Figure 9.82: Interchannel amplitude difference response (in dB) for a pair of coincident subcardioid
microphones with an included angle of 90◦.
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Figure 9.83: Interchannel amplitude difference response for a pair of coincident subcardioid micro-
phones with an included angle of 45◦.
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Figure 9.84: Interchannel amplitude difference response for a pair of coincident subcardioid micro-
phones with an included angle of 90◦.
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Figure 9.85: Interchannel amplitude difference response for a pair of coincident subcardioid micro-
phones with an included angle of 135◦.
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Figure 9.86: Interchannel amplitude difference response for a pair of coincident subcardioid micro-
phones with an included angle of 180◦.
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microphones instead. One caveat here before we begin, because we’re looking
at decibel scales, and because calculators don’t like being asked to find the
logarithm of a negative number, we’re looking at the absolute value of the
sensitivity of the microphones again.

This time, the plots tell a very different story. Notice how, in the spheri-
cal plot in Figure 9.87 and in the contour plots in Figures 9.88 through 9.90,
we get a bunch of vertical lines. The summary of what that means is that
the interchannel amplitude difference of a pair of bidirectional microphones
doesn’t change with changes in the angle of elevation. So you can raise
and lower the mic stand all you want without collapsing the image of the
orchestra. As we get further off axis (because we’ve changed the vertical
angle), the orchestra will get quieter, but it won’t pull to the centre of the
loudspeakers. This is a good thing.

There is a small drawback here, though. Remember that if you have
a big vertical angle, then a small horizontal movement of the instrument
corresponds to a large change in the angle of rotation, so you can get a
violent swing in the image location if you’re not careful. For example, if
your bidirectional pair is really high and you’re recording a singer that likes
to sway back and forth, you might wind up with a phantom image that
is always swinging back and forth between the two speakers, making your
listeners seasick.

Also, note with a pair of bidirectional microphones with an included
angle of 180 degrees that all angles of incidence produce the same sensitivity
– just remember that the two signals are of opposite polarity. If you want to
do this, use your “phase flip” button. It’s cheaper than a second microphone.

Hypercardioids
Once again, hypercardioids exhibit properties that are recognizable as

being something between a cardioid and a bidirectional. If we look at the
spherical plot of a pair of coincident hypercardioids with an included an-
gle of 90◦ shown in Figure 9.92, we can see that there is a dividing line
along the side of the pair, similar to that found in a bidirectional pair. Just
like the bidirectionals, this follows the null point in one of the two micro-
phones, the dividing line between the front and rear lobes. However, like
the cardioid pair, notice that vertical changes alter the interchannel ampli-
tude difference. There is one big difference from the cardioids, however. In
the case of cardioids, a vertical change always results in a reduction in the
interchannel amplitude difference whereas, in the case of a hypercardioid
pair, it is possible to have a vertical change that produces an increase in the
interchannel amplitude difference. This is most easily visible in the contour
plot in Figure 9.94. Notice that if you start with a horizontal angle of 100
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Figure 9.87: Interchannel amplitude difference response (in dB) for a pair of coincident bidirectional
microphones with an included angle of 90◦.

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Angle of Rotation (deg)

A
ng

le
 o

f E
le

va
tio

n 
(d

eg
)

Coincident Bidirectionals: Included angle = 45 deg

0

0

0

0

0

0

0

0

0

5

5

5

5

5

5

5

5

5

5

5

5

−5

−5

−5

−5

−5

−5

−5

−5

−5

−5

−5

−5

10

10

10

10

10

10

10

10

10

10

10

10

−10

−10

−10

−10

−10

−10

−10

−10

−10

−10

−10

−10

15

15

15

15

15

15

15

15

15

15

15

15

−15

−15

−15

−15

−15

−15

−15

−15

−15

−15

−15

−15

20

20

20

20

20

20

20

20

20

20

20

20

−20

−20

−20

−20

−20

−20

−20

−20

−20

−20

−20

−20

25

25

25

25

25

25

25

25

25

25

25

25

−25

−25

−25

−25

−25

−25

−25

−25

−25

−25

−25

−25

30

30

30

30

30

30

−30

−30

−30

−30

−30

−30

Geoff Martin www.tonmeister.ca

Figure 9.88: Interchannel amplitude difference response for a pair of coincident bidirectional micro-
phones with an included angle of 45◦.
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Figure 9.89: Interchannel amplitude difference response for a pair of coincident bidirectional micro-
phones with an included angle of 90◦.
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Figure 9.90: Interchannel amplitude difference response for a pair of coincident bidirectional micro-
phones with an included angle of 135◦.
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Figure 9.91: Interchannel amplitude difference response for a pair of coincident bidirectional micro-
phones with an included angle of 180◦.

degrees, then a vertical change off the equator will cause the interchannel
amplitude difference to increase to ∞ dB before it reduces back down to 0
dB at the north or south pole.

There are three principal practical issues to consider here. Firstly, re-
member that a change in the height of your mic stand with a pair of hyper-
cardioids will change the apparent width of your sound stage. Unlike the
case of cardioids, however, the change might wind up increasing the width
of some components while simultaneously decreasing the width of others.
So you wind up squeezing together the centre part of the orchestra while
you pull apart the sides.

The second issue to consider is similar to that with cardioids. Don’t
forget that you’ve got sound coming in from all angles at the same time - so
it’s possible that some parts of your room sound will be pulled wider while
others are pushed closer together.

Thirdly, there’s just the now-repetitious reminder that a lot of the signals
coming into the pair are arriving at the rear lobes of the microphones, so
you’re going to have signals that are either in opposite polarity in the two
channels, or similar, but inverted polarities.

Spaced omnidirectionals
Calculation of the interchannel time of arrival differences for a pair

of spaced microphones in a three-dimensional world requires only a small
change to Equation 9.3 as can be seen in Equation 9.10.
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Figure 9.92: Interchannel amplitude difference response (in dB) for a pair of coincident hypercar-
dioid microphones with an included angle of 90◦.
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Figure 9.93: Interchannel amplitude difference response for a pair of coincident hypercardioid mi-
crophones with an included angle of 45◦.
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Figure 9.94: Interchannel amplitude difference response for a pair of coincident hypercardioid mi-
crophones with an included angle of 90◦.
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Figure 9.95: Interchannel amplitude difference response for a pair of coincident hypercardioid mi-
crophones with an included angle of 135◦.
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Figure 9.96: Interchannel amplitude difference response for a pair of coincident hypercardioid mi-
crophones with an included angle of 180◦.

D = d sinϑ cos φ (9.10)

Consider that a change in elevation in the geographic coordinate system
means that we are heading away from the “equator” towards the “north
pole”, relative to the microphones. When the sound source is located at
any angle of horizontal rotation and an angle of elevation φ = 90◦, it is
equidistant from the two microphones, therefore the time of arrival difference
is 0 ms. Consequently, we can intuitively see that the greatest time of arrival
difference is for sources where φ = 0◦, and that any change in elevation away
from this plane will result in a reduced value of ∆Time.

This behaviour can be seen in Figures 9.97 through 9.99 as well as Figure
9.100.

9.4.3 Summed power response

The previous chapter deals only with the interchannel differences between
the two microphones in a pair. This information gives us an idea of the
general placement of phantom images between pairs of loudspeakers in a
playback system, but there are a number of other issues to consider. Back
in the discussion on panning in Chapter 9.3.1, something was mentioned that
has not yet been discussed. As was pointed out, pan knobs on consoles work
by changing the amplitude difference between the output channels, but the
issue of why they are typically constant power panners was not mentioned.
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Figure 9.97: Interchannel time differences in ms for a pair of spaced microphones with a separation
of 15 cm.
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Figure 9.98: Interchannel time differences in ms for a pair of spaced microphones with a separation
of 30 cm.
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Figure 9.99: Interchannel time differences in ms for a pair of spaced microphones with a separation
of 45 cm.

Figure 9.100: Interchannel time differences in ms for a pair of spaced microphones with a separation
of 40 cm.
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Since we’ve been thinking of microphone pairs as panning algorithms,
we’ll continue to do so, but this time looking at the summed power output
of the pair. Since the power of a signal is proportional to the square of its
amplitude, this can be done using Equation 9.11.

O = S2
1 + S2

2 (9.11)

where O is the total output power of the two microphones.
In order to calculate this power response curve on a decibel scale, the

following equation is used:

O = 10 ∗ log10

(
S2

1 + S2
2

)
(9.12)

The question, of course, is “What will this tell us?” I’ll answer that
question using the example of a pair of coincident cardioid microphones.

Horizontal plane

Cardioids
Figure 9.101 shows the summed power response of a pair of coincident

cardioid microphones with an included angle of 90◦. as you can see, the total
power for sources with an angle of incidence of 0◦ is about 2 dB. As you rotate
away from the front of the pair, the summed power drops to a minimum of
about -12 dB directly behind. Remember from the previous chapter that
the 0◦ and 180◦ locations in the horizontal plane are the two positions where
the interchannel amplitude difference is 0 dB, therefore instruments in these
two locations will result in phantom images between the two loudspeakers,
however, we can now see that, although this is true, the two images will
differ in power by approximately 15 dB, with sources in the front of the
microphone pair being louder than those behind.

The range of the summed power for a pair of cardioids changes with
the included angle as is shown in Figures 9.101 through 9.104. In fact, the
smaller the included angle, the greater the range. As can be seen in Figure
9.102, the range of summed power is approximately 28 dB compared to only
3 dB for an included angle of 180◦. Also note that for larger included angles,
there are two symmetrical peaks in the power response rather than one at
an angle of incidence of 0◦.

Each of these analyses, in conjunction with their corresponding inter-
channel amplitude difference plot for the same included angle, gives us an
indication of the general distribution of energy across the reproduced sound
stage. For example, if we look at a pair of coincident cardioids with an
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Figure 9.101: Summed power response for a pair of coincident cardioid microphones in the horizontal
plane with an included angle of 90◦.
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Figure 9.102: Summed power response for a pair of coincident cardioid microphones in the horizontal
plane with an included angle of 45◦.
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Figure 9.103: Summed power response for a pair of coincident cardioid microphones in the horizontal
plane with an included angle of 135◦.
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Figure 9.104: Summed power response for a pair of coincident cardioid microphones in the horizontal
plane with an included angle of 180◦.
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included angle of 45◦, we can see that instruments, reflections and rever-
beration with an angle of incidence of 0◦ are much louder than those away
from the front of the pair. In addition, we can see from the ∆Amp. plot
that a large portion of sources around the pair will image near the centre
position between the loudspeakers. Consequently, the resulting sound stage
appears to “clump” in the middle rather than being spread evenly across
the playback room.

In addition, for smaller included angles, it can be seen that much more
emphasis is placed on sound sources and reflections in the front of the pair
with sources to the rear attenutated.

Subcardioids
Figures 9.105 through 9.108 show the summed power plots for the hor-

izontal plane of a pair of subcardioid microphones. As is evident, there is
a much smaller range of values than is seen in the cardioid microphones,
however the general shape of the curves are similar. As can be seen in these
plots, there is a more evenly distributed sensitivity to sound sources and
reflections around the microphone pair, however, due to the limited range of
values for ∆Amp., these sources typically image between the loudspeakers
as well.
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Figure 9.105: Summed power response for a pair of coincident subcardioid microphones in the
horizontal plane with an included angle of 45◦.

Bidirectionals
Due to the symmetrical double lobes of bidirectional microphones, they

exhibit a considerably different power response as can be seen in Figures
9.109 through 9.112. When the included angle of the microphones is 90◦,
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Figure 9.106: Summed power response for a pair of coincident subcardioid microphones in the
horizontal plane with an included angle of 90◦.
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Figure 9.107: Summed power response for a pair of coincident subcardioid microphones in the
horizontal plane with an included angle of 135◦.
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Figure 9.108: Summed power response for a pair of coincident subcardioid microphones in the
horizontal plane with an included angle of 180◦.

there is a constant summed power throughout all angles of incidence. Con-
sequently, all sources around the pair apper to have the same level at the
listening position, regardless of angle of incdence. If the included angle of
the pair is reduced as is shown in Figure 9.109, then we reduce the apparent
level of sources to the side of the microphone pair. When the included angle
is greater than 90◦, the dips in the power response happen directly in front
of and behind the microphone pair.

Notice as well that bidirectional pairs differ from cardioids in that the
high and low points in the summed power response are always in the same
locations – 0◦, 90◦, 180◦ and 270◦. They do not move with changes in
included angle, they simply change power level.

Note now that we are not talking about the absolute value of the sensi-
tivity of the microphones. This is because the calculation of power automat-
ically squares the sensitivity, thus making all values postive and therefore
making the logarithm happy...

Hypercardioids
Once again, hypercardioids behave like a hybrid between cardioids and

bidirectionals as can be seen in Figures 9.113 through 9.116.
Spaced omnidirectionals
It is typically assumed that the outputs levels of omnidirectional micro-

phones are identical, differing only in time of arrival. This assumption is
incorrect for sources whose distance to the pair is similar to the distance
between the mic’s, or when you’re using omnidirectionals that aren’t really
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Figure 9.109: Summed power response for a pair of coincident bidirectional microphones in the
horizontal plane with an included angle of 45◦.

−150 −100 −50 0 50 100 150
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10
Coincident Bidirectionals: Included angle = 90 deg

Angle of incidence (deg)

S
um

m
ed

 p
ow

er
 (

dB
)

Geoff Martin www.tonmeister.ca

Figure 9.110: Summed power response for a pair of coincident bidirectional microphones in the
horizontal plane with an included angle of 90◦.
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Figure 9.111: Summed power response for a pair of coincident bidirectional microphones in the
horizontal plane with an included angle of 135◦.
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Figure 9.112: Summed power response for a pair of coincident bidirectional microphones in the
horizontal plane with an included angle of 180◦.
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Figure 9.113: Summed power response for a pair of coincident hypercardioid microphones in the
horizontal plane with an included angle of 45◦.
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Figure 9.114: Summed power response for a pair of coincident hypercardioid microphones in the
horizontal plane with an included angle of 90◦.
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Figure 9.115: Summed power response for a pair of coincident hypercardioid microphones in the
horizontal plane with an included angle of 135◦.
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Figure 9.116: Summed power response for a pair of coincident hypercardioid microphones in the
horizontal plane with an included angle of 180◦.
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omnidirectional. Both cases happen frequently, but we’ll stick with the as-
sumption for this paper. As a result, we’ll assume that the summed power
output for a pair of omnidirectional microphones is +3 dB relative to either
of the microphones for all angles of rotation and elevation.

Three-dimensional analysis

As before, we can only get a complete picture of the response of the micro-
phones by looking at a three-dimensional response plot.

Cardioids

Figure 9.117: Summed power response for a pair of coincident cardioid microphones with an included
angle of 90◦.

The three dimensional plots for cardioids hold no surprises. As we can
see, for smaller included angles as is shown in Figure 9.118, the range of
values for the summed power is quite wide, with the high and low points
being at the front and rear of the pair respectively, on the “equator.”

If the included angle is increased beyond 90◦, then two high points in the
power response appear on either side of the front of the pair. Meanwhile, as
was seen in the two-dimensional analyses, the overall range is reduced with
a smaller attenuation behind the pair.

Subcardioids
Again, subcardioid microphones behave similar to cardioids with a smaller

range in their summed power response.
Bidirectionals
Bidirectional microphone pairs have a rather interesting property at 90◦.

Note in Figure 9.128 that the contour plot for the summed power for the
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Figure 9.118: Summed power response for a pair of coincident cardioid microphones with an included
angle of 45◦.
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Figure 9.119: Summed power response for a pair of coincident cardioid microphones with an included
angle of 90◦.
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Figure 9.120: Summed power response for a pair of coincident cardioid microphones with an included
angle of 135◦.
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Figure 9.121: Summed power response for a pair of coincident cardioid microphones with an included
angle of 180◦.
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Figure 9.122: Summed power response for a pair of coincident subcardioid microphones with an
included angle of 90◦.
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Figure 9.123: Summed power response for a pair of coincident subcardioid microphones with an
included angle of 45◦.
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Figure 9.124: Summed power response for a pair of coincident subcardioid microphones with an
included angle of 90◦.
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Figure 9.125: Summed power response for a pair of coincident subcardioid microphones with an
included angle of 135◦.
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Figure 9.126: Summed power response for a pair of coincident subcardioid microphones with an
included angle of 180◦.

Figure 9.127: Summed power response for a pair of coincident bidirectional microphones with an
included angle of 90◦.
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microphone pair shows a number of horizontal lines. This means that if you
have a sound source at a given angle of elevation, changes in the angle of
rotation will have no effect on the apparent level of the sound source. This,
in turn, means that all sources at a given angle of elevation have the same
apparent total gain.

Additionally, notice that the point where the total power is the greatest
is the horizontal plane, with a value of 0 dB with decreasing level as we
move away from the equator.
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Figure 9.128: Summed power response for a pair of coincident bidirectional microphones with an
included angle of 90◦.

As was seen in the two-dimensional plots, included angles of less than
90◦ cause the high points in the power plots to occur at the front and rear
of the pairs as is shown in Figure 9.129. Notice that, unlike the cardioid
and subcardioid pairs, the minimum points (with a value of −∞ dB) are
directly above and below the microphone pair. This is true for bidirectional
pairs with any included angle.

As can be seen in Figures 9.130 and 9.131, when the included angle is
greater than 90◦, the behavour of the pair is exactly the same as the symmet-
rical included angle less than 90◦, with a 90◦ rotation in the behavour. For
example, pairs with included angles of 70◦ and 110◦ (symmetrical around
90◦) have identical responses, but where the 70◦ pair is “pointing” forward,
the 110◦ pair is “pointing” sideways.

Hypercardioids
Finally, as we have seen before, the hypercardioid pairs exhibit a response

pattern that is a combination of the cardioid and bidirectional patterns. One
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Figure 9.129: Summed power response for a pair of coincident bidirectional microphones with an
included angle of 45◦.
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Figure 9.130: Summed power response for a pair of coincident bidirectional microphones with an
included angle of 135◦.
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Figure 9.131: Summed power response for a pair of coincident bidirectional microphones with an
included angle of 180◦.

important thing to note here is that, although the location with the highest
summed power value is on the horizontal plane as in the case of the cardioid
microphones, the point of minimum power is between the equator and the
poles in all cases but an included angle of 180◦.

9.4.4 Correlation

Finally, we’ll take a rather holistic view of the pair of microphones and take
a look at the correlation coefficient of their outputs. This can give us a
general idea of the similarity of the two signals which could be interpreted
as a sensation of spaciousness. We have to be very careful here in making
this jump between correlation and spaciousness as will be discussed below,
but first, we’ll look at exactly what is meant by the term “correlation.”

Correlation Coefficient

The term “correlation” is one that is frequently misused and, as a result, mis-
understood in the field of audio engineering. Consequently, some discussion
is required to define the term. Generally speaking, the correlation of two au-
dio signals is a measure of the relationship of these signals in the time domain
[Fahy, 1989]. Specifically, given two two-dimensional variables (in the case of
audio, the two dimensions are amplitude and time), their correlation coeffi-
cient, r is calculated using their covariance sxy and their standard deviations
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Figure 9.132: Summed power response for a pair of coincident hypercardioid microphones with an
included angle of 90◦.
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Figure 9.133: Summed power response for a pair of coincident hypercardioid microphones with an
included angle of 45◦.



9. Audio Recording 713

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

Angle of Rotation (deg)

A
ng

le
 o

f E
le

va
tio

n 
(d

eg
)

Coincident Hypercardioids: Included angle = 90 deg

0
0

0

−1

−1

−1

−1

−5

−5 −5

−5

−5

−5

−5

−10

−10

−10

−10

−10

−10

−10

−10

−15

−15

−15

−15

−20

−20

−20

−20

−25

−25

−25

−25

Geoff Martin www.tonmeister.ca

Figure 9.134: Summed power response for a pair of coincident hypercardioid microphones with an
included angle of 90◦.
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Figure 9.135: Summed power response for a pair of coincident hypercardioid microphones with an
included angle of 135◦.
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Figure 9.136: Summed power response for a pair of coincident hypercardioid microphones with an
included angle of 180◦.

sx and sy as is shown in Equation 9.13 [Wasserman and Whitmore, 1992].
The line over these three components indicates a time average, as is dis-
cussed below.

r =
sxy

sx ∗ sy
(9.13)

The standard deviation of a series of values is an indication of the average
amount the individual values are different from the total average for all
values. Specifically, it is the square root of the average of the squares of
the differences between the average of all values and each individual value.
For example, in order to find the standard deviation of a PCM digital audio
signal, we begin by finding the average of all sample values. This will likely
be 0 since audio signals typically do not contain a DC offset. Each sample
is then individually subtracted from this average and each result is squared.
The average of these squares is calculated and its square root is the standard
deviation. When there is no DC component in an audio signal, its standard
deviation is equal to its RMS value. In such a situation, it can be considered
the square root of the average power of the signal.

The covariance of two series of values is an indication of whether they
are interrelated. For example, if the average temperature for today’s date
is 19◦ C and the average humidity is 50%, yet today’s actual tempera-
ture and humidity are 22◦ C and 65%, we can find whether there is an
interdependent relationship between these two values, called the covariation
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[Wasserman and Whitmore, 1992]. This is accomplished by multiplying the
differences of today’s values from their respective averages, therefore (19
– 22) * (50 – 65) = 45. The result of this particular calculation, being a
positive number, indicates that there is a positive relationship between the
temperature and humidity today – in other words, if one goes up, the other
does also. Had the covariation been negative, then the relationship would
indicate that the two variables had behaved oppositely. If the result is 0,
then at least one of the variables equalled the average value. The covariance
is the average of the covariations of two variables measured over a period
of time. The difficulty with this measurement is that its scale changes ac-
cording to the scale of the two variables being measured. Consequently,
covariance values for different statistical samples cannot be compared. For
example, we cannot tell whether the covariance of air temperature and hu-
midity is greater or less than the covariance of the left and right channels in
a stereo audio recording if both have the same polarity.

Fortunately, if the standard deviations of the two signals are multiplied,
the scale is identical to that of the covariance. Therefore, the correlation
coefficient (the covariance divided by the product of the two standard de-
viations) can be considered to be a normalised covariance. The result is a
value that can range from -1 to 1 where 1 indicates that the two signals have
a positive linear relationship (in other words, their slopes always have the
same polarity). A correlation coefficient of -1 indicates that the two signals
are negatively linearly related (therefore, their slopes always have opposite
polarities). In the case of wide-band signals, a correlation of 0 usually in-
dicates that the two signals are either completely unrelated or separated in
time by a delay greater than the averaging time.

In the particular case of two sinusoidal waveforms with identical fre-
quency and a constant phase difference ωτ , Equation 9.13 can be simplified
to Equation 9.14 [Morfey, 2001].

r = cos(ωτ) (9.14)

where the radian frequency ω is defined in Equation 9.15 [Strawn, 1985]
and where τ is the time separation of the two sinusoids.

ω42πf (9.15)

where the symbol 4 denotes “is defined as” and f is the frequency in
Hz.

Further investigation of the topic of correlation highlights a number of
interesting points. Firstly, two signals of identical frequency and phase have
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a correlation of 1. It is important to remember that this is true regardless of
the amplitudes of the two signals [Welle, ]. Two signals of identical frequency
and with a phase difference of 180◦ have a correlation of -1. Signals of
identical frequency and with a phase difference of ±90◦ have a correlation
of 0. Finally, it is important to remember that the correlation between two
signals is highly dependent on the amount of time used in the averaging
process.

So what?

In the field of perception of concert hall acoustics, it has long been known
that there is a link between Interaural Cross Correlation (IACC) and a per-
ceived sensation of diffuseness and auditory source width (ASW)[Ando, 1998].
(IACC is a measure of the cross correlation between the signals at your two
ears.) The closer the IACC approaches 1, the lower the subjective impres-
sion of diffuseness and ASW. The lower the IACC, the more diffuse and
wider the perceived sound field.

One of the nice things about recording is that you can control the IACC
at the listening position by controlling the interchannel correlation coef-
ficient. Although the interchannel correlation coefficient doesn’t directly
correspond to the IACC, they are related. In order to figure out the exact
relationship bewteen these two measurements, you’ll also need to know a
little bit about the room that the speakers are in.

There are a couple of things to remember about interchannel correlation
that we have to remember before we start talking about microphone response
characteristics.

1. When the correlation coefficient is 1, this is an indication that the
information in the two channels is identical in every respect with the
possible exception of level. This also means that, if the two channels
are added, none of the information will be reduced due to destructive
interference.

2. When the correlation coefficient is 0, this is an indication of one of
three situations. Either (1) you have signal in one channel and none
in the other, (2) you have two completely different signals, or (3) you
have two sinusoids that are separated by 90◦.

3. When the correlation coefficient is -1, you have two signals that are
identical in every respect except polarity and possibly level.
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4. When the correlation coefficient is positive or negative, but not 1 or
-1, this is an indication that the two signals are partially alike, but
differ in one or more of a number of ways. This will be discussed as is
required below.

Free field

A free-field situation is one where the waveform is free to expand outwards
forever. This typically only happens in thought experiments, however we
typically assume that the situation exists in anechoic chambers and on the
top of poles outdoors. To extend our assumptions even further, we can
simplify the direct sound from a sound source received at a microphone to be
considered as a free field source. Consequently, the analysis of a microphone
pair in a free field becomes applicable to real life.

Coincident pairs
If we convert Equation 9.13 to something that represents the signal at

the two microphones, then we wind up with Equation 9.16 below.

r{α,φ} =
S1S2√
S2

1

√
S2

2

(9.16)

where r is the correlation coefficient of the outputs of the two micro-
phones with sensitivities S1 and S2 for the angles of rotation α and elevation
φ.

Luckily, this can be simplified to Equation 9.17.

r{αφ} = sign (S1S2) (9.17)

where the function sign(x) indicates the polarity of x. sign(x) = 1 for
all x > 0, sign(x) = −1 for all x < 0 and sign(x) = 0 for all x = 0

This means that, for coincident omnidirectional, subcardioid and car-
dioid microphones, all free field sources have a correlation of 1 all the time.
This is because the only theoretical difference between the outputs of the
two microphones is in their level. The only exception here is the particu-
lar case of a sound source located exactly at the null point for one of the
cardioids in a pair. In this location, the correlation coefficient of the two
outputs will be 0 because one of the channels contains no signal.

In the case of hypercardioids and bidirectionals, the value of the corre-
lation coefficient for variou free field sources will be either 1, 0 or -1. In
locations where the polarities of the two signals are the same, either both
positive or both negative, then the correlation coefficient will be 1. Sources
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located at the null point of at least one of the microphones will produce a
correlation coefficient of 0. Sources located in positions where the receiving
lobes have opposite polarities (for example, to the side of a Blumlein pair
of bidirectionals), the correlation coefficient will be -1.

Spaced omnidirectionals
As was discussed above, spaced omnidirectional microphones are used

under the (usually incorrect) assumption that the only difference between
the two microphones in a free field situation will be their time of arrival. As
was shown in Figure 9.69, this time separation is dependent on the spatial
separation of the two microphones and the angles of rotation and elevation
of the source to the pair.

The result of this time of arrival difference caused by the extra propa-
gation distance is a frequency-dependent phase difference between the two
channels. This interchannel phase difference ωτ can be calculated for a given
additional propagation distance using Equation 9.18.

ωτ =
2πD

λ
(9.18)

where λ is the acoustic wavelength in air.
This can be further adapted to the issue of microphone separation and

angle of incidence by combining Equations 9.3 and 9.18, resulting in Equa-
tion 9.19.

ωτ{ϑ,φ} = kd sinϑ cos φ (9.19)

where ωτ{ϑ,φ} is the frequency-dependent phase difference between the
channels for a sound source at angle of rotation ϑ, angle of elevation φ, and
k is the acoustic wavenumber, defined in Equation 9.20 [Morfey, 2001].

k4ω

c
(9.20)

where c is the speed of sound in air.
Consequently, we can calculate the correlation coefficient for the outputs

of two omnidirectional microphones with a free field source using the model
of a single signal correlated with a delayed version of itself. This is calculated
using Equation 9.21.

r = cos (ωτ) (9.21)

All we need to do is to insert the phase difference of the two microphones,
calculated using Equation 9.19 into this equation and we’ll see that the
correlation coefficient is a complete mess.
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So now the question is “do we care?” The answer is “probably not.”
Why not? Well, the correlation coefficient in this case is dependent on the
phase relationship between the two signals. Typically, if you present a signal
to a pair of loudspeakers where the only difference is their time of arrival
at the listening position, then you probably aren’t paying attention to their
phase difference – it’s more likely that you’re more interested in their time
difference. This is because the interaural time of arrival difference is such a
strong cue for localization of sources in the real world. Even for something
we’d consider to be a “steady state” source like a melodic instrument playing
slow music, the brain is grabbing each little cue it can to determine the
time relationship. The only time the interchannel phase information (and
therefore the free field correlation coefficient) is going to be the predominant
cue is if you listen to sinusoidal waves – and nobody wants to do that...

Diffuse field

Now we have to talk about what a diffuse field is. If we get into the offi-
cial definition of a diffuse field, then we have to have a talk about things
like infinity, plane waves, phase relationships and probability distribution...
maybe some other time... Instead, let’s think about a diffuse field in a
couple of different, equally acceptable ways. One way is to think that you
have sound coming from everywhere simultaneously. Another way is that
you have sound coming from different directions in succession with no time
inbetween their arrival.

If we think of reverberation as a very, very big number of reflections
coming from all directions in fast succession, then we can start to think of
what a diffuse field is like. Typically, we like to think of reveberation as a
diffuse field – this is particularly true for the people that make digital reverb
units because it’s much easier to create random messes that sort of sound
like reverb than it is to calculate everything that happens to sound as it
bounces around a room for a couple of seconds.

We need to pay a lot of attention to the correlation coefficient of the
diffuse component of the recorded signal. This can be used as a rough
guide to the overall sense of “spaciousness” (or whatever word you wish
to use – this area creates a lot of discussion) in your recording. If you
have a correlation coefficient of 1, this will probably mean that you have a
reverberant sound that is completely clumped into one location between the
two loudspeakers. The only possible exception to this is if your signals are
going to the adjacent pair of front and surround loudspeakers (i.e. Left and
Left Surround) where you’ll find it very difficult to obtain a single phantom
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location.
If your correlation coefficient is -1, then you have what most people call

two “out of phase” signals, but what they really are is identical signals with
opposite polarity.

If your correlation coefficient is 0, then there could be a number of dif-
ferent explanations behind the result. For example, a pair of coincident
bidirectionals with an included angle of 90◦ will have a correlation coeffi-
cient of 0. If we broke the signals hitting the two diaphragms into individual
sounds from an infinite number of sources, then each one would have a corre-
lation coefficient of either 1 or -1, but since there are as many 1’s as -1’s, the
whole diffuse field averages out to a total correlation of 0. Although the two
signals appear to be completely uncorrelated according to the math, there
will be an even distribution of sound between the speakers (because there
are some components in there that have a correlation of 1, remember...)

On the other hand, if we take two omnidirectional microphones and put
them very, very far apart – let’s put them in completely different rooms to
start, then the two signals are completely unrelated, therefore the correla-
tion coefficient will be 0 and you’ll get an image with no phantom sources
at all – just two loudspeakers producing a pocket of sound. The same is
true if you place the omni’s very far apart in the same concert hall (you’ll
sometimes see engineers doing this for their ambience microphones). The
resulting correlation coefficient, as we’ll see below, will also be 0 because the
sound fields at the two locations will sound similar, but they’ll be completely
unrelated. The result is a hall with a very large hole in the middle – because
there are no correlated components in the two signals, there cannot be an
even spread of energy between the loudspeakers.

The moral of the story here is that, in order to keep a “spacious” sound
for your reverb, you have to keep your correlation coefficient close or equal
to 0, but you can’t just rely on that one number to tell you everything.
Spacious isn’t necessarily pretty, or believable...

Coincident pairs
Calculating the correlation of the outputs of a pair of coincident micro-

phones is somewhat less than simple. In fact, at the moment, I have to
confess that I really don’t know the correct equation for doing this. I’ve
searched for this piece of information in all of my books, and I’ve asked
everyone that I think would know the answer, and I haven’t found it yet.
So, I wrote some MATLAB code to model the situation instead of doing
the math the right way. In other words, I did a numberical calculation to
produce the plots in Figures 9.137 and 9.138, but this should give us the
right answer.
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Some of the characteristics see in Figure 9.137 should be intuitive. For
example, if you have a pair of coincident omnidirectional microphones in
a diffuse field, then the correlation coefficient of their outputs will be 1
regardless of their included angle. This is because the outputs of the two
mic’s will be identical no matter what the angle.

Also, if you have any matched pair of microphones with an included angle
of 0◦, then their outputs will also be identical and the correlation coefficient
will be 1.

Finally, if you have a pair of matched bidirectional microphones with an
included angle of 180◦, then their outputs will be identical but opposite in
polarity, therefore their correlation coefficient will be -1.

Everything else on that plot will be less obvious.
Just in case you’re wondering, here’s how I calculated the two graphs in

Figures 9.137 and 9.138.
If you have a pair of coincident bidirectional microphones with an in-

cluded angle of 90◦ in a diffuse field, then the correlation coefficient of their
outputs will be 0. This is somewhat intuitive if we think that half of the field
entering the microphone pair will have a correlation of 1 (all of the sound
coming from the front and rear of the pair where the lobes have matched
polarities) while the other half of the sound field results in a correlation
of -1 (because it’s entering the sides of the pair where you have opposite
polarity lobes.) Since the area producing the correlation of 1 is identical to
the area producing the correlation of -1, then the two cancel each other out
and produce a correlation of 0 for the whole.

Similarly, if we have a coincident bidirectional and an omnidirectional in
a diffuse field, then the correlation coefficient of their outputs will also be 0
for the same reason.

As we’ll see in Section 9.5, if you have a coincident trio of microphones
consisting of two bidirectionals at 90◦ and an omni, then you can create a
microphone pointing in any direction in the horizontal plane with any polar
pattern you wish – you just need to know what the relative mix of the three
mic’s should be.

Using MATLAB, I produced three uncorrelated vectors containing a
bunch of 10000 random numbers, each vector representing the output of
each of the three microphones in that magic array described in the previous
paragraph sitting in a noisy diffuse field. I then made two mixes of the
three vectors to produce a simulation of a given pair of microphones. I then
simply asked MATLAB to give me the correlation coefficient of these two
simulated outputs.

If someone could give me the appropriate equation to do this the right
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way, I would be very grateful.
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Figure 9.137: Correlation coefficients in the horizontal plane of a diffuse field for coincident omni-
directionals (top), subcardioids, cardioids, hypercardioids and bidirectionals (bottom) with included
angles from 0◦ through 180◦.

Spaced omnidirectionals
If we have a pair of omnidirectionals spaced apart in a diffuse field, then

we can intuitively get an idea of what their correlation coefficient will be. At
0 Hz, the pressure at the two locations of the microphones will be the same.
This is because the sound pressure variations in the room are all varying
the day’s barometric pressure which is, for our purposes, 0 Hz. At very low
frequencies, the wavelengths of the sound waves going past the microphones
will be longer than the distance between the mic’s. As a result, the two
signals will be very correlated because the phase difference between the
mic’s is small. As we go higher and higher in frequency, then the correlation
should be less and less, until, at some high frequency, the wavelengths are
much smaller than the microphone separation. This means that the two
signals will be completely unrelated and the correlation coefficient goes to
0.

In fact, the relationship is a little more complicated than that, but not
much. According to Kutruff [Kutruff, 1991], the correlation coefficient of
two spaced locations in a theoretical diffuse field can be calculated using
Equation 9.22.

r =
sin(kd)

kd
(9.22)

where k is the “wave number.” This is a slightly different way of saying
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Figure 9.138: Correlation coefficients in the horizontal plane of a diffuse field for coincident micro-
phones with an included angle of 180◦ and various values of P (remember that G = 1 - P).

“frequency” as can be seen in Equation 9.23 below (also see Equation 9.20).

k =
2πf

c
(9.23)

Note that k is proportional to frequency and therefore inversely propo-
rational to wavelength.

If we were to calculate the correlation coefficient for a given microphone
separation and all frequencies, the plot would look like Figure 9.139. Note
that changes in the distance between the mic’s will only change the frequency
scale of the plot – the closer the mic’s are to each other, the higher the
frequency range of the area of high correlation.

9.4.5 Conclusions
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9.5 Matrixed Microphone Techniques

9.5.1 MS

Also known as Mid-Side or Mono-Stereo
We have already seen in Section ?? that any microphone polar pattern

can be created by mixing an omnidirectional with a bidirectional micro-
phone. Let’s look at what happens when we mix other polar patterns.

Virtual Blumlein

We’ll begin with a fairly simple case – two bidirectional microphones, one
facing forward towards the middle of the stage (the “mid” microphone) and
the other facing to the right (the “side” microphone). If we plot these two
individual polar patterns on a cartesian plot the result will look like Figure
9.140.
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Figure 9.140: Two bidirectional microphones with an included angle of 90◦, with one facing forward
(blue line) and the other facing to the right (red line).

The same can be shown as the more familiar polar plot, displayed in
Figure 9.141.

Now, let’s take those two microphone outputs and, instead of sending
them to the left and right outputs as we normally do with stereo microphone
configurations, we’ll send them both to the right output by panning both
channels to the right. We’ll also drop their two levels by 3 dB while we’re
at it (we’ll see why later...)
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Figure 9.141: A polar plot showing the same information as is shown in Figure 9.140

What will be the result? We can figure this out mathematically as is
shown in the equation below.

Stotal = 0.707Smid + 0.707Sside (9.24)

= 0.707
(
cos(ϑ) + cos(ϑ +

π

2
)
)

(9.25)

= cos
(
ϑ +

π

4

)
(9.26)

If we were to plot this, it would look like Figure 9.142.
You will notice that the result is a bidirectional microphone aimed 45◦

to the right. This shouldn’t really come as a big surprise, based on the
assumption that you’ve read Section 1.4 way back at the beginning of this
book.

In fact, using the two bidirectional microphones arranged as shown in
Figure 9.140, you can create a “virtual” bidirectional microphone facing in
any direction, simply by adding the outputs of the two microphones with
carefully-chosen gains calculated using Equations 9.27 and 9.28.

M = cos σ (9.27)

S = sinσ (9.28)
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Figure 9.142: The resulting sensitivity pattern of the sum of the two bidirectional microphones
shown in Figure 9.140 with levels dropped by 3 dB.

where M is the gain applied to the mid bidirectional, S is the gain
applied to the side bidirectional and σ is the desired on-axis angle of the
virtual bidirectional.

One important thing to notice here is that, for some desired angles of
the virtual bidirectional microphone, you’re going to have a negative gain
on at least one of your microphones – possibly both of them. This, however,
is easy to accomplish on your average mixing console. You just have to hit
the polarity flip switch.

So, now we’ve seen that, using only two bidirectional microphones and
a little math, you can create a bidirectional microphone aimed in any di-
rection. This might be particularly useful if you don’t have time to do a
sound check before you have to do a recording (yes... it does happen occa-
sionally). If you set up a pair of bidirectionals, one mid and one side and
record their outputs straight to a two-track, you can do the appropriate
summing later with different gains for your two stereo outputs to create a
virtual pair of bidirectional microphones with an included angle that is com-
pletely adjustable in post-production. The other beautiful thing about this
technique is that, if you are using bidirectional microphones whose front and
back lobes are matched to each other on each microphone, your resulting
matrixed (summed) outputs will be a perfectly matched pair of bidirection-
als – even if your two original microphones are not matched... they don’t
even have to be the same brand name or model... Let’s say that you really
like a Beyer M130 ribbon microphone for its timbre, but the SNR is too
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low to use to pick up the sidewall reflections, you can use it for the mid,
and something like a Sennheiser MKH30 for the side bidirectional. Once
they’re matrixed, your resulting virtual pair of microphones (assuming that
you have symmetrical gains on your two outputs) will be perfectly matched.
Cool huh?

Traditional MS

You are not restricted to using two similar polar patterns when you use ma-
trixing in your microphone techniques. For example, most people when they
think of MS, think of a cardioid microphone for the mid and a bidirectional
for the side. These two are shown in Figures 9.143 and 9.144.
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Figure 9.143: Two microphones with an included angle of 90◦, with one forward-facing cardioid
(blue line) and a side-facing bidirectional (red line).

What happens when we mix the outputs of these two microphones? Well,
in order to maintain a constant on-axis response for the virtual microphone
that results, we know that we’re going to have to attenuate the outputs of
the real microphones before mixing them. So, let’s look at an example of
the cardioid reduced by 6.02 dB and the bidirectional reduced by 3.01 dB
(we’ll see why I chose these particular values later). If we were to express
the sensitivity of the resulting virtual mic as an equation it would look like
Equation 9.29

Svirtual = 0.5(0.5 + 0.5 cos(ϑ)) + 0.707(cos(ϑ− π

4
)) (9.29)

What does all this mean? Svirtual is the sensitivity of the virtual micro-
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Figure 9.144: Two microphones with an included angle of 90◦, with one forward-facing cardioid
(blue line) and a side-facing bidirectional (red line).

phoneThe first 0.5 is there because we’re dropping the level of the cardioid by
6 dB, similarly the 0.707 is there to drop the output of the bidirectional by 3
dB. The output of the cardioid should be recognizable as the 0.5+0.5 cos(ϑ).
The bidirectional is the part that says cos(ϑ− π

4 ). Note that the π
4 is there

because we’ve turned the bidirectional 90◦. (An easier way to say this is to
use sin(ϑ) instead – it will give you the same results.

If we graph the result of Equation 9.29 it will look like Figure 9.145.
Note that the result is a traditional hypercardioid pattern “aimed” at 71◦.

There is a common misconception that using a cardioid and a bidirec-
tional as an MS pair will give you a pair of virtual cardioids with a con-
trollable included angle. This is not the case. The polar pattern of the
virtual microphones will change with the included angle. This can be seen
in Figure 9.146 which shows 10 different balances between the cardioid mid
microphone and the bidirectional side.

LINK TO ANIMATION
How do you know what the relative levels of the two microphones should

be? Let’s look at the theory and then the practice.
Theory
If you wanted to maintain a constant on-axis sensitivity for the virtual

microphone as it rotates, then we could choose an arbitrary number n and
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Figure 9.145: The resulting sensitivity of a forward-facing cardioid with an attenuation of 6.02 dB
and a side-facing bidirectional with an attenuation of 3.01 dB. Note that the result is a traditional
hypercardioid pattern “aimed” at 71◦.
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Figure 9.146: The result of the sum of a forward-facing cardioid and a side-facing bidirectional for
ten different balances. Notice that the polar patten changes from cardioid to bidirectional as the
angle of rotation changes from 0◦ to 90◦.
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do the math in Equations 9.30 and 9.31:

M = 0.5 + 0.5 cos(n) (9.30)

S = sin(
n

2
) (9.31)

This M and S are the gains to be applied to the cardioid and bidirectional
feeds, respectively. If you were to graph this relationship it would look like
Figure 9.147.
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Figure 9.147: The gains applied to the mid cardioid (blue) and the side bidirectional (red) required
to maintain a constant on-axis sensitivity for the virtual microphone as it rotates from 0◦ to 90◦.
Note that the x-axis of the graph does not directly correspond directly with any angle, however it
is non-linearly related to the direction in which the virtual microphone is aimed.

You’ll notice that I haven’t spent much time on this theoretical side.
This is because it has so little to do with the practical usage of MS mic’ing.
If you wanted to really do this the right way, then I’d suggest that you do
things a slightly different way. Use the math in Section 9.5.1 to create a
virtual bidirectional pointing in the desired direction, then add some omni
to produce the desired polar pattern. This idea will be elaborated in Section
9.5.2.

Practice
Okay, if you go to do an MS recording, I’ll bet money that you don’t

bring your calculator along to do any of the math I just described. Use the
following steps...

1. Arrange your microphones such that the cardioid is pointing forwards
and the positive lobe of the bidirectional is pointing to the right.
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2. Pan your cardioid to the centre.

3. Split the output of your bidirectional to two male XLR connectors
using a splitter cable.

4. Pan the two parallel outputs of your bidirectional to hard left and hard
right.

5. Flip the polarity of the left-panned bidirectional channel.

6. While monitoring the output of the mixer...

7. Bring up just the cardioid channel. Listen to this. It should be a mono
signal in the centre of your stereo image.

8. While dropping the level of the cardioid, bring up the two bidirec-
tional channels. The image should get wider and farther away. When
you have bidirectional-only, you should hear an “out-of-phase” (i.e.
opposite polarity) signal of mostly sidewall reflections.

9. Adjust the balance of the cardioid and the bidirectional channels to
the desired image spread.

Don’t feel obliged to keep your two bidirectional gains equal. Just re-
member that if they’re not, then the polar patterns of your two virtual
microphones are not matched. Also, they will not be aimed symmetrically,
but that might be a good thing... People listening to the recording at home
won’t know whether you used a matched pair of microphones or not.

9.5.2 Ambisonics

To a large portion of the population who have enountered the term, “Am-
bisonics” generally means one of two things :

1. A method of quadaphonic playback which was as unsuccessful as the
QD systems in the 1970’s.

2. A strange British recording technique which uses a soundfield micro-
phone which may or may not be reproduced using 4 loudspeakers in
the 4 corners of the room.

In actual fact, is really neither of these things. Ambisonics is more of
a mathematical concept and technique which is an attempt to reproduce
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a recorded soundfield. This idea differs from most stereo and surround
recordings in that the intention is to re-create the acoustic wavefronts which
existed in the space at the time of the recording rather than to synthesize
an interpretation of an acoustic event.

Theory

Go to a room (you may already be in one...) and put a perfect omnidirec-
tional microphone in it. As we discussed in Section ??, an omnidirectional
microphone is also known as a pressure transducer which means that it re-
sponds to the changes in air pressure at the diaphragm of the microphone.
If you make a perfect recording of the output of the perfect omnidirectional
microphone when stuff is happening in the room, you have captured a record
(here, I’m using the word “record” as in a historical record, not as in a record
that you buy at a record shop from a record lady[Lovett, 1994]) of the change
in pressure over time at that location in that room on that day. If, at a later
date, you play back that perfect recording over a perfect loudspeaker in a
perfectly anechoic space, then you will hear a perfect representation (think
“re-presentation”) of that historical record. Interestingly, if you have a per-
fect loudspeaker and you’re in a perfectly anechoic space, then what you
hear from the playback is exactly what the microphone “heard” when you
did the recording.

This is a good idea, however, let’s take it a step farther. Since a pres-
sure transducer has an omnidirectional polar pattern, we don’t have any
information regarding the direction of travel of the sound wavefront. This
information is contained in the velocity of the pressure wave (which is why a
single directional microphone of any sort must have a velocity component).
So, let’s put up a perfect velocity microphone in the same place as our per-
fect pressure microphone. As we saw in Section ?? a velocity microphone
(if we’re talking about directional characteristics and not transducer design)
is a bidirectional microphone. Great, so we put a bidirectional mic facing
forward so we can tell if the wave is coming from the front or the rear. If
the outputs of the omni and the bidirectional have the same polarity, then
the sound source is in the front. If they’re opposite polarity, then the sound
source is in the rear. Also, we can see from the relative levels of the two mic
outputs what the angle to the sound source is, because we know the relative
sensitivities of the two microphones. For example, if the level is 3 dB lower
in the bidirectional than the omni and both have the same polarity, then the
sound source must be 45◦ away from directly forward. The problem is that
we don’t know if it’s to the left or the right. This problem is easily solved by
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putting in another bidirectional microphone facing to the side. Now we can
tell, using the relative polarities and outputs of the three microphones where
the sound source is... but we can’t tell what the sound source elevation is.
Again, no problem, we’ll just put in a bidirectional facing upwards.

So, with a single omni and three bidirectionals facing forward, to the
right and upwards, we can derive all sorts of information about the location
of the sound source. If all four microphones have the same polarity, and the
outputs of the three bidirectionals are each 3 dB below the output of the
omni, then the sound source must be 45◦ to the right and 45◦ up from the
microphone array.

Take a look at the top example in Figure 9.148. We can see here that
if the sound source is directly in front of the microphone array, then we get
equal positive outputs from the omni (we’ll call this the W channel) and the
forward-facing bidirectional (we’ll call that one the Y channel) and nothing
from the side-facing bidirectional (the X channel). Also, if I had been keen
and did a 3D diagram and drawn the upwards-facing bidirectional (the Z
channel), we’d see that there was no signal from that one either if the sound
source is on the same horizontal plane as the microphones.

Let’s record the pressure wave (using the omni mic) and the velocity, and
therefore the directional information (using the three bidirectional mic’s)
on a perfect four-channel recorder. Can we play these channels back to
reproduce all of that information in our anechoic listening room? Take a
look at Figure 9.149.

Let’s think about what happens to the sound source in the top example
in Figure 9.148 if we play back the W, X, and Y channels through the system
in Figure 9.149. In this system, we have four identical loudspeakers placed
at 0◦, 180◦, and ±90◦. These loudspeakers are all identical distances from
the sweet spot.

The top example in Figure 9.148 results in a positive spike in both the W
and Y channels, and nothing in the X channel. As a result, in the playback
system:

• the front loudspeaker produces a positive pressure.

• The two side speakers produce equal positive pressures that are one-
third the outputs of the front (because there’s nothing in the X channel
and they don’t play the Y channel.

• Finally, the rear speaker produces a negative pressure at one-third the
output of the front loudspeaker because the information in the W and
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Figure 9.148: Top views of a two-dimensional version of the system described in the text. These
are three examples showing the relationship between the outputs of the omnidirectional and two of
the bidirectional microphones for sound sources in various locations producing a positive impulse.



9. Audio Recording 736

W+2Y

W+2XW-2X

W-2Y

Front

Figure 9.149: A simple configuration for playing back the information captured by the three micro-
phones in Figure 9.148.

the negative Y channels cancel each other a little when they’re mixed
together at the speaker, but the negative signal is louder.

The loudspeakers produce a signal at exactly the same time, and the
different waves will propagate towards the sweet spot at the same speed. At
the sweet spot, the waves all add together (think of adding vectors together)
to produce a resulting pressure wave that has a velocity that is moving
towards the rear loudspeaker (because the two side speakers push equally
against each other, so there’s no sideways velocity, and because the front
speaker is pushing towards the rear one which is pulling the wave towards
itself).

If we used perfect microphones and a perfect recording system and per-
fect loudspeakers, the result, at the sweet spot in the listening room, is that
the sound wave has exactly the same pressure and velocity components as
the original wave that existed at the microphones’ position a the time of the
recording.

Consequently, we say that we have re-created the soundfield in the
recording space. If we pretend that the sound wave has only two com-
ponents, the pressure and the velocity, then our perfect system perfectly
duplicates reality.
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As an exercise, before you keep reading, you might want to consider
what will come out of the loudspeakers for the other two examples in Figure
9.148.

So far, what we’ve got here is a simple first-order Ambisonics system.
The collective outputs of the four microphones is what as known as an
Ambisonics B-Format signal. Notice that the B-Format signal contains all
four channels. If we wanted to restrict ourselves to just the horizontal plane,
we can legally leave out the Z -channel (the upwards-facing bidirectional).
This is legal because most people don’t have loudspeakers in their ceiling and
floors... not good ones anyways... The Ambisonics people have fancy names
for their two versions of the system. If we include the height information
with the Z -channel, then we call it a periphonic system (think periscope
and you’ll remember that there’s stuff above you...). If we leave out the
Z -channel and just capture and playback the horizontal plan directional
information, then we call it a panphonic system (think stereo panning or
panoramic).

Let’s take this a step further. We begin by mathematically describing
the relationship between the angle to the sound source and the sensitivity
patterns (and therefore the relative outputs) of the B-format channels. Then
we define the mix of each of these channels for each loudspeaker. That mix is
determined by the angle of the loudspeaker in your setup. It’s generally as-
sumed that you have a circle of loudspeakers with equal apertures (meaning
that they are all equally spaced around the circle). Also, notice that there
is an equation to define the minimum number of loudspeakers required to
accurately reproduce the Ambisonics signal. These equations are slightly
different for panphonic and periphonic systems

One important thing to notice in the following equations is that, at its
most complicated (meaning a periphonic system), a first-order Ambisonics
system has only 4 channels of recorded information within the B-format sig-
nal. However, you can play that signal back over any number of loudspeak-
ers. This is one of the attractive aspects of Ambisonics – unlike traditional
two-channel stereo, or discrete 5.1, the number of recording channels is not
defined by the number of output channels. You always have the same num-
ber of recording channels whose mix is changed according to the number of
playback channels (loudspeakers).

First-order panphonic

W = PΨ (9.32)
X = PΨ cos Ψ (9.33)
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Y = PΨ sinΨ (9.34)

Where W , X and Y are the amplitudes of the three ambisonics B-format
channels, PΨ is the pressure of the incident sound wave and Ψ is the angle
to the sound source (where 0◦ is directly forward) in the horizontal plane.
Notice that these are just descriptions of an omnidirectional microphone
and two bidirectionals. The bidirectionals have an included angle of 90◦ –
hence the cosine and sine (these are the same function, just 90◦ apart –
Y = PΨ sinΨ is shorter than writing Y = PΨ cos(Ψ + 90◦)).

Pn =
W + 2X cos ϕn + 2Y sinϕn

N
(9.35)

Where
Pn is the amplitude of the nth loudspeaker, ϕn is the angle of the nth

loudspeaker in the listening room, and N is the number of loudspeakers.
The decoding algorithm used here is one suggested by Vanderkooy and

Lipshitz which differs from Gerzons original equations in that it uses a gain
of 2 on the X and Y channels rather than the standard

√
2. This is due to

the fact that this method omits the 1 gain from 1√
2

the W channel in the
encoding process for simpler analysis [Bamford and Vanderkooy, 1995].

B = 2m + 1 (9.36)

Where B is the minimum number of loudspeakers required to accurately
produce the panphonic ambisonics signal and m is the order of the system.
(So far, we have only discussed 1st-order Ambisonics in this book.)

First-order periphonic
NOT YET WRITTEN

B =? (9.37)

Practical Implementation

Practically speaking, it is difficult to put four microphones (the omnidirec-
tional and the three bidirectionals) in a single location in the recording space.
If you’re doing a panphonic recording, you can make a vertical array with
the omni in between the two bidirectionals and come pretty close. There
is also the small problem of the fact that the frequency responses of the
bidirectionals and the omni won’t match perfectly. This will make the con-
tributions of the pressure and the velocity components frequency-dependent
when you mix them to send to the loudspeakers.
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So, what we need is a smarter microphone arrangement, and at the same
time (if we’re smart enough), we need to match the frequency responses of
the pressure and velocity components. It turns out that both of these goals
are achievable (within reason).

We start by building a tetrahedron. If you’re not sure what that looks
like, don’t panic. Imagine a pyramid made of 4 equilateral triangles (normal
pyramids have a square base – a tetrahedron has a triangular base). Then we
make each face of the tetrahedron the diaphragm of a cardioid microphone.
Remember that a cardioid microphone is one-half pressure and one-half
velocity, therefore we have matched our components (in theory, at least...).

This arrangement of four cardioid microphones in a single housing is
what is typically called a Soundfield microphone. Various versions of this
arrangement have been made over the years by different companies.

The signal consisting of the outputs of the four cardioids in the soundfield
microphone make up what is commonly called an A-Format Ambisonics
signal. These are typically converted into the B-Format using a standard
set of equations given below.

EQUATIONS HERE TO CONVERT A-FORMAT INTO B-FORMAT
There are some problems with this implementation. Firstly, we are over-

simplifying a little too much when we think that the four cardioid capsules
can be combined to give us a perfect B-Format signal. This is because the
four capsules are just too far apart to be effective at synthesizing a virtual
omni or bidirectional at high frequencies. We can’t make the four cardioids
coincident (they can’t be in exactly the same place) so the theory falls apart
a little bit here – but only for high frequencies. Secondly, nobody has ever
built a perfect cardioid that is really a cardioid at all frequencies. Conse-
quently, our dream of matching the pressure and velocity components falls
apart a bit as well.

Finally, there’s a strange little problem that typically gets glossed over
a bit in most discussions of Soundfield microphones. You’ll remember from
earlier in this book that the output of a velocity transducer has a naturally
rising response of 6 dB per octave. In other words, it has no low-end. In
order to make bidirectional (as well as all other directional) microphones
sound better, the manufacturers boost the low end using various methods,
either acoustical or electrical. Therefore, an off-the-shelf bidirectional (or
cardioid) microphone really doesn’t behave “correctly” to be used in a theo-
retically “correct” Ambisonics system – it simply has too much low-end (and
a messed-up low-frequency phase response to go with it...). The strange
thing is that, if you build a system that uses “correct” velocity components
with the rising 6 dB per octave response and listen to the output, it will
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sound too bright and thin. In order to make the Ambisonics output sound
warm and fuzzy (and therefore good) you have to boost the low-frequency
components in your velocity channels. Technically, this is incorrect, how-
ever, it sounds better, so people do it.

Higher orders

Ambisonics is a systems that works on “orders” – the higher the order of
the system, the more accurate the reproduction of the sound field.

• If we just use the W -channel (the omnidirectional component) then
we just get the pressure information and we consider it to be a 0th-
(zeroth) order system. This gives us the change in pressure over time
and nothing else.

• If we add the X -, Y - and Z -channels, we get the velocity information
as well. As a result we can tell not only the change in pressure of the
sound source, but also its direction relative to the microphone array.
This gives us a 1st-order system.

• A 2nd-order Ambisonics system adds information about the curvature
of the sound wave. This information is captured by a microphone that
doesn’t exist yet. It has a strange four-leaved clover shaped pattern
with four lobes.

Second-order periphonic

U = PΨ cos 2Ψ (9.38)
V = PΨ sin 2Ψ (9.39)
W = PΨ (9.40)
X = PΨ cos Ψ (9.41)
Y = PΨ sinΨ (9.42)

Pn =
2U cos 2ϕn + 2V sin 2ϕn + W + 2X cos ϕn + 2Y sinϕn

N
(9.43)

FIX THE ABOVE EQUATION TO ADD THE HEIGHT INFORMA-
TION

NOT YET WRITTEN

B =? (9.44)
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Why Ambisonics cannot work

Let’s take a simple 1st-order panphonic Ambisonics system. We can use
the equations given above to think of the system in a more holistic way. If
we combine the sensitivity equations for the B-format signal with the mix
equation for a loudspeaker in the playback system, we can make a plot of
the gain applied to a signal as a function of the relationship between the
angle to the sound source and the angle to the loudspeaker. That function
looks like the graph in Figure 9.150.
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Figure 9.150: The sensitivity function combining the sensitivities of the B-format channels with the
mix for the loudspeaker.

So far, we have been considering the sound from a source recorded by
a microphone at a single point in space, played back over loudspeakers and
analyzed at a single point in space (the sweet spot). In doing this, we have
found out that the soundfield at the sweet spot exactly matches the sound-
field at the sweet spot within the constraints of the order of the Ambisonics
system.

Let’s now change the analysis to consider what you actually hear. Instead
of a single-point microphone, you have two ears, one on either side of your
head. Let’s look at two situations, a sound source directly in front of you and
a sound source directly to the side. To simplify things, we’ll put ourselves
in an anechoic world.

As we saw in Section ?? a Head Related Transfer Function (or HRTF) is
a description of what your head and ears do to a sound signal before hitting
your eardrum. These HRTF’s can be used in a number of ways, but for our
purposes, we’ll stick to impulse responses, showing what’s happening in the
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time domain. The analysis you’re about to read uses the HRTF database
measured at MIT using a KEMAR dummy head. This is a public database
available for download via the Internet[Gardner and Martin, 1995].

We’ll begin by looking at the HRTF’s of two sound sources, one directly
in front of the listener and one directly to the right. The impulse responses
for the resulting HRTF’s for these two locations are shown in Figures 9.151
and 9.152 respectively.

There are two things to notice about the two impulse responses shown
in Figure 9.151 for a frontal sound source. Firstly, the times of arrival of
the impulses at the two ears are identical. Secondly, the impulse responses
themselves are identical throughout the entire length of the measurement.
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Figure 9.151: The impulse responses measured at the two ears of a KEMAR dummy head for a
sound source directly in front[Gardner and Martin, 1995]. The top plot is the left ear and the
bottom plot is the right ear. The x-axes are time, measured in samples.

Let’s consider the same two aspects for Figure 9.152 which shows the
HRTF’s for a sound source on the side of a listener. Notice in this case that
the times of arrival of the impulses at the two ears different. Since the sound
source is on the right side of the listener, the impulse arrives at the right ear
before the left. This makes sense since the right ear is closer to sound sources
on the right side of your head. Now take a look at the impulse response over
time. The first big spike in the right ear goes positive. Similarly, the first big
spike in the left ear also goes positive. This should not come as a surprise,
since your eardrums are not bidirectional transducers. These interaural time
differences (ITD’s) are very significant components that our brains use in
determining where a sound source is.

Let’s now consider a source directly in front of a soundfield microphone,



9. Audio Recording 743

50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

Figure 9.152: The impulse responses measured at the two ears of a KEMAR dummy head for a
sound source directly in to the right[Gardner and Martin, 1995]. The top plot is the left ear and
the bottom plot is the right ear. The x-axes are time, measured in samples.

recorded in 1st-order Ambisonics and played over an 8-channel loudspeaker
configuration shown in Figure 9.153.

If we assume that the sound source emits a perfect impulse and is
recorded by a perfect soundfield microphone and subsequently reproduced
by 8 perfect loudspeakers, we can use the same HRTF measurements to
determine the resulting signal that arrives at the ears of the dummy head.
Figure 9.154 shows the HRTF’s for a sound source recorded and reproduced
through such a system. Again, let’s look at the same two characteristics of
the impulse responses. The times of arrival of the impulse at the two ears
are identical, as we would expect for a frontal sound source. Also, the two
impulse responses are identical, also expected for a frontal sound source. So
far, Ambisonics seems to be working... however, you may notice that the
impulse responses in Figure 9.154 aren’t identical to those in Figure 9.151.
Frankly, however, this doesn’t worry me too much. We’ll move on...

Figure 9.155 shows the HRTF’s for a sound source 90◦ off to the side
of a soundfield microphone and reproduced through the same 8-channel
Ambisonics system. Again, we’ll look at the same two characteristics of the
impulse responses. Firstly, notice that the times of arrival of the pressure
waves at the two ears is identical. This contrasts with the impulse responses
in Figure 9.152. The interaural time differences that occur with real sources
are eliminated in the Ambisonics system. This is caused by the fact that
the soundfield microphone cannot detect time of arrival differences because
it is in one location.
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Figure 9.153: The 8-channel Ambisonics loudspeaker configuration used in this analysis.
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Figure 9.154: FRONT AMBISONICS
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Secondly, notice the differences in the impulse responses at the two ears.
The initial spike in the right ear is positive whereas the first spike in the
left ear is negative. This is caused by the fact that loudspeakers that are
opposite each other in the listening space in a 1st-order Ambisonics system
are opposite in polarity. This can be seen in the sensitivity function shown
in Figure 9.150. The result of this opposite polarity is that sound sources on
the sides sound similar to a stereo signal normally described as being “out of
phase” where the two channels are opposite in polarity [Geoff Martin, 1999].
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Figure 9.155: SIDE AMBISONICS

In the interest of fairness, a couple of things should be pointed out here.
The first is that these problems are most evident in 1st-order Ambisonics
systems, The higher the order, the less problematic they are. However, for
the time being, it is impossible to do a recording in a real space in any
Ambisonics system higher than 1st-order. Work has been done to develop
coefficients that avoid polarity differences in the system [?] and people are
developing fancy ways of synthesizing higher-order directional microphones
using multiple transducers[], however, these systems have associated prob-
lems that will not be discussed here.

9.5.3 Suggested Reading List
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9.6 Introduction to Surround Microphone Tech-
nique

Microphone techniques for surround sound are still in their infancy. I sup-
pose that, if you really wanted to argue about it, you could say that stereo
microphone techniques are as well, but at least we’ve all had a little more
experience with two channels than five.

As a result, Most of what is contained in this chapter is basically just
a list of some suggested configurations from various people along with a lot
of my own opinions. Someday, in the future, I plan on adding an additional
chapter to this book that is the surround equivalent to Section 9.4 (Although
you should note that there is some information in there as well on surround.).

The goal in surround recording is basically the same as it is for two-
channel. You have to get a pretty (or at least desired) timbral and spatial
representation of your ensemble to the end listener. The good thing about
surround is that your possibilities for spatial effects are much greater than
they are with stereo. We could make a case for realism – a “you-are-there”
representation of the ensemble, but I’m not one of the people that belongs
to this camp, so I won’t go there.

9.6.1 Advantages to Surround

If you’ve one of the many people that has only heard a couple of surround
sound recordings, you are probably questioning whether it’s really worth
all the trouble to record in surround. Many, if not most of the surround
recordings available for consumption are bad examples of the capabilities of
the system. Don’t despair – the problem lies in the recordings, not surround
itself. You have to remember that everyone’s just in the learning process
of what to do with surround. Also, keep in mind that surround is still
new, so everyone is doing fairly gimmicky recordings. Things that show
off individual characteristics of the system instead of trying to do a good
recording. (For example, it’s easy to tell when a studio buys a new reverb
unit because their next two releases have tons of reverb in them.) There are
many exceptions to this broad criticism of surround recordings, but I won’t
mention any names, just in case I get myself in trouble.

There are many reasons to upgrade to surround recordings. the biggest
reason is freedom – surround allows you much more room to use spatial
characteristics of the distribution medium as a creative tool in your record-
ings.
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The centre channel

There is a lot of debate in the professional community regarding whether
or not to use the centre channel. Most people think that it’s a necessary
component in a surround system in order to have a larger listening area.
There is a small, but very vocal group that it absolutely dead set against
the centre channel, arguing that a phantom centre sounds better (for various
reasons, the most important of which is usually timbre).

Here I would like to categorically state a personal opinion that I belong
to both camps. The centre channel can very easily be mis-used and, as a
result, ruin an otherwise good recording. On the other hand, I have heard
some excellent surround recordings that use the centre channel. My personal
feeling is that the centre speaker should be used as a spatial tool. A phantom
centre and a real centre are very different beasts – use the one you prefer at
the moment in your recording where it is most appropriate.

It surrounds...

The title of this is pretty obvious... One of the best reasons to use surround
sound is that you can have sound that surrounds. I don’t know if I have to
say anything else. It is, of course, extremely difficult to have a completely
enveloping soundfield for a listener using 2-channel stereo. It’s not easy to
do this in 5-channel surround, but it’s easier than it is with stereo.

Playback configuration

Believe it or not, if you do a surround recording, it is more likely that your
end listeners have a reasonably correct speaker configuration than if you’re
working in 2-channel stereo. Think of all your friends (this is easier to
do if you think of them one-by-one, particularly if some of them don’t get
along...). Of these people, think of the ones with a stereo system. How
many of these people have a “correct” loudspeaker configuration? I will
bet that the number is very close to none. Now think of people with a
surround sound system. In most cases, they have this system for watching
movies – so they’ve got a television which is the centre channel (or there’s
a small speaker on top), a speaker on either side and a couple of speakers
in the rear. Okay, so the configuration probably doesn’t conform to the
ITU-775[?] standard, but it’s better than having a stereo system where the
left speaker is in the living room and the right speaker is in the kitchen.
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Binaural cues: Leaving things to the listener

Go to an orchestra concert and sit in a front row. Try to listen to the oboe
when everyone else is playing and you’ll probably find that you’re able to
do this pretty easily. If you could wind back time, you would find that
you could have listened to the clarinet instead. (If you don’t like orchestral
music, go to a bar and eavesdrop on people’s conversations – you can do
this too. If you get caught, tell them it’s research.) You’re able to do this
because you are able to track both the timbre and the location of a sound
source. (Check out a phenomenon called the cocktail party effect for more
information on this.)

If you record in mono, you have to be very careful about your mix. You
have to balance all the components very precisely to ensure that people can
hear what is needed to be heard at that particular moment. This is because
people are unable to use spatial cues to determine where instruments are
and therefore devote more concentration to them.

If we graduate to 2-channel stereo, life gets a little easier. By panning
sources across the stereo sound stage between the two speakers, people are
able to concentrate on one instrument and effectively attenuate others within
their brains.

The more spatial cues you give to the listener, the better able they are
to effectively zero in on whatever component of the recording they like. This
doesn’t necessarily mean that their perception can’t be manipulated but it
also means that you don’t have to do as much manipulation in your mixes.
Mastering engineers such as Bob Ludwig also report that they are finding
that less compression and sweetening is required in surround sound media
for the same reasons.

Back in the old days, we used level almost exclusively to manipulate
people’s attention in a mix. Nowadays, with surround, you can use level,
but also spatial cues to draw attention towards or away from components.

9.6.2 Common pitfalls

Of course, every silver cloud has a dark lining... Recording in surround
doesn’t automatically fix all of your problems and make you a great recording
engineer. In fact, if you’re a bad engineer in 2-channel stereo, you’ll be 2.5
times worse in 5-channel (2.55 times worse in 5.1) so be careful.

I would also go so far as to create an equation which I, in a pathetic
stab at immortality, will dub Martin’s Law which states that the difficulty
of doing a recording and mix in surround sound can be calculated from the
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number of channels in your media, using Equation 9.45.

Dris =
(

n

ref

)n

(9.45)

where Dris is the Difficulty of Recording in Surround, n is the number of
channels in your recording and ref is the number of channels in the media
to which you’re comparing. For example it is 118.4 times more difficult to
record in 5.1 than stereo (sic).

The centre channel

You may notice that I used this same topic as one of the advantages for
recording in surround. I put it here to make you aware that you shouldn’t
just go putting things in the centre channel all willy-nilly. Use the centre
channel with caution. Always remember that it’s mush easier to localize
a real source (like a loudspeaker) in a real room than it is to localize a
phantom source. This means that if you want to start playing with people’s
perception of distance to the sound source, you might want to carefully
consider the centre channel.

Another possible problem that the centre channel can create is in timbre.
Take a single channel of pink noise and send it to your Left and Right
speakers. If all goes well, you’ll get a phantom centre. Now, move around
the sweet spot a bit and listen to the timbre of the noise. You should
hear some comb filtering, but it really shouldn’t be too disturbing. (Now
that you’ve heard that, listen for it on the lead vocals of every CD you
own... Sorry to ruin your life...) Repeat this experiment, but this time,
send the pink noise to the Centre and Right channels simultaneously. Now
you should get a phantom image somewhere around 15◦ off-centre, but if
you move around the sweet spot you’ll hear much more serious problems
with your comb filtering. This is a bigger problem than in stereo because
your head isn’t getting in the way of the signal from the Centre speaker. In
the case of Left interfering with Right, you have a reasonably high degree of
attenuation in the crosstalk (Left speaker getting to the right ear and vice
versa.) In the case of the Centre channel, this attenuation is reduced, so you
get a big interference between the Centre and Right channels in your right
ear. The left ear isn’t a problem because the Right channel is attenuated.
So, the moral of this story is to be careful with sources that are panned
between speakers – decide whether you want the comb filtering. It’s okay
to have it as long as it’s intentional [Martin, 2002a][Martin, 2002b].
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So, going back to my statement in the previous section... The centre
channel itself is not a problem, it’s in the way you use it. Centre channels
don’t kill recordings, recording engineers kill recordings.

Localization

Don’t expect perfect localization for all sources, 360◦ around the listener. A
single, focused phantom image on the side is probably impossible to achieve.
Phantom images behind the listener appear to get very close, sometimes
causing in-head localization. (Remember that the surround channels are
basically a giant pair of headphones.) Rear images are highly unstable and
dependent on the listeners movements due to the wide separation of the
loudspeakers.

Note that if you want to search for the holy grail of stable, precise and
accurate side images, you’ll probably have to start worrying about the spatial
distribution and timing of your early reflections [?].

Soundfield continuity

If you watch a movie mixed by a bad re-recording engineer (the film world’s
equivalent of a mixing engineer in the music world), you’ll notice a couple
of obvious things. All of the dialog and foley (all of the little extra sound
effects like zipping zippers, stepping foot steps and shutting doors) comes
from the Centre speaker, the music comes from the Left and Right speakers,
and the Surround speakers are used for the occasional special effect like rain
sounds or crowd noises. Essentially, you’re presented with three completely
unrelated soundfields. You can barely get away with this independence of
signal in a movie because people are busy using their eyes watching beautiful
people in car chases. In music-only recordings, however, we don’t have the
luxury of this distraction, unfortunately.

Listen to a poorly-recorded or mixed surround recording and you’ll notice
a couple of obvious, but common, mistakes. There is no connection between
the front and surround speakers – instruments in the front, reverb in the
surround is a common presentation that comes from the film world. Don’t
get me wrong here, I’m not saying that you shouldn’t have a presentation
where the instruments are in the front only – if that’s what you want, that’s
up to you. What I’m saying is, if you’re going for that spatial representation,
it’s a bad idea to use your surrounds as the only reverb in the mix. They’ll
sound completely disconnected with your instruments. You can correct this
by making some of the signals in the front and the rear the same – either
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send instruments to the rear or send reverb to the front. What you do is
up to you, but please be careful to not have a large wall between your front
and your rear. This is the surround equivalent of some of the early days of
stereo where the lead vocals were on the left and the guitar on the right.
(Not that I don’t like the Beatles, but their early stereo recordings weren’t
exactly sophisticated, spatially speaking...)

How big is your sweet spot?

This may initially seem like a rather personal question, but it really isn’t, I
assure you.

Take some pink noise and send it to all 5 channels in your surround
system. Start at the sweet spot and move around just a little – you’ll notice
some pretty horrendous comb filtering. If you move more, you’ll notice that
the noise collapses pretty quickly to the nearest speaker. This is normal
– and the more absorptive your room, the worse it will be. Now, send a
different pink noise generator to each of your five channels. (If you don’t
have five pink noise generators lying around, you can always just use big
delays on the order of a half second or so. So you have the pink noise going
to Left, then Centre a half-second later, and Right a half-second after that
and so on around the room...) Now you’ll notice that if you move around the
sweet spot, you don’t get any comb filtering. This is because the signals are
too different to interfere with each other. Also, big movements will result
in less collapse to a speaker. This is because your brain is getting multiple
different signals so it’s not trying to put them all together into one single
signal.

The moral of this story is that, if you want a bigger sweet spot, you’re
going to have to make the signals in the speakers different. (In techni-
cal terms, you’re looking for decorrelation between your channels. This is
particularly true of reverberation. The easiest way to achieve this with mi-
crophone technique is to space your microphones. The farther apart they
are, the less alike their signals as is discussed in Section ??.

“Surround” and “Rear” are not synonyms

This is a common error that many people make. If you take a look at the
official standard for a 5-channel loudspeaker configuration shown in Section
??, you’ll see that the surround loudspeakers are to be placed in the 100◦ -
120◦ zone. Typically, people like to use the middle of this zone - 110◦, but
lots of pop people like pushing the surrounds a little to the rear, keeping
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them at 120◦.
Be careful not to think of the surround loudspeakers as rear loudspeakers.

They’re really out to the sides, and a little to the rear, they’re not directly
behind you. This becomes really obvious if you try to create a phantom
centre rear image using only the surround channels. You’ll find in this case
that the apparent distance to the sound source is quite close to the back of
your head, but this is not surprising if you draw a straight line between your
two surround loudspeakers... In theory, of course, the apparent distance to
the source should remain constant as it pans from LS to RS, but this is not
the case, probably because the speakers are so far apart,

9.6.3 Fukada Tree

This configuration, developed by Akira Fukada at NHK Japan was one of
the first published recommendations for a microphone technique for ITU-
775 surround [Tsujimoto and Akita, 1997]. As can be seen in Figure 9.156,
it consists of five widely spaced cardioids, each sending a signal to a single
channel. In addition, two omnidirectional microphones are placed on the
sides with each signal routed to two channels.
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Figure 9.156: Fukada Tree: a = b = c = 1 - 1.5 m, d = 0 - 2 m, L/R angle = 110◦-130◦, LS/RS
angle = 60◦-90◦.

This is a very useful technique, particularly in larger halls with big en-
sembles. The large separation of the front three cardioids prevents any
detrimental comb filtering effects in the listening room on the direct sound
of the ensemble (this problem is discussed above). One interesting thing to
try with this configuration is to just listen to the five cardioid outputs with
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a large distance to the rear microphones. You will notice that, due to the
large separation between the front and rear signals in the recording space,
the perceived sound field in the listening room has two separate areas – that
is to say that the frontal sound stage appears to be separate from the sur-
round with nothing connecting them. This is caused by the low correlation
between the front and rear signals. Fukada cures this problem by sending
the outputs of the omnis to front and surround. The result is a very spacious
soundfield, but with reasonably reliable imaging characteristics. You may
notice some comb filtering effects caused by having identical signals in the
L/LS and R/RS pairs, but you will have to listen carefully for them...

Notice that the distance between the front array and rear pair of micro-
phones can be as little as 0 m, therefore, there may be situations where all
microphones but the centre are placed on a single boom.

9.6.4 OCT Surround

NOT YET WRITTEN
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Figure 9.157: OCT Surround: a = 8 cm, b = 40 - 90 cm, c = 40 cm, d = 10 - 100 cm.

9.6.5 OCT Front System + IRT Cross

NOT YET WRITTEN
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Figure 9.158: OCT Front + IRT Cross: a = 8 cm, b = 40 - 90 cm, c ≈ 100 cm, cross side = 20 -
25 cm
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9.6.6 OCT Front System + Hamasaki Square

NOT YET WRITTEN
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Figure 9.159: OCT Front + Hamasaki Square: a = 8 cm, b = 40 - 90 cm, c ≈ 100 cm, cross side
= 2 - 3 m

9.6.7 Klepko Technique

John Klepko developed an interesting surround microphone technique as
part of his doctoral work at McGill University [?]. He suggests that the
surround loudspeakers, due to their inherent low interaural crosstalk, can
be considered as a very large pair of headphones and could therefore be used
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to reproduce a binaural signal. Consequently, he suggests that the surround
microphones be replaced by a dummy head placed approximately XXX me-
tres behind the front microphone array of three HYPERCARDIOIDS?.

This is an interesting technique in its ability to create a very coherent
soundfield that envelops the listener, both left to right and front to back.
Part of the reason for this is that the binaural signal played through the
surround channels is able to deliver a frontal image in many listeners, even
in the absence of signals in the front loudspeakers.

Of course, there are some problems with this configuration, in particular
caused by the reliance on the binaural signal. In order to provide the desired
spatial cues, the listener must be located exactly in the sweet spot between
the surround loudspeakers. Movements away from this position will cause
the binaural cues to collapse. In addition, there are timbral issues to consider
– dummy heads typically have very strong timbral effects on your signal
which are frequently not desirable.
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bL R
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Figure 9.160: Klepko Tree: GET THE DIMENSIONS

9.6.8 Corey / Martin Tree

NOT YET WRITTEN

9.6.9 Michael Williams

NOT YET WRITTEN
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Figure 9.161: Corey / Martin Tree: a = 0 - 15 cm, b = 60 - 80 cm, c = 60 - 90 cm, d = 30 cm.
L, C and R are subcardioids; LS and RS cardioids aimed towards ceiling.

9.6.10 Suggested Reading List
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9.7 Introduction to Time Code

9.7.1 Introduction

When you tape a show on television, you don’t need to worry about how
the sound and the video both wind up on your tape – or how they stay
synchronized once they’re both on there – but if you’re working in the tele-
vision or film industry, this is a very big issue. Usually, in film recording,
the audio gets recorded on a completely different machine than the film. In
video editing, you need a bunch of video playback and recording units all
“synchronized” so that some central machine knows where on the tapes all
the machines are – down to the individual frame. How is this done? Well,
the location of the tape – the “time” the tape is at – is recorded on the tape
itself, so that no matter which machine you play it on, you can tell where
you are in the show – to the nearest frame. This is done with what’s called
time code of which there are various species to talk about...

9.7.2 Frame Rates

Before discussing time code formats, we have to talk about the different
frame rates of the various media which use time code. In spite of the orig-
inal name “moving pictures,” all video and film that we see doesn’t really
use pictures that move. We are shown a number of still pictures in quick
succession that fool our eyes into thinking that we’re seeing movement. The
rate at which these pictures (or “frames”) are shown is called the frame rate.
This rate varies depending on what you’re watching and where you live.

Film

The film industry uses a standard frame rate of 24 fps (Frames per Second).
This is just about the slowest frame rate you can get away with and still have
what appears to be smooth motion. (though some internet video–streaming
people might argue that point in their advertising brochures...) The only
exception to this rule is the IMAX format which runs at twice this rate –
48 fps.

Television – North America, Black and White

a.k.a NTSC (National Television System Committee)
(although some people think it stands for “Never The Same Colour”...)
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In North America (or at least most of it...) the AC power that runs our
curling irons and golf ball washers (and televisions...) has a fundamental
frequency of 60 Hz. As a result, the people that invented black and white
television, thinking that it would be smart to have a frame rate that was
compatible with this frequency, set the rate to 30 fps.

I should mention a little bit about the way televisions work. They’re
slightly different from films in that a film shows you 24 actual pictures on
the screen each second. A television has a single gun that creates a line of
varying intensity on the screen. This gun traces a bunch of lines, one on
top of each other on the screen, that, when seen together, look like a single
picture. There are 525 lines in each frame – but each frame is divided into
two “fields” – the TV shows you the odd–numbered lines, and then goes
back to do the even–numbered ones. This system (of alternating between
the odd and even number lines using two fields) is called interlacing . The
important thing to remember is that since we have 30 fps and 2 fields per
frame, this means that there are 60 fields per second.

Television – North America, Colour (NTSC)

It would be nice if B and W and colour could run at the same rate – this
would make life simple... unfortunately, however, this can’t be done because
colour TV requires that a little more information be sent to your unit than
B and W does. They’re close – but not exactly the same. Colour NTSC
runs at a frame rate of 29.97 fps. This will cause us some grief later.

Television – Europe, Colour and Black and White

a.k.a PAL (Phase Alternating Line)
and SECAM (Sequential Couleur Avec Memoire or Sequential Colour

with Memory)
The Europeans have got this figured out far more intelligently than the

rest of us. Both PAL and SECAM, whether you’re watching colour OR B
and W, run at 25 fps. (There is one exception to this rule called PAL M –
but we’ll leave that out...) The difference between PAL and SECAM lies in
the methods by which the colour information is broadcast – but we’ll ignore
that too. Both systems are interlaces – so you’re seeing 50 fields per second.

It’s interesting that this rate is so close to the film rate of 24 fps. In
fact, it’s close enough that some people, when they’re showing movies on
television in PAL or SECAM just play them at 25 fps to simplify things.
The audio has to be pitch shifted a bit, but the difference is close enough
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that most people don’t notice the artifacts.

9.7.3 How to Count in Time Code

Time code assumes a couple of things. Firstly, it assumes that there are 24
hours in a day, and that your film or television program won’t last longer
than a day. So, you can count up to 24 hours (almost...) before you start
counting at 0 again. The time is divided in a similar way to the system
we use to tell time, with the exception of the sub–division of the seconds.
This is divided in frames instead of fractions, since that’s the way the film
or video unit works.

So, a typical time code address will look like this:
01:23:35:19
or
HH:MM:SS:FF
Which means 01 hours, 23 minutes, 35 seconds and 19 frames. The

number of frames in each second depends on the time code format, which in
turn, depends on the medium for which it’s being used, which is discussed
in the next section.

9.7.4 SMPTE/EBU Time Code Formats

Given the number of different “standard” frame rates, there must be a num-
ber of different time code formats correspondingly. Each one is designed to
match its corresponding rate, however, there are two that stand out as being
the most widely used. These formats have been standardized by two orga-
nizations, SMPTE (the Society of Motion Picture and Television Engineers
– pronounced SIM–tee) and the EBU (the European Broadcasting Union –
pronounced ee–be–you)

24 fps

As you’ll probably guess, this time code is used in the film industry. The
system counts 24 frames in each second, as follows:

00:00:00:00
00:00:00:01
00:00:00:02
.
.
.
00:00:00:22

http://www.smpte.org
http://www.ebu.org
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00:00:00:23
00:00:01:00
00:00:01:01
and so on. Notice that the first frame is labelled “00” therefore we count

up to 23 frames and then skip to second 01, frame 00. As was previously
mentioned, there are a maximum of 24 hours in a day, therefore we roll back
around to 0 as follows:

23:59:59:21
23:59:59:22
23:59:59:23
00:00:00:00
00:00:00:01
and so on.
Each of these addresses corresponds to a frame in the film, so while the

film is rolling, out time code reader will display a new address every 24th of
a second.

In theory, if our film started exactly at midnight, and it ran for 24 hours,
then the time code would display the time of day, all day.

25 fps

This time code is used with PAL and SECAM television formats. The
system counts 25 frames in each second, as follows:

00:00:00:00
00:00:00:01
00:00:00:02
.
.
.
00:00:00:23
00:00:00:24
00:00:01:00
00:00:01:01
and so on. Again, the first frame is labelled “00” but we count to 24

frames before skipping to second 01, frame 00. The roll around to 0 after
24 hours happens the same as the 24 fps counterpart, with the obvious
exception that we get to 23:59:59:24 before rolling back to 00:00:00:00.

Again, each of these addresses corresponds to a frame in the video, so
while the program is playing, out time code reader will display a new address
every 25th of a second.
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And again, the time code exactly corresponds to the time of day.

30 fps “non–drop”

This time code is designed to be used in black and white NTSC television
formats, however it’s rarely used these days except in the occasional com-
mercial. The system counts 30 frames in each second corresponding with
the frame rate of the format, as follows:

00:00:00:00
00:00:00:01
00:00:00:02
.
.
.
00:00:00:28
00:00:00:29
00:00:01:00
00:00:01:01
and so on.
The question you’re probably asking is ‘why is it called “non–drop?” ‘

but that question is probably best answered by explaining one more format
called ‘30 fps “drop–frame” ’

30 fps “drop frame” (aka 29.97 fps “drop frame”)

This time code is the one that’s used most frequently in North America –
and the one that takes the most dancing around to understand. Remember
that NTSC started as a 30 fps format until they invented colour – then
things slowed down to a frame rate of 29.97 fps when they upgraded. The
problem is, how do you count up to 29.97 every second? Well, obviously,
you don’t. So, what the came up with was a system where they’d keep
counting with the old 30 fps system, pretending that there were 30 frames
every second. This means that, at the end of the day, your clock is wrong –
you’re counting too slowly (0.03 fps too clowly, to be precise...), so there’s
some time left over to make up for at the end of the day – in fact, when
the clock on the wall strikes midnight, 24 hours after you started counting,
you’re going to have 2592 frames left to count.

The committee that was deciding on this format elected to leave out
these frames in something approaching a systematic fashion. Rather than
leave out the 2592 frames at the end of the day, they decided to distribute
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the omissions evenly throughout the day (that way, television programs of
less than 24 hours would come close to making sense...) So, this means that
we have to omit 108 frames every hour. The way they decided to do this
was to omit 2 frames every minute on the minute. The problem with this
idea is that omitting 2 frames a minute means losing too many frames – so
they had to add a couple back in. This is accomplished by NOT omitting
the two frames if the minute is at 0, 10, 20, 30, 40 or 50.

So, now the system counts like this:
00:00:00:00
00:00:00:01
00:00:00:02
.
.
.
00:00:58:29
00:00:59:00
00:00:59:01
.
.
.
00:00:59:28
00:00:59:29
00:01:00:02 (Notice that we’ve skipped two frame numbers)
00:01:00:03
and so on... but...
00:09:59:00
00:09:59:01
00:09:59:02
.
.
.
00:09:59:28
00:09:59:29
00:10:00:00 (Notice that we did not skip two frame numbers)
00:10:00:01
It’s important to keep in mind that we’re not actually leaving out frames

in the video – we’re just skipping numbers... like when you were counting
to 100 while playing hide and seek as a kid... 21, 22, 25, 26, 30... You didn’t
count any faster, but you started looking for your opponents sooner.
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Figure 9.162: The accumulated error in drop frame time code. At time 0, the time code reads
00:00:00:00 and is therefore correct, so there is no error. As time increase up to the 1–minute
mark, the time code is increasingly incorrect, displaying a time that is increasingly later than the
actual time. At the 1–minute mark, two frames are dropped from the count, making the display
slightly earlier than the actual time. This trend is repeated until the 9th minute, where the error
becomes increasingly less early until the display shows the correct time at the 10–minute mark.

Figure 9.163: This shows exactly the same information as the plot in Figure 1, showing the error
in seconds rather than frames.
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Since we’re dropping out the numbers for the occasional frame, we call
this system “drop–frame,” hence the designation “non–drop” when we don’t
leave things out.

Look back to the explanation of 30 fps “non–drop” and you’ll see that
we said that pretty well the only place it’s used nowadays is for television
commercials. This is because the first frame to get dropped in drop–frame
happens 1 minute after tha time code starts running. Most TV commercials
don’t go for longer than 30 seconds, so for that amount of time, drop–frame
and non–drop are identical. There is an error accumlated in the time code
relative to the time of day, but the error wouldn’t be fixed until the clock
read 1 minute anyway... we’ll never get there on a 30–second commercial.

29.97 fps “non–drop”

This is a bit of an odd one that’s the result of one small, but very important
corner of the video industry – commercials. Commercials for colour NTSC
run at a frame rate of 29.97 frames per second, just like everything else on
TV – but they typically only last 30 seconds or less. Since the timecode
never reaches the 1 minute mark, there’s no need to drop any frames – so
you have a frame rate of 29.97 fps, but it’s non–drop.

9.7.5 Time Code Encoding

There are two methods by which the time code signal is recorded onto a
piece of videotape, which in turn determine their names. In order to get a
handle on why they’re called what they’re called and why they have different
advantages and disadvantages, we have to look a bit at how any signal is
recorded onto videotape in the first place.

We said that your average NTSC television is receiving 525 lines of in-
formation every second – each of these lines is comprised of light and dark
areas (or different colours, if your TV is newer than mine...) This means
that a LOT of information must get recorded very quickly on the tape –
essentially, we require a high bandwidth. This means that we have to run
the tape very quickly across the head of the video recorder in order to get ev-
erything on the tape. Well, for a long time, we had to do without recorded
video because no one could figure out a way of getting the tape–to–head
speed high enough without requiring more tape than even a small country
could afford... Then one day, someone said “What if we move the head
quickly instead of the tape?” BINGO! They put a head on a drum, tilted
the drum on an angle relative to the tape and spun the drum while they
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moved the tape. This now meant that the head was going past the tape
quickly, making diagonal streaks across it while the tape just creeped along
at a very slow speed indeed.

(Sidebar: the guy in this story was named Alexander M. Poniatoff who
was given some cash to figure all this out by another guy named Bing Crosby
back in the 40’s... see Bing wanted to tape his shows and then sit at home
relaxing with the family while he watched himself on TV... Now, look at
Alexander’s initials and tack on an “excellence” and you get AMPEX.)

Back to videotape design... The system with the rotating heads is still
used today in your VCR (except that we call it “helical scanning” to sound
fancy) and this head on the drum is used to record and play both the video
information as well as the “hi–fi” audio (if you own a hi–fi VHS machine).
The tape is moving just fast enough to put another head in there which isn’t
on the drum – it records the mono audio on your VCR at home, but it could
be used for other low–bandwidth signals. It can’t handle high–bandwidth
material because the tape is moving so slowly relative to the head that
physics just doesn’t allow it.

The important thing to remember from all this is that there are two ways
of putting the signal (the time code, in our case) on the tape – longitudinally
with the stationary head (because it runs parallel with the tape direction)
and vertically with the rotating head (well, it’s actually not completely
vertical, but it’s getting close, depending on how much the drum is tilted).

Keep in mind that what we’re discussing here now is how the numbers
for the hours, minutes, seconds and frames actually get stored on a piece of
tape or transmitted across a wire.

Longitudinal Time Code

aka LTC (say each letter)
LTC was developed by the SMPTE which explains the fact that it is

occasionally called “SMPTE Time Code” in older books). It is a continuous
serial signal with a clock rate of 2400 bits per second and can be recorded
on or transmitted through a system with a bandwith as low as 10 kHz.

The system uses something called bi–phase modulation to encode the
numbers into what essentially becomes an audio signal. The numbers de-
noting the time code address are converted into binary code and then that
is converted into the bi–phase mark. “What’s a bi–phase mark?” I hear you
cry...

There are a number of ways we can transmit 1’s and 0’s on a wire using
voltages. The simplest method would be to assign a voltage to each and send
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the appropriate voltage at the appropriate time (if I send a 0 V signal – that
means 0, but if it’s 1 V, that means 1...) This is a nice system until someone
uses a transmission cable that inverts the polarity of the system, then the
voltages become 0 V and –1 V – which could be confused for a high and
low, then the whole system is screwed up. In order to make the transmission
(and recording) system a little more idiot–proof, we use a different system.
We’ll keep a high and low voltage, but alternate between them at a pre–
determined rate (think square wave). Now the rule is, every transition of
the square wave is a new “bit” or number – either a 1 or a 0. Each bit is
divided into two “cells” – if there is a voltage transition between cells, then
the value of the bit is a 1, if there is no transisiton between cells, then the
bit is a 0 (see the following diagram).

Figure 9.164: A bi–phase mark used to designate a 0 from a 1 by the division of each bit into two
cells. If the cells are the same, then the bit is a 0, if they are different, then the bit is a 1.

This allows us to invert the polarity and make the voltage of the signal
independent of the value of the bit, esentially, making the signal more robust.
There is no DC content in the signal (so we don’t have to worry about the
signal going through DC–blocking capacitors) and it’s self–clocking (that is
to say, if we build a smart receiving device, it can figure out how fast the
signal is coming at it). In addition, if we make the receiver a little tolerant,
we can change the rate of the signal (the tape speed, when shuttling, for
example) and still derive a time code address from it.

Each time code address required one word to define all of its information.
This word is comprised of 80 bits (which, at 30 fps means 2400 bits per
second). All 80 bits are not required for telling the machines what frame
we’re on – in fact only 26 bits are used for this. The rest of the word is
divided up as follows:

There are a number of texts which discuss exactly how these are laid out
in the signal – we won’t get into that. But we should take a quick glance at
what the additional parts of the TC word are used for.
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Information Number of Bits
Time Address 26
User Information 32
Sync Word 16
Status Information 5
Unassigned 1

Table 9.8: INSERT CAPTION HERE

Time Address – 26 bits

The time address information uses 4 bits to encode each of the decimal
numbers in the time code address. That is to say, for example, to encode
the designation of “12 frames,” the numbers 1 (0001) and 2 (0010) are used
sequentially instead of encoding the number 12 as a binary number. This
means, in theory, that we require 32 bits to store or transmit the time code
address, four bits each for 8 digits (HH:MM:SS:FF). This is not really the
case, however, since we don’t count all the way up to 9 with all of the
digits. In fact, we only require 2 bits each for the tens of hours (because it
never goes past “2”) and tens of frames, and 3 bits for each of the tens of
minutes and tens of seconds. This frees up 6 bits which are used for status
information, meaning 26 bits are used for the time address information.

User Information – 32 bits

There are 32 bits in the time code word reserved for storing what’s called
“user information.” These 32 bits are divided into eight 4–bit words which
are generally devoted to recording or transmitting things like reel numbers,
or the date on which the recording was made – things which don’t change
while the time code rolls past. There are two options that are not used as
frequently which are:

– encoding ASCII characters to send secret messages (like song lyrics?
credits?... be creative...) This would require 8–bit bytes instead of 4–bit
words, but we’ll come back to that in the Status Information

– since we have 32 bits to work with, we could lay down a second time
code address... though I don’t know what for offhand.
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Sync Word – 16 bits

In order for the receiving device to have any clue as to what’s going on, it
has to know when the time code word starts and stops, otherwise, its guess
is as good as anybody’s. The way the beginning of the word is marked is by
putting in a string of bits that cannot happen anywhere else, irrespective of
the data that’s being transmitted. This string of data (0011111111111101 to
be precise) tells the receiver two things – firstly, where the subsequent word
starts (the string is put at the end of each word) and whether the signal is
going forwards or backwards. (Notice that the string is two 0’s. twelve 1’s,
a 0 and a 1. The receiver sees the twelve 1’s, and looks to see if that string
was preceeded by two 0’s or a 1 and a 0... that’s how it figures it out.)

Status Information – 5 bits

The five status bits are comprised of “flags” which provide the receiving
device with some information about the signal coming in. I’ll omit explana-
tions for some of these.

Drop Frame Flag

If this bit is a 1, then the time code is drop–frame. If it’s a 0, then it’s
non–drop.

Colour Frame Flag

Bi–Phase Correction

This is a bit which will change between 0 and 1 depending on the content
of the remainder of the word. It’s just there to ensure that the trasition at
the beginning of every word goes in the same direction.

User Flags (2)

We said earlier that the User Information is 32 bits divided into eight 4–bit
words. However, if it’s being used for ASCII information, then it has to
be divided differently into four 8–bit bytes. These User Flags in the Status
Information section tell the receiver which system you’re using in the User
Information.

Unassigned

This is a bit that has no determined designation.
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Other Information

There’s a couple of little things to know about LTC what might come in
useful some day.

Firstly, a time code reader should be able to read time code at speeds
between 1/40th of the normal rate and 40 times the normal rate. This would
put the maximum bandwidth up to 96000 bits per second (2400 * 40)

Secondly, remember that LTC is recorded using the stationary head on
the video recorder. This means a couple of things:

1) as you slow down, you get more inaccurate. If you’re stopped (or
paused) you don’t read a signal – therefore no time code.

2) as you slow down, the signal gets lower in amplitude (because the
voltage produced by the read head is proportional to the change in mag-
netism across its gap). Therefore, the slower the tape, the more difficult to
read.

Lastly, if you’re using LTC to lock two machines together, keep in mind
that the “slave” machine is not locked to every single frame to the closest
80th of a frame to the “master.” In fact, more likely than not, the slave is
running on its own internal clock (or some external “house sync” signal) and
checking the incoming time code every once and a while to make sure that
things are on schedule. (this explains the “forward/backward” info stored in
the Sync Word) This can explain why, when you hit STOP on your master
machine, it might take a couple of moments for the slave device to realize
that it’s time to hit the brakes...

Vertical Interval Time Code

aka VITC (say VIT–see)
There are two major problems associated with longitudinal time code.

Firstly, it is not frame–accurate (not even close...) when you’re moving at
very slow speeds, or stopped, as would be the case when shuttling between
individual frames (remember that it’s possible to view a stopped frame be-
cause the head keeps rotating and therefore moving relative to the tape).
Secondly, the LTC takes up too much physical space on the videotape itself.

The solution to both of these problems was presented by Sony back in
1979 in the form of Vertical Interval Time Code or VITC. This information
is stored in what is known as the “vertical blanking interval” in each field
(we won’t get into what that means... but it’s useful to know that there is
one in each field rather than each frame, increasing our resolution over LTC
by a factor of 2. It does, however, mean that an extra flag will be required
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to indicate which field we’re on.
Since the VITC signal is physically located in the vertical tracks on the

tape (because it’s recorded by the rotating head instead of the stationary
one) it has a number of characteristics which make it differ from LTC.

- Firstly, it cannot be played backwards. Although the video can be
played backwards, each field of each frame (and therefore each word of the
VITC code) is being shown forwards (in reverse order).

- Secondly, we can trust that the phase of the signal is reliable, so a
different binary encoding system is used called Non–Return to Zero or NRZ.
In this system, a value of 80 IRE (an IRE is a unit equal to 1/140th of the
peak–peak amplitude of a video signal, usually 1 IRE = 7.14 mV, therefore
140 IRE = 1 V) is equal to a binary “1” and 0 IRE is a 0.

– Thirdly, as was previously mentioned, the VITC signal contains the
address of a field rather than a frame.

– Finally, we don’t need to indicate when the word starts (as is done by
the sync bits in LTC) since every field has only 1 frame associated with it.
sonce both the field and the word are read simultaneously (they cannot be
read seperately) we don’t need to know when the word starts... it’s obvious.

Unlike LTC, there are a total of 90 bits in the VITC word, with the
following assignments:

Information Number of Bits
Time Address 26
User Information 32
Sync Groups 18
Cyclic Redundancy Code 8
Status Information 5
Unassigned (Field Mark Flag?) 1

Table 9.9: INSERT CAPTION HERE

In many respects, these bits are the same as their LTC counterparts, but
we’ll go through them again anyway.

Time Address – 26 bits

This is exactly the same as in LTC.

User Information – 32 bits

This is exactly the same as in LTC.
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Sync Groups – 18 bits

Instead of a single big string of binary bits stuck in one part of the word,
the Sync Groups in VITC are fit into the information throughout the word.
There is a binary “10” located at the beginning of every 10 bits. This
information is used to synchronize the word only. It doesn’t need to indicate
either the beginning of the word (since this is obvious due to the fact that
there is one word “locked” to each field) nor does it need to indicate direction
(we’re always going forwards – even when we’re going backwards...)

Cyclic Redundancy Code – 8 bits

This is a method of error detection (not error correction).

Status Information – 5 bits

There are five status information flags, just as with LTC. All are identical
to their LTC counterparts with one exception, the Field Mark. Since we
don’t worry about phase in the VITC signal, we can leave out the bi–phase
correction.

Field Mark Flag

This flag indicates the field of the address.

One extra thing:

There is one disadvantage to VITC that makes use of LTC more versatile.
Since VITC is buried in the video information recorded by the helical head,
it must be recorded simultaneously with the video. It cannot be recorded
afterwards. Since LTC is located on a different section of the tape, it can
be striped (recorded) onto the tape later without disturbing the video infor-
mation.

9.7.6 Annex – Time Code Bit Assignments

Longitudinal Time Code

See the information in Table 9.10.

Frame Number Bit Assignment
0 Frame Units
1 Frame Units
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Frame Number Bit Assignment
2 Frame Units
3 Frame Units
4 User Bit
5 User Bit
6 User Bit
7 User Bit
8 Frame Tens
9 Frame Tens
10 Drop Frame Bit
11 Colour Frame Bit
12 User Bit
13 User Bit
14 User Bit
15 User Bit
16 Second Units
17 Second Units
18 Second Units
19 Second Units
20 User Bit
21 User Bit
22 User Bit
23 User Bit
24 Second Tens
25 Second Tens
26 Second Tens
27 Bi–Phase Bit
28 User Bit
29 User Bit
30 User Bit
31 User Bit
32 Minute Units
33 Minute Units
34 Minute Units
35 Minute Units
36 User Bit
37 User Bit
38 User Bit
39 User Bit
40 Minute Tens
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Frame Number Bit Assignment
41 Minute Tens
42 Minute Tens
43 User Flag Bit
44 User Bit
45 User Bit
46 User Bit
47 User Bit
48 Hour Units
49 Hour Units
50 Hour Units
51 Hour Units
52 User Bit
53 User Bit
54 User Bit
55 User Bit
56 Hour Tens
57 Hour Tens
58 Unassigned
59 User Flag Bit
60 User Bit
61 User Bit
62 User Bit
63 User Bit
64 Sync Word
65 Sync Word
66 Sync Word
67 Sync Word
68 Sync Word
69 Sync Word
70 Sync Word
71 Sync Word
72 Sync Word
73 Sync Word
74 Sync Word
75 Sync Word
76 Sync Word
77 Sync Word
78 Sync Word
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Frame Number Bit Assignment
79 Sync Word

Table 9.10: A bit-by-bit listing of the information contained
in Longitudinal Time Code.

Vertical Interval Time Code

See the information in Table 9.11.

Frame Number Bit Assignment
0 Sync Bit (1)
1 Sync Bit (0)
2 Frame Units
3 Frame Units
4 Frame Units
5 Frame Units
6 User Bit
7 User Bit
8 User Bit
9 User Bit
10 Sync Bit (1)
11 Sync Bit (0)
12 Frame Tens
13 Frame Tens
14 Drop Frame Flag
15 Colour Frame Flag
16 User Bit
17 User Bit
18 User Bit
19 User Bit
20 Sync Bit (1)
21 Sync Bit (0)
22 Second Units
23 Second Units
24 Second Units
25 Second Units
26 User Bit
27 User Bit
28 User Bit
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Frame Number Bit Assignment
29 User Bit
30 Sync Bit (1)
31 Sync Bit (0)
32 Second Tens
33 Second Tens
34 Second Tens
35 Field Mark
36 User Bit
37 User Bit
38 User Bit
39 User Bit
40 Sync Bit (1)
41 Sync Bit (0)
42 Minute Units
43 Minute Units
44 Minute Units
45 Minute Units
46 User Bit
47 User Bit
48 User Bit
49 User Bit
50 Sync Bit (1)
51 Sync Bit (0)
52 Minute Tens
53 Minute Tens
54 Minute Tens
55 Binary Group Flag
56 User Bit
57 User Bit
58 User Bit
59 User Bit
60 Sync Bit (1)
61 Sync Bit (0)
62 Hour Units
63 Hour Units
64 Hour Units
65 Hour Units
66 User Bit
67 User Bit
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Frame Number Bit Assignment
68 User Bit
69 User Bit
70 Sync Bit (1)
71 Sync Bit (0)
72 Hour Tens
73 Hour Tens
74 Hour Tens
75 Unassigned
76 User Bit
77 User Bit
78 User Bit
79 User Bit
80 Sync Bit (1)
81 Sync Bit (0)
82 CRC Bit
83 CRC Bit
84 CRC Bit
85 CRC Bit
86 CRC Bit
87 CRC Bit
88 CRC Bit
89 CRC Bit

Table 9.11: A bit-by-bit listing of the information contained
in Vertical Interval Time Code.

9.7.7 Suggested Reading List



9. Audio Recording 778



Chapter 10

Conclusions and Opinions

A lot of what I’ve presented in this book relates to the theory of recording
and very little to do with aesthetics. Please don’t misinterpret this balance
of information – I’m not one of those people who believes that a recording
should be done using math instead of ears.

One of my favourite movies is My Dinner with André. If you haven’t seen
this film, you should. It takes about two hours to watch, and in those two
hours, you see two people having dinner and a very interesting conversation.
One of my other favourite movies is Cinema Paradiso in which, in two hours,
approximately 40 or 50 years pass. Let’s look at the difference between these
two concepts.

In the first, the idea is to present time in real time – watching the movie
is almost the same as sitting at the table with the two people having the
conversation. If there’s a break in the conversation because the waiter brings
the dessert, then you have to wait for the conversation to continue.

In the second, time is compressed. In order to tell the story, we need to
see a long stretch of time packed into two hours. Waiting 10 seconds for a
waiter to bring dessert would not be possible in this movie because there
isn’t time to wait.

The first movie is a lot like real life. The second movie is not, although
it shows the story of real lives. Most movies are like the latter – essentially,
the story is better than real life, because it leaves out the boring bits.

My life is full of normal-looking people doing mundane things, there’s
very little conflict, and therefore little need for resolution, not many car
chases, gun fights or martial arts. There are no robots from the future and
none of the people I know are trying to overthrow governments or large
corporations (assuming that these are different things... ). This is real life.

779
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All of the things that are in real life are the things that aren’t in movies.
Most people don’t go to movies to see real life – they go for the enter-

tainment value. Robots from the future that look like beautiful people, who,
using an their talents in car chases, gun fights and martial arts, are trying
to overthrow governments and large corporations.

Basically speaking, movies are better than life.
Recordings are the same. Listen to any commercial recording of an

orchestra and you’ll notice that there is lots of direct sound from the violins
but they also have lots of reverb on them. You’re simultaneously next to and
far from the instruments in the best hall in the world. This doesn’t happen
in real life. Britney Spears (or whoever is popular when you’re reading this)
can’t really sing like that without hundreds of takes and a lot of processing
gear. Commercial recordings are better than life. Or at least, that’s usually
the goal.

So, the moral of the story is that your goal on every recording you do
is to make it sound as good as possible. Of course, I can’t define “good”
– that’s up to your expectations (which is in turn dependent on your taste
and style) and your desired audience’s expectations.

So, to create that recording, whether it’s classical, jazz, pop or sound
effects in mono, stereo or multichannel, you do whatever you can to make
it sound better.

In order to do this, however, you need to know what direction to head
in. How do you move the microphone to make the sound wider, narrower,
drier. What will adding reverb, chorus, flanging or delay do to the signal?
You need to know in advance what direction you want to head in based on
aesthetics, and you need the theory to know how to achieve that goal.

10.0.8 Suggested Reading List



Chapter 11

Reference Information

11.1 ISO Frequency Centres

This list, shown in Table 11.1 is a standard list of frequencies that can be
used for various things such as the centre frequencies for graphic equalizers.
The numbers are used a multipliers for the decades within the audio range.
For example, if you were building an equalizer with half-octave frequency
centres, the filters would have centre frequencies of 25 Hz, 40 Hz, 63 Hz, 100
Hz, 160 Hz, 250 Hz, 400 Hz, 630 Hz, 1000 Hz, 1600 Hz, 2500 Hz, 4000 Hz,
6300 Hz, 10000 Hz, and 16000 Hz.

Use the numbers listed in the table as multipliers. For example, if you
were building a 1-Octave equalizer, then its frequency centres would use the
right-most column of numbers. In Hz, these would be 10 Hz, 12.5 Hz, 16
Hz, 20 Hz, 25 Hz, 31.5 Hz, 40 Hz, 50 Hz, 63 Hz, 80 Hz, 100 Hz, 125 Hz, 160
Hz ... 630 Hz, 800 Hz, 1 kHz, 1.25 kHz, 1.6 kHz ... 6.3 kHz, 8 kHz, 10 kHz,
12.5 kHz and so on.

781
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1
12

th Oct 1
6

th Oct 1
3

th Oct 1
2

th Oct 2
3

th Oct 1 Oct
1 1 1 1 1 1
1.06
1.12 1.12
1.18
1.25 1.25 1.25
1.32
1.4 1.4 1.4
1.5
1.6 1.6 1.6 1.6
1.7
1.8 1.8
1.9
2 2 2 2 2
2.12
2.24 2.24
2.36
2.5 2.5 2.5 2.5
2.65
2.8 2.8 2.8
3
3.15 3.15 3.15
3.35
3.55 3.55
3.75
4 4 4 4 4 4
4.25
4.5 4.5
4.75
5 5 5
5.3
5.6 5.6 5.6
6
6.3 6.3 6.3 6.3
6.7
7.1 7.1
7.5
8 8 8 8 8
8.5
9 9
9.5

Table 11.1: ISO Frequency Centres
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11.2 Scientific Notation and Prefixes

11.2.1 Scientific notation

Scientific notation is a method used to write very small or very big numbers
without using up a lot of ink on the page. In order to write the number
“one-million,” it is faster to write 106 than it is to write 1,000,000. If the
number is “two-million,” then we just multiply the appropriate number –
2 ∗ 106.

The same system is used for very small numbers. 0.000,000,35 is more
easily written as 3.5 ∗ 10−7.

A good trick to remember is that the exponent of the 10 shows you how
far to move the decimal place to get the number. For example, 4.3 ∗ 103

means that you just move the decimal three places to the right to make
the number 4300. If the number is 8.94 ∗ 10−5 you move the decimal five
places to the left (negative exponents move to the left) making the number
0.0000894.

If you’d like to use scientific notation on your calculator, you use the
button that’s marked “E” (on some calculators it’s marked “EXP”). So,
6 ∗ 105 is entered by pressing 6 E 5.

11.2.2 Prefixes

Similarly, prefixes make our lives much easier by acting as built-in multipliers
in our spoken numbers. It’s too difficult to talk about very short distances
in meters – so we use millimeters. A large resistance is more easily expressed
in kΩ than Ω.

So, for example, if you see something written in kilometers (abbreviated
km), then you know that you must multiply the number you see by 103 to
convert to metres. 5 km = 5 * 103 m = 5,000 m. If the unit is milligrams
(mg), then you multiply by 10−3 to convert to grams (g). 15 mg = 15 *
10−3 g = 0.015 g.

If you’re dealing with computer memory, however, you use the other
column. A computer with 20 Gigabytes (GB) of hard disk space has 20 *
230 bytes = 21,474,836,480 bytes.

Note that, if the prefix denotes a multiplier that is less than 1, it starts
with a small letter (i.e. milli- or m). If the multiplier is greater than one,
then a capital letter is used (i.e. mega- and M). The odd exception to this
case is that of kilo- or k. I don’t know why this is different, I guess somebody
has to be...
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Prefix Abbrev. Normal Computer
Multiplier Multiplier

atto- a 10−18

femto- f 10−15

pico- p 10−12

nano- n 10−9

micro- µ 10−6

milli- m 10−3

centi- c 10−2

deci- d 10−1

1 1
deca- da 101

hecto- h 102

kilo- k 103 210

mega- M 106 220

giga- G 109 230

tera- T 1012 240

peta- P 1015 250

Table 11.2: Prefixes with corresponding multipliers, both for the real world and for computer people.
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11.3 Resistor Colour Codes

If you go to the resistor store, you can buy different types of resistors in
different sizes. Some fancy types will have the resistance stamped right on
them, but most just have bands of different colours around them as is shown
in Figure 11.1.

Figure 11.1: A typical moulded composition resistor.

The bands are used to indicate a couple of pieces of information about
the resistor. In particular, you can find out both the resistance of the device,
as well as its tolerance.

Firstly, let’s talk about what the tolerance of a resistor is. Unfortunately,
it’s practically impossible to make a resistor that has exactly the resistance
that you’re looking for in your circuit. Instead of guaranteeing a particular
value such as 1 kΩ, the manufacturer tells you that the resistance is approx-
imately 1 kΩ, ± some percentage. For example, you’ll see something like 1
kΩ, ±20%. Therefore, if you measure the resistor, you’ll see that it has a
value between 800 Ω and 1.2 kΩ. If you want better precision than that,
you’ll have to do one of two things. You’ll either have to spend more money
to get resistors with a tighter tolerance, or you’ll have to hand-pick them
yourself by measuring one by one.

So, how do we tell what the specifications of a resistor are just by looking
at it? Take a look at Figure 11.2. You’ll see that each band has a label
attached to it. Reading from left to right (the right side of the resistor
doesn’t have a colour band) we have the 1st and 2nd digits, the multiplier
and the tolerance. Using Table 11.3 we can figure out what the shown
resistor is.

1s
t d
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Figure 11.2: A typical moulded composition resistor showing the meanings of the coloured bands.
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Colour Digit Multiplier Carbon ± Film-type
Tolerance Tolerance

Black 0 1 20% 0
Brown 1 10 1% 1%
Red 2 100 2% 2%
Orange 3 1,000 3%
Yellow 4 10,000 GMV
Green 5 100,000 5% (alt) 0.5%
Blue 6 1,000,000 6% 0.25%
Violet 7 10,000,000 12.5% 0.1%
Gray 8 0.01 (alt) 30% 0.05%
White 9 0.1 (alt) 10% (alt)
Silver 0.01 (pref) 10% (pref) 10%
Gold 0.1 (pref) 5% (pref) 5%
No colour 20%

Table 11.3: The corresponding meanings of the colour bands on a resistor [Mandl, 1973]. (GMV
stands for Guaranteed minimum value

The colour bands on the resistor in Figure 11.2 are red, green, violet and
silver. Table 11.4 shows how this combination is translated into a value.

1st digit 2nd digit Multiplier Tolerance
red green violet silver
2 5 10,000,000 10%

Table 11.4: Using Table 11.3, the colour bands can be used to find that the resistor in Figure 11.1
has a value of 250,000,000 Ω or 250 MΩ, ±10%.



Chapter 12

Hints and tips

This list is just a bunch of things to keep in mind when you’re doing a
recording. It is by no means a complete list, just a collection of things that
I think about when I’m doing a recording. Also note that some of the items
in the list should be taken with a grain of salt...

• Spike everything. Masking tape is your friend – if your recording is
going to run over multiple sessions, put it on the floor under your mi-
crophone stands, the music stands, the instruments and the amplifiers.
Digital photos help too...

• When you’re not the only person around the gear, make sure that’s
it’s damned near impossible to trip in any cables. Tape everything
down. On remote recording gigs, it’s always a good idea to run cables
over door frames rather than across the threshold...

• If you have a temporary setup, or there is the possibility of someone
tripping in a cable, leave lots of slack at both ends of the cable. I always
leave a couple of loops of mic cable at the base of the mic stand, and
at the other end, usually on the floor under the mic preamp. That
way, if someone does trip in a cable, they just drag the cable a bit
without your gear crashing to the floor.

• On a remote recording gig, make friends with the caretaker, the clean-
ing staff, the secretary, the stagehands... anyone that is in a position
to help you out of a jam. It’s always a good idea to bring along a cou-
ple of CD’s to give away to people as presents to make friends quicker.
I admit that this is manipulative, but it works, and it pays off.
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• Put your gain as early in the signal path as is possible. (See Section
9.1.6)

• When you’re recording to a digital medium, try to get the peak level
as close as you can to 0 dBFS without going over. (See Section ??)

• Never use a boost in the EQ if you can use a cut instead.

• Never use EQ if the problem can be solved with a different microphone,
microphone position, or microphone orientation.

• Usually, the best microphone position looks really strange. My per-
sonal feeling is that, if a microphone looks like it’s in the right place,
it probably isn’t. Always remember that a person listening to a CD
can’t see where the microphones were.

• No one that buys a CD cares how tired you were at the end of the
session – they expect $20 worth of perfection. In other words, fix
everything.

• If you’re recording a group with a drum kit, consider your drum over-
heads as a wide stereo pair. Using them, listen to the pan location of
all other instruments in the group (including each individual drum).
Do not try to override that location by panning the instrument’s own
microphone to a different location. If you want a different left-right
arrangement than you’re getting in the overheads, move the instru-
ments or the microphones. (If you want to get really detailed about
this, you have to consider every pair of microphones as a stereo pair
with the resulting imaging issues.)

• Monitor on as many playback systems as is possible/feasible. At the
very least, you should know what your mix sounds like on loudspeak-
ers and headphones, and know how the monitoring systems behave
(i.e. your mix will sound closer and wider on headphones than on
loudspeakers.)

• If you’re doing a remote recording, get used to your control room. Set
up your loudspeakers first, and play CD’s that you know well while
you’re setting up everything else.

• Don’t piss off your musicians in your efforts to find the perfect sound.
Better to get a perfect performance from happy performers than a
perfect recording of a bad performance. Of course, if you can get a
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perfect recording of a perfect performance, then all the better. Just
be aware of the feelings on the other side of the glass.

• Don’t get too excited about new gear. Just because you just bought
a fancy new reverb unit doesn’t mean that you have to put tons of
fancy new reverb on every track on the CD you’re recording.

• Louder isn’t always better – usually, louder is just louder.

• Don’t over-compress unless you really mean it. This is particularly
true if you’re mastering. I have spoken with a number of professional
mastering engineers who have told stories of sending tracks back to am-
ateur mixing engineers because they (the mastering engineers) simply
can’t undo the excessive compression on the tracks. The result is that
the mixing engineer has to go back and do it all again. It’s not neces-
sarily a good idea to keep a compressor (multi-band or otherwise) as
a permanent fixture on the 2-mix output of your mixer...

• Don’t believe everything that you read or hear. (Particularly gear re-
views in magazines. Ever notice how an advertisement for that same
piece of gear is very near the review? Suspicions abound...) Some-
times, the cheapest device works the best. (For example, in a very
carefully calibrated very fair blind comparison between various mic
pre-amp’s, a friend of mine in Boston, along with a number of pro-
fessional recording engineers and mic pre-manufacturers, found that
the second best one they heard was a $200 box, sounding better than
other fancy tube devices for thousands of dollars. They threw in the
cheap pre as a joke, and it wound up surprising everyone.)

• A laser-flat frequency response is not necessarily a good thing.

• Microphones are like paintbrushes. Use the characteristics of the mi-
crophone for the desired effect. In other words, the output of the
microphone should never be considered the ultimate Truth. Instead,
it is an interpretation of what is happening to the sound of the instru-
ment in the room.

• Record your room as well as your instrument. Never forget that you’re
very rarely recording in an anechoic environment.

• If you’re using spot microphone, use stereo pairs instead of mono spots
whenever possible. The reason for this is directly related to the previ-
ous point. If you put a single mic on a guitar amp and pan the output
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to the desired location, then you have the sound of the amp as well
as the sound of the room, all clumped into one mono location in your
mix. If you close-mic’ed with a stereo pair instead, your panning can
be the same (with the right orientation of the microphones and the
amp) but the room is spread out over the full image.

• Always trust your ears, but ask people for their opinions to see if they
might be hearing something that you’re not. There are times when the
most inexperienced listener can identify problems that a professional
(that’s you...) miss for one reason or another.

• Always experiment. Don’t use a technique just because it worked last
time, or because you read in a magazine that someone else uses it.

• Wherever possible, keep your audio signal cables away from all other
wires, particularly AC mains cables. If you have to cross wires, do so
a right angles. (See Section ??)
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P , 153
R, 183
RT60, 246
T , 183
U , 159
XC , 86
α, 184
λ, 164
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ρo, 151
℘o, 151
k, 165
k0, 165
u, 159
3 dB down point, 274

A-Format, 739
A-weighting, 262
absorbtion coefficient, 440
absorption, air, 184
AC, 62
acceptance angle, 376
active filters, 145
additive inverse, 24
adiabatic, 183
aliasing, 447
alternate, 419
alternating current, 62
amp, 58
ampere, 58
Ampex, 766
amplitude, 159

amplitude, instantaneous, 153
anti-aliasing filter, 449
antinode, 201
asymmetrical filter, 281
attack time, 315, 316
audio path, 318
audio sample, 475
auxiliary data, 475

B-Format, 737
B-weighting, 262
back electromotive force, 104
back EMF, 104
band-reject filter, 279
bandpass filter, 276
Bandpass filters, 149
bandstop filter, 279
bandwidth, 276, 429
base, 35
bass management, 621
bass redirection, 621
beating, 167
Bel, 70
bell curve, 460
Bi–Phase Correction, 769
bi–phase mark, 766
bi-phase mark, 472
bias, forward, 116
bias, reverse, 116
binary, 35
binary word, 37
binaural beating, 168

795



INDEX 796

biquad, 554
biquadratic filter, 554
bits, 37
blocks, 473
Blumelein microphone technique,

642
Blumlein, Alan, 642
boost, 296
breakdown voltage, 121
bridge, 199
bridge rectifier, 125
Butterworth filter, 145

c, 163
C-weighting, 262
capacitive reactance, 86
capacitor, 82
Cash, Johnny, 574
cent, 240
centre frequency, 280
channel code, 474
Chop, 419
CMRR, 142, 433
cocktail party effect, 748
coefficient, absorption, 184
coincident microphones, 640
colour frame flag, 769
comb filter, FIR, 538
comb filter, IIR, 549
combination tones, 168
combining filters, 286
common mode rejection ratio, 142,

433
comparator, 132
complex conjugate, 25
complex numbers, 21
compression ratio, 302
compression, acoustic, 158
cone of confusion, 266
consonance, 233

constant equilibrium density, 151
constant Q, 281
continuity tester, 413
continuous time, 442
control path, 318
control voltage , 319
conventional current, 58
convolution, 564
convolution, fast, 566
convolution, real, 565
correlation, 711
cosine, 11
crest factor, 65, 314
critical distance, 251
Crosby, Bing, 766
cross-correlation, 436
cross-correlation function, 423
crosstalk, 436
current, 58
cutoff frequency, 91, 274
CV, 319

damped oscillator, 155
dB, 70
dB FS, 75
dBm, 73
dBspl, 72
dBV, 74
DC, 61
DC offset, 436
de-essing, 299
decade, 161, 274
Decca Tree, 647
decibel, 70
decimal, 34, 35
denominator, 579
derivative, 45
device under test, 420, 427
DFT, 516
difference tone, 167
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differential amplifier, 139
diffuse field, 173, 245
digit, 34
digital multimeter, 411
Digital Signal Processing, 509
diode, zener, 120
Dirac impulse, 546
direct current, 61
direct sound, 241
Directivity Factor, 381
discontinuity, 526
discrete Fourier transform, 516
discrete time, 442
dissonance, 233
Distance Factor, 382
distortion, loudspeaker, 438
dither, 457
division, 415
DMM, 411
DRF, 381
drop frame, 762
drop frame flag, 769
DSF, 382
DSP, 509
DUT, 420, 427
duty cycle, 421
dynamic range, 432

e, 31
effective pressure, 153
EFM, 498
eight to fourteen modulation, 498
EIN, 432
electromotive force, 58
enharmonic, 157
equal loudness contour, 259
equalizers, 273
equation, 41
equivalent input noise, 432
equivalent noise level, 439

Euler’s formula, 31
Euler’s identity, 31
Euler, Leonhard, 31
evil scientists, 415
exponent, 5
Eyring Equation, 247

F, 104
factorial, 31
Farad, 82
Farads, 104
fast Fourier transform, 514
FFT, 514
filter, allpass, 559
filter, Butterworth, 145
filters, 273
Fletcher, 259
FM, 481
foley, 750
Fourier, 513
Fourier transform, 514
Fourier, Jean Baptiste, 514
frame, 473
frame rate, 758
free field, 172
frequency, 161
frequency modulation, 481
frequency response, 273, 429, 439
frequency response, loudspeaker, 438
frequency, angular, 162
frequency, negative, 162
frequency, normalized, 511
frequency, radian, 162
friction coefficient, 227
full-wave rectifier, 125
function, 41
function generator, 420
fundamental, 156

Gain, 280
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gain, 69, 428
gain bandwidth product, 143
gain before compression, 306
gain linearity, 428
galvanometer, 411
GBP, 143
ground bus, 334
group delay, 429, 430

Haas effect, 267
half-power point, 274
half-wave rectifier, 123
half-wavelength resonators, 216
Hamming, 534
Hanning, 532
harmonic, 156
Helmholtz resonator, 220
Hertz, 161
hexadecimal, 37
hole-in-the-middle, 645
horizontal position, 419
hypotenuse, 2
Hz, 161

IIR, 549
imaginary numbers, 20
IMD, 436
impedance, 87, 439
impedance curve, loudspeaker, 438
impedance, acoustic, 174
impedance, characteristic, 175
impedance, specific acoustic, 175
impulse response, 205, 436
index, 151
inductive reactance, 104
inductor, 104
Infinite Impulse Response, 549
input impedance, 427
input resistance, 141
input voltage range, 142

integer, 19
integer delay, 510, 561
integral, 52
intelligibility, 440
intensity, 178
interaural cross-correlation, 436
interference, constructive, 165
interference, destructive, 166
interlacing, 759
intermodulation distortion, 168, 436
Ipanema, Girl From, 221
IRE, 771
irrational numbers, 19
isophon, 261
ITU-R BS.775.1., 624

just intonation, 236
Just Temperament, 236

knee, 303

Lamberts Law, 188
LFE, 620
limit, 42, 43
linear gain, 302
linear phase filter, 293
Linear Time Invariant, 571
Lissajous pattern, 420
log, 6
logarithm, 6
logarithm, natural, 7
loudness switch, 296
loudspeaker aperture, 624
Low Frequency Effects, 620
low-pass filter, 274
LTC, 766
LTI, 571

magnetic lines of force, 96
Martin’s Law, 748
masking, 264
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maximum differential input volt-
age, 141

maximum length sequence, 422
maximum output, 430
Maximum Supply Voltage, 141
mean, geometric, 277
mid-side, 725
minimum phase, 290
mixer, 138
MLS, 422
modal density, 250
mode, 200
modes, 247
modes, axial, 248
modes, oblique, 249
modes, tangential), 249
modulus, 26
mono compatibility, 641
mono-stereo, 725
MS, 725
multiplicative inverse, 24
Munson, 259

N-type, 111
natural logarithm, 31
near-coincident techniques, 645
node, 201
noise level, 440
noise, blue, 170
noise, pink, 170
noise, purple, 171
noise, red, 171
noise, white, 170
non–drop frame, 765
non-combining filters, 286
non-symmetrical filter, 281
normal distribution, 460
notch filter, 279
NTSC, 758
numbers, whole, 19

numerator, 579
nut, 199
Nyquist frequency, 447

octave, 161
off-axis response, 439
off-axis response, loudspeaker, 438
Ohm’s Law, 59
op amp, 132
open loop voltage gain, 143
Operating Common-Mode Range,

142
operational amplifier, 132
operator, 574
order, filter, 274
oscilloscope, 415
output impedance, 427
output resistance, 142
output short-circuit duration, 141
output voltage swing, 142
overlap-add, 567
overtones, 156

p, 153
P-type, 111
PAL, 759
panphonic, 737
paragraphic equalizer, 288
parallel, 79
parity bit, 475
passband, 276
PDF, 457
peak, 311
period, 161
periodic, 164
periphonic, 737
phase distortion, 290
phase response, 429, 439
phase response, loudspeaker, 438
phase, unwrapped, 430
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phase, wrapped, 430
phon, 260
polar pattern, 439
pole, 587
Poniatoff, Alexander M., 766
power, 60
power response, loudspeaker, 438
power, acoustic, 177
ppm, 163
preamble, 474
precedence effect, 267
precision rectifier, 324
pressure, acoustic, 153
pressure, effective, 160
pressure, excess, 153
pressure, instantaneous, 153
pressure, peak, 160
pressure, peak to peak, 160
pressure, stasis, 151
probability density function, rect-

angular, 460
probability density functions, 457
probability distribution function,

Gaussian, 460
probability distribution function,

triangular , 460
proximity effect, 375
pseudo-random signal, 425
pumping, 309
pure temperament, 236
Pythagorean Comma, 236
Pythagorean Theorem, 3

Q, filter, 278, 436
quack, duck, 267
quadratic residue diffuser, 195
quality, filter, 278
quantization, 444
quantization error, 444
quantization noise, 444

quasi-parametric equalizer, 289

radians, 15
Random-Energy Efficiency, 379
Random-Energy Response, 377
rational number, 19
re-recording engineer, 750
reactance, acoustic, 175
real numbers, 20
reconstruction filter, 445
REE, 379
reflection coefficient, 183, 440
reflection, order, 242
reflections, 440
refraction, acoustic, 158
regulator, 127
release time, 316, 317
RER, 377
resistance, acoustic, 175
resistor, 59
resultant tones, 168
reverb, 245
reverberation, 245
reverberation time, 246, 440
reverse breakdown voltage, 120
Riemann Sum, 50
right angle, 1
right trangle, 1
ringing, 294
RMS, 62, 160, 311
room mode, 247
room modes, 440
room radius, 251
root mean square (RMS), 62
rosin, 227
rotation point, 302
RPDF, 460
RT60, 440

S/N ratio, 432
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Sabine Equation, 246
Sabine, Wallace Clement, 246
sample and hold, 442
sampling, 442
Schroeder diffuser, 195
Schroeder frequency, 250
SECAM, 759
semi-parametric filter, 289
semiconductors, 110
sensitivity, 439
sensitivity, loudspeaker, 438
series, 77
shelving filter, 280
side chain, 299, 318
signal generator, 420
signal to noise ratio, 432
simple harmonic motion, 11, 153
sine, 9
slew rate, 143, 430
slope, 3, 418
slope, filter, 274
smoothing filter, 445
Snells law, 187
SNR, 432
soft knee, 311
sone, 261
sound pressure level, 153
sound transmission, 440
soundfield, 736
Soundfield microphone, 739
source code, 475
speed of sound, 163
Spinal Tap, 69
SPL, 153
status bit, 476
stop frequency, 287
sub-frame, 473
symmetrical filter, 284
sync code, 474
syntonic comma, 237

tangent, 43
tau, 84
temperaments, equal, 238
temperaments, just, 236
temperaments, meantone, 238
temperaments, Pythagorean, 234
termination, 198
THD, 434
THD+N, 435
thermal noise, 431
threshold, 302
threshold of hearing, 153, 257
threshold of pain, 257
Time / div., 416
time code, 758
time constant, 66, 315
time constant, RC, 85
tolerance, resistor, 785
toroidal, 108
total harmonic distortion, 434
total harmonic distortion + noise,

435
TPDF, 460
trace rotation, 416
transfer function, 300, 575
transformer, 108
transition ratio, 287
transmission coefficient, 183
trigger, 418
true RMS meter, 414
turnover frequency, 287

unassigned bits, 769
undamped oscillator, 155
unterminated, 432
user bit, 476
user flags (2), 769

valence shell, 55
validity bit, 475
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VCA, 319
velocity, instantaneous, 159
Vertical position, 417
VITC, 770
voltage, 58
voltage controlled amplifier, 319
voltage regulator, 127
voltmeter, 411
volume density, 151

Watt’s Law, 60
wave number, 165
wave, longitudinal, 157
wave, plane, 175
wave, torsional, 157
wave, transverse, 157
waveguide, 210
wavelength, 164
wavenumber, 165
wavenumber, acoustic, 165
weighting curve, 262
weighting filter, 262
window, Hamming, 534
window, Hanning, 532
window, rectangular, 530
windowing, 524
windowing function, 527
wolf fifth, 235

X-Y mode, 419

Zen, 554
zero, 582
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