How
omputers
Work

Processor and
Main Memory

Roger Young

© Copyright 2001, Roger Stephen Young
All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the author.

FREE

Anidentical Internet version of this book is available for
free (for personal use and, possibly, for alimited time) at
http://howcomputers.com
and/or at
http://www.geocities.com/thinkorrr/howcomputer swor k/pl.html

I’'m at
thinkor rr @yahoo.com
and I’ll (possibly for a limited time) send you a free Microsoft
Word 2000 .doc file version (for personal use) as an attachment
to an email if you email me and want one.

March 20, 2002

| ntroduction

Computers are the most complex machines that have ever been created. Very few people
really know how they work. This book will tell you how they work and no technical
knowledge is required. It explains the operation of a smple, but fully functional,
computer in complete detail. The smple computer described consists mainly of a
processor and main memory. Relays, which are explained, are used in the circuitry
instead of transistors for smplicity. This book does not cover peripherals like modems,
mice, disk drives, or monitors.

Did you ever wonder what a bit, a pixel, a latch, a word (of memory), a data bus, an
address bus, a memory, aregister, a processor, a timing diagram, a clock (of a processor),
an instruction, or machine code is? Though most explanations of how computers work
are a lot of analogies or require a background in eectrical engineering, this book will tell
you precisely what each of them is and how each of them works without requiring any
previous knowledge of computers or electronics. However, this book starts out very easy
and gets harder asit goes along. Y ou must read the book starting at the first page and not
skip around because later topics depend on understanding earlier topics. How far you can
get may depend on your background. A junior high school science background should be
enough. There is no mathematics required other than smple addition and multiplication.
This is a short book, but it must be studied carefully. This means that you will have to
read some parts more than once to understand them. Get as far as you can. You will be
much more knowledgeable about how computers work when you are done than when you
started, even if you are not able to get through the whole text. This is a technical book
though it is amed at a non-technical audience. Though this book takes considerable
effort to understand, it isvery easy for what it explains. After you have studied this book,
if you go back and read it, it will seem ssimple. Good L uck!

CONTENTS

3 7 N L 7
MEMORY ..coiiiiiiiiiiiiiiiiiiiiiiiiitieiiineecinnnees 43
INSTRUCTIONS ..cuviiiiiiiiiiiiiiiiieieiinneeene 81
PROCESSOR ...ccciiiiiiiiiiiiiiiniiiiiinieiinneene 101
PROGRAMMING ...cctviiiniiiiinniniiinneccnnnnnn 132

MISCELLANEOUScoiiiiiiiiiiiiiiiiiinnnneen. 156

BASICS

Simple Circuit

power

top of | wiIre

batteryN N N
light

bulb
N\

ground
4 wire
bottom of battery

The picture above shows a ‘battery’ connected to a ‘light bulb’ by a ‘power wire’ and a
‘ground wire.” A power wire is a wire connected directly to the top of the battery. A
ground wire is a wire connected directly to the bottom of the battery. Any electrical
machine is called a circuit.

Simple Diagram

lioht
top of g
baﬁery bulb

power
wire

The diagram above also shows a ‘battery’ connected to a ‘light bulb’ by a ‘power wire’
and a ‘ground wire.” This diagram means the same as the picture on page 2. The ground
wire is not shown because it is assumed that one connection of every light is dways
connected to the bottom of the battery by a ground wire in diagrams. Diagrams are
simpler to draw than pictures that mean the same thing.

Key Circuit

top of oOWwer .
‘t)a,{‘)tm'j.fxI ijre key light

The picture above shows the ‘top of” a ‘battery’ connected by a ‘power wire’ to a ‘key’
that is connected by a ‘light wire’ to a ‘light bulb.’

A key is a flat piece of springy steel that is bent up so that the key only touches the wire
to the key’s right when the key is pressed down by someone’s finger.

When someone pushes the key down, the right end of the key touches the light wire and
electricity flows from the top of the battery, through the power wire, the key, and the
light wire, to the light bulb, turning the light bulb on.

When the key is released, the key springs back up. Now the key does not touch the light

wire and electricity can not get from the key to the light wire to the light bulb so that the
light bulb goes off.

10

Key Diagram

top of ey light
battery power wire
wire N |/
N
R]ight
bulb

The diagram above shows the same circuit as the preceding picture.

Again, there is also a wire from the other connection of the light bulb back to the bottom
of the battery, but that wire does not need to be shown because the other connection of
every light is connected to the bottom of the battery and you know the ground wire is
there without drawing it.

11

Electr omagnet

power
wire

battery

3

7' electro-
g{%"l‘.gd magnet

The picture above shows the top of a battery connected by a wire to an electromagnet.

An electromagnet is a coil of (plastic coated) wire. An electromagnet becomes magnetic
when electricity goes through it, just as a light bulb glows when electricity goes through
the light bulb.

The wire that makes up the coil of wire that is the electromagnet has two ends

(connections). There is also a ‘ground wire’ from the other connection of the
electromagnet back to the bottom of the battery.

12

Electromagnet Diagram

top of power
battery\ wire
4

electromagnet]

The diagram above shows the same circuit as the preceding picture.

The wire that makes up the coil of wire that is the electromagnet has two ends
(connections). There is aso a ground wire from the other connection of the
electromagnet back to the bottom of the battery, as in the picture, but that wire does not
need to be shown because the other connection of every electromagnet is connected to the
bottom of the battery.

13

Relay

top to
P to .
grﬂ?]]_:['l:g power ke}r ght hght
wire _ _\I —qwire bulb
top :\l
battery Py =
electromagnet
bottom | W%lrle

power bottom
wire key |

<N

N

|
|
|
/[\ electromagnet

relay in
dashed box
l\bottﬂm I\ bottom
battery groun
wire

The picture above shows a ‘bottom key’ that controls an electromagnet.

The electromagnet, in turn, controls the top key. A key and the electromagnet that
controls it are, together, called arelay. The relay isin the dashed box.

When the bottom key is pressed, the electromagnet is powered and the electromagnet
becomes magnetic. That makes the electromagnet attract the top key and pull the top key
down just like a finger can push a key down. A magnet (or a powered electromagnet)
attracts the top key because the top key is made of steel. A magnet (or a powered

electromagnet) does not attract the wires because the wires are made of copper.

Important: The electromagnet does not ever touch the top key. No electricity can go
from the electromagnet to the wires attached to the top key.

14

A computer is amost entirely made up of alot of relays (today, transistors) connected by
wires. Just how the relays are connected and just what they do is the main subject of this
book. Other concepts, especialy programming, will also be explained.

(Today, transistors are used instead of relays for lower cost and greater speed. The

design remains practically the same, however. Relays are easier to understand and, so,
will be used in this explanation.)

Relay Diagram

top of top top light
top battery power - X&Y' _ _ _ wire
ANPALEE |/
N | ()
| |
| | A
bottom | :

bott | lLight
P%}W?é}l key | | bulb
RS N : R' electro-
N el — J:rnr—j,gnet

/]\

N top of electro- relay in
bottom MagNel gashed box
battery wire

The diagram above shows the same circuit as the previous picture in a different way.

15

One Battery and Touching Wires

top
groun to :
wire kel}]f light Lght

pover 1Ny N AP
. I

electrénmagnet

botton:l w§|

key

relay in

dashed box

N bottom

R‘tm‘rtery wire

In this picture, only one battery powers dl the circuitry in the previous picture. Note the
symbol for wires that touch.

16

One Battery and Connected Wires Diagram

top key

pover SN

|
bottom ! | A
hared| bott .
Fimamffeer pgwg? key : | Light
wire | wire J, | | bulb
I "electro-
1\ e — IE:rnagnet
/I\' lectro- lav i
wIres © relay m
top of connected M€t dashed box

battery wire

This diagram shows the same circuit as the previous picture in a different way. Touching
wires are connected wires,

17

L oop
battery

power

loop
wire

L oop Diagram
top of

magnet]

o

relay in small

loop in large dashed box

18

The picture and diagram at left show a relay that controls its own electromagnet! The
square of wire that takes electricity from the key of the relay to the electromagnet of the
same relay is called a ‘loop.’

No electricity can get from the top of the battery to the electromagnet because the key is
up. However, if someone presses the key, then electricity can get to the electromagnet.
Then, the electromagnet will hold the key down - even if the person lets go of the key! So
we say that the loop remembers that the key was pressed. Remember that the key
normally springs up because it is springy and bent upward.

Similarly, if someone then lifts up the key (A person is much stronger than a little
electromagnet.), then no electricity will reach the electromagnet and the key will remain
up even after the person releases the key. So we say that the loop remembers that the key
was lifted up.

Most relays in a computer are used to make loops, or connect the loops together.

19

Pixel

top of light
batte ower :
Iy Pwrir o key hg_ht bulb
V N wire 4
connection
N -
A T
electro- 7| key
magnet wire light
ground ground
WIIE electro- loop wire "N
magnet wire
N J J
Pixel Diagram
topof | .. 71 light

_
battery ~power

N “'EE:FASI__—:C‘Dﬁ'ECﬁFIm/
:‘ | : |/I\ | C

relay in small

I ' key | 7'
| ,7' :W:ire | light
electro- | | bulb
magnet | [N
| | loop
| /[\ | wire
|

loop 1n large dashed box
pixel 15 a loop and light bulb

20

The picture and diagram above show a loop that controls a light bulb. A light bulb that is
controlled by a loop is called a “pixel.’

In a diagram, where a horizontal wire and a vertical wire meet, without crossing, there is
a connection of the two wires.

Therefore, when the key is pressed, electricity can flow from the top of the battery,
through the key, to both the light and the electromagnet. When the key is down and the
light bulb is glowing, one says that the loop has value ‘1’ and the pixel is ‘on.” The loop
has value ‘1’ even if there is not a light bulb, just so the loop wire has electricity going
through it, to the electromagnet, because the key is down.

When the key is up and the light bulb is not glowing, one says that the loop has value 0’

and the pixel is ‘off.” The loop has value ‘0’ even if there is not a light bulb - just so the
loop wire does not have eectricity going through it (because the key is up).

21

Normally Closed K ey

batt power
attery wire normally .
\| 4 closed]ﬁé
7 Nk
= fight
bulb

N

ground wire

Normally Closed Key Diagram

top of light
battery power wire
wire
N<] \ e O
N light
normally % bulb

closed key

22

The picture and diagram at left show the top of a battery connected by a wire to a
normally closed key, that is connected by another wire to alight bulb.

A diagram of an electricad machine is caled a circuit diagram, a diagram, a schematic
(pronounced ske-ma’-tic) diagram, or just a schematic.

The normally closed key is different from the keys described previously. The normally
closed key is also a springy piece of steel, but is bent so that it normally iS connected to
the right wire. Therefore, the light bulb in the circuit above is normaly on. However, if
you push down on the normally closed key, the light bulb becomes disconnected from the
‘power wire’ and the light goes out.

A key is called ‘closed’ when electricity can flow through it from a wire on its left to a
wire on its right.
A key is called ‘open’ when electricity can’t flow through it from a wire on the left to a
wire on the right.

A normally closed key is normally closed, but is open when you push it down.
A normally open key is normally open, but is closed when you push it down.

A relay iscalled closed if its key is closed.
A relay iscalled open if its key is open.

An electromagnet is called ‘powered’ if the electromagnet is connected to the top of a
battery, even if that electromagnet is connected to the top of the battery through a series
of closed keys. In fact, any piece of wire is called ‘powered’ if that piece of wire is
connected to the top of a battery, even if that piece of wire is connected to the top of the
battery through a series of closed keys.

Any piece of wire that ispowered is said to have value ‘1.’
Any piece of wire that is not powered is said to have value ‘0.

The values of the wire in a loop as described previously are a special case of these rules
for assigning values to wires.

23

Normally Closed Relay

light light
I A
AN
CclOse |

closed
relay in

dashed box

electro-
magnet

|
|
| normally
|
|

connection

R bottom

ground wire

24

Normally Closed Relay Diagram

normally licht
PE%EEI. closed key 1,:!,%1_'['13
wire r —\l‘/— — I/
N | |

! |
I A
| | light
top of bottom electro- : I bulb
battery key magnet |
N wire |
\l/ ! R' electro-
e Jmagnet

N

connection normally closed relay
in dashed box

The preceding picture and diagram show a bottom key that controls an electromagnet.
The electromagnet, in turn, controls the top, normally closed key. A normally closed key
and the electromagnet that controls it are, together, caled anormally closed relay.

When the bottom key is pressed, the electromagnet is powered and the electromagnet
becomes magnetic. That makes the electromagnet attract the top, normaly closed key
and pull the top, normally closed key down, just like a finger can push a normally closed
key down. A magnet (or a powered electromagnet) attracts the normaly closed key
because the normally closed key is made of steel. When the bottom key is pressed, the
light turns off.

In other words, when the bottom key is pressed, the electromagnet energizes,
disconnecting the top key.

25

Clear Key

normally open
normally closed loop ke-j,r}F P

power clear key riqqie N
wire

4

wire
battery \y
N

A electro-
ground magnet

wite loop wire %

Clear Key Diagram
top of normally open

battery power middle Q0P key
N wire wire

4 N

normally closed

clear key
electro- /I
magnet

loop wire /

The picture and diagram above show aloop as before, but a normally closed key has been
added. Aslong asthe normally closed key is closed, the loop works as before.

However, if the normaly closed key is pressed, then the normaly closed key will be
open and electricity will not reach the electromagnet, so the electromagnet will not be
magnetic, and the normally open key will pop up if it was down. If the normally open

key aready was up, it will stay up.

Therefore, pressing the normally closed key will clear the value of the loop to ‘0.
Therefore, this normally closed key is called the ‘clear key’ for the loop.

26

L oop to Loop Data Transfer

loop loop

clear Key A clear KeyB

keyA L keyB L
loop IU_UP
< wire A & wire

~ B
A N 45
loop A connecting loop B
key

In the circuit above, the ‘connecting key’ connects loop A and loop B. Both loops have
value 0. Temporarily pressing ‘loop key A’ gives the value 1 to loop A. Now,
temporarily pressing the ‘connecting key’ will make loop B have value 1. That is
because when loop A has value 1, loop key A is closed, loop wire A has value 1, and
when the connecting key is closed, electricity can reach the electromagnet of loop B,
giving loop B value 1.

However, if loop A has value 0, and loop B has value 0, and the connecting key is
pressed, then both loops keep their values of 0.

Therefore, if one temporarily presses ‘clear key B’ to clear loop B to value 0, and then

temporarily presses the connecting key, whatever value is in loop A will be copied to loop
B. Thenloop A and loop B will have the same value.

27

Oscillator

pxz;:’:r normally closed

L’ relay key

4

gm_und feedback
wire wire
electro- /I 4
magnet
Oscillator Diagram
X power normally closed
att
eil wire relay key
<} ¥
N
7| feedback
electromagnet wire

28

The picture and diagram at left show a normaly closed relay that controls its own
electromagnet. The sgquare of wire that takes electricity from the normally closed key of
the relay to the electromagnet of the same normally closed relay is caled a feedback
wire. (Notice that this circuit is different from aloop circuit, which uses a normally open
relay.) This circuit is called an oscillator because the relay oscillates (changes back and
forth) between open and closed.

Electricity can get from the top of the battery, through the closed, normally closed relay
key to the electromagnet. The electromagnet then pulls the normaly closed key down
and opens the normally closed key. Because the normaly closed key is now open, no
electricity can get to the electromagnet. The electromagnet now no longer attracts the
normally closed key and the normally closed key closes.

Thus, the normally closed key repeatedly opens and closes without anyone touching the
key. The feedback wire gets value 1, then value O, then vaue 1, etc. It takes a relay
about a hundredth of a second to change values.

Just as a normal loop is the basis of a computer memory, this feedback circuit is a key

part of a computer’s clock. A computer’s clock is a circuit that repeatedly generates
signals (1 and 0 values).

29

Keysin Series
light
key D key E b

=

Keysin Series Diagram
key D key E light

] N N/ OZ

In the picture and diagram above, one must press both ‘key D° AND ‘key E’ to turn the
light on.

30

AND Gate Circuit

AND gate in dashed box

input |
keyA ~ wire A | output
wire
N, e

|

input |

kev B wire B
“ |
|

G »

In the circuit above, the three triangles are dl the top of the same battery. When ‘key D’
AND ‘key E’ close, then the light comes on. When ‘key A’ is pressed, then ‘key D’
closes. When ‘key B’ is pressed, then ‘key E’ closes. Therefore, when ‘key A’ and ‘key
B’ are pressed, the light turns on. Another way of describing the operation of the circuit
is to say that ‘output wire C’ gets value 1 only when ‘input wire A’ gets value 1 AND
‘input wire B’ gets value 1.

The following table also shows that ‘output wire C* has value 1 only when both ‘input
wire A’ has value 1 AND ‘input wire B’ has value 1.

AND gate truth table

—_—— O D
=l (=] [lvs]
—_ OO O

AND Gate Circuit with Symbol

key A AND gate
A light
N
C
key B

P

The diagram above shows a circuit with the symbol for an ‘AND gate’ which is shown,

alone, below.
AND Gate Symbol

The light in the circuit below only comes on whey key D, key E, AND key F are all
pressed.

ThreeKeysin Series

key DN key EN key I;I
<]_/ _/_/AO

32

Keysin Parallel
light
key D

Sa—

key E

=

Keysin Parallel Diagram

key D light
/4

G4—"—0

P

In the picture and diagram above, one need only press either ‘key D’ OR ‘key E’ (or
both) to turn the light on.

33

OR Gate Circuit
OR gate in dashed box

In the circuit above, as aways, the crossing wires do not touch and are not connected to
each other. When ‘key D’ OR ‘key E’ (or both) closes, the light comes on. When ‘key
A’ is pressed, then ‘key D’ closes. When ‘key B’ is pressed, then ‘key E’ closes.
Therefore, when ‘key A’ OR ‘key B’ is pressed, the light turns on. Another way of
describing the operation of this circuit is to say that ‘output wire C’ gets value 1 only
when ‘input wire A’ has value 1 OR ‘input wire B’ has value 1.

The following table also shows that ‘output wire C* gets value 1 only when either ‘input
value A’ has value 1 OR ‘input wire B’ has value 1.

OR gate truth table

—_—— O

— O = O
el Ll Ll (=)

OR Gate Circuit with Symbol

OR gate

key A

The diagram above shows a circuit with the symbol for an ‘OR gate’ which is shown
alone, below.

OR Gate Symbol
OR gate

4

35

ThreeKeysin Parallel

key D light

NJ 4
<} 9 . 9 ()

kev E

N
@ / —lly
key F

N

The light in the circuit above turns on when key D, key E, OR key F is pressed.

36

Normally Closed K ey

light
key D 4

4

Normally Closed Key Diagram

key D light

|/ 4

In the picture and diagram above, the light is on, as we have seen before. One must press
the normaly closed key D down to turn the light off.

37

NOT Gate Circuit

NOT gate in dashed box

input
key A wire A

N

In the circuit above, the triangles are both the top of the same battery. When ‘key A’ is
pressed, ‘key D’ is pulled down and the light goes off. That is, when ‘key A’ is pressed,
normally closed ‘key D’ opens. Therefore, when ‘key A’ is pressed, the light goes Off.
Another way of describing the operation of the circuit is to say that ‘output wire C’ gets
value 0 when ‘input wire A’ gets value 1. ‘Output wire C’ gets value 1 when ‘input wire
A’ gets value 0.

The following table also shows that ‘output wire C’ gets value 0 only when ‘input wire
A’ gets value 1.

NOT gate truth table
A C
0 1
1 0

38

NOT Gate Circuit with Symbol

NOT gate
key A |Z light
N N

A C O

The diagram above shows a circuit with the symbol for a ‘NOT gate’ which is shown
alone, below.

NOT Gate Symbol

NOT gate

4

39

| nter connected Gates

NOT gate

4

———

|4 \J|O

8

=

L

The diagram above shows that the output of an AND gate can be the input for a NOT
gate. The circuit above can aso be represented with gate symbols as below.

| nter connected Gates with Symbols

AND gate

4

<]_/
<]_/_

Not gate

4

40

A ‘NAND gate’ can be constructed from an AND gate followed by a NOT gate as
indicated below.

Constructed NAND Gate
NAND gate in dashed box

A NAND gate can be represented by the single symbol in the circuit below.

NAND Gate Circuit
NAND gate

4

<]_/_
<]_/_

A lone NAND gate is pictured below.

NAND Gate
NAND gate

4

—

The truth table for the NAND gate is shown below.

NAND gate truth table

[l | ol (@ R @]

= Ok |O
olr k|-

42

MEMORY

43

(Address) Decoder

decoder in dashed box

Al

Al

_— e — — — — — — — — — — — —d

FO

The diagram at left shows a ‘decoder.” A and B are the inputs to the decoder and I, J, K,
and L are the outputs. The truth table for this circuit is shown below.

B
0
1
0
1

—_—— O O

olo|lo|— li—
olo|—=|o l—
=== I

0
0
1
0

Normally closed relay AA is closed. Normally closed relay AB is also closed.
Therefore, electricity can travel from the top of the battery, through AA and AB, to light
L.

If keys A and B are both pressed, then normaly open relays DA and DB are closed
(because their electromagnets are powered) and electricity can reach light L.

Similarly, if key A is pressed and key B is not pressed, then normally open relay CA is
closed and normally closed relay CB is closed and light K ison.

Findly, if key A isnot pressed and key B is pressed, then light Jis on.

Wire PO is power. Al and AO are address wire 1 and address wire 0. PO has value 1.
A1 can have vaue 1 or 0, and AO can have value 1 or O.

45

Truth Table Generator

Al

51l

1 B
AA AEB 500
“d e |
1] i
BG BI
—_—— <I_/_u
i‘: BE. s01 -| -|
— 41 .
cl
ca E/—u —
CE
- 510 'l '|
|
n—-l —1 -

FO Al Al

D1

ulu}

46

In the preceding circuit, keys A and B are the inputs and lights G and H are the outputs.
The truth table for the circuit above is shown below.

(=i a(=] (lvs)
RO |ONI

[l | ol (@ R @]

ook

For example, if neither A nor B is pressed, then SO0 is powered (has value 1) because the
normally closed relays AA and AB are then closed. BB is open so SO1 is O, CA is open
so S10 is 0, and both DA and DB are open so S11 is0. Because SO0 is powered, AG is
closed and electricity can go from the top of the battery (indicated by a triangle), through
relay AG, to wire D1 to light G, so G is on. Relay Al is also closed but relay AI’s key is
not connected to the top of the battery so no electricity getsto light H.

For another example, if both keys A and B are pressed, then A=1 and B=1 and relays DA
and DB are closed. That makes S11=1 and closes relays DG and DI. Electricity can go
from the top of the battery through DG and D1 to light G and through DI and D2 to light
H. Therefore, A=1 and B=1 results in G=1 and H=1 asin the truth table.

D1 and DO are datawire 1 and datawire 0. D1 can have value 1 or 0 and DO can be 1 or
0.

a7

ROM (Read-Only Memory) With Enable (EN) Key (D)

ROM in dashed box

D1
5
-0

N

o b o -
S 2 o r
7 AT AT AT -
= DJ
[=] - w
2 Z 5 5

Al

Al
A E .,

FO

<HH

48

The circuit above has the following truth table:

[l ol il (e Nl)
R, OOk OO

R OO O|r|O
R OO, OO|O|O
R OR,ROOO|O|O

If key D (EN) is not pressed (‘EN’ stands for ‘enable.”), then EN is 0, so no electricity
gets to the electromagnets of AG and Al. Smilarly, BG, BI, CG, CI, DG, and DI are
open if D (EN) isnot pressed. Therefore, if D (EN) isnot pressed, then no electricity can
get to lights G and H as indicated in the truth table.

If A and B are not pressed (A1=0 and A0=0), then electricity gets to the electromagnet of
AE and closesrelay AE. If D isthen pressed (EN=1), then electricity can go from the top
of the battery, through D and through AE to the electromagnets of AG and Al. AG and
Al then close and €electricity can go from the top of the battery, through AG, to wire D1
and light G.

The truth table above can aso be represented as below.

BRIk |o
R~ |o|o|X
RO |o|X
= OO0 |O
= ORF|O|O

The X’s mean O or 1. That is, the row with X’s means that if EN is 0, then D1=0 and
D0=0 no matter what values A1 and A0 have.

49

L oops Added

Al

@

—

BI

&

CI

e

—i

01

>

D1

<I—/1j—/1—

@

sy

<]_”/

1]

- o a
: : g
%/_ %/ E/. M/.
=
o o L=} = -
2 2 7 z
m m.._l %/ _|_ @ M..._l_ W/ _|_ 5
La
mw_._ 571 5\7] 2] 5
(]
o

g

]

50

In the circuit above, eight loops have been added to the previous circuit. The loops are
labeled AF, AH, BF, BH, CF, CH, DF, and DH. Each loop can have value O or 1. The
truth table fore this circuit is shown below.

O | X | X0 0
1 0| O WAF | AH
1 O | 1 §BF|BH
1 1| 0[jCE| CH
1 1| 1}§DF|DH

To make loop AF have value 1, just press key AF down. Key AF will stay down because
itispart of aloop. To make AF have value O again, just lift key AF up. It will stay up on
its own. In the truth table, ‘AF’ means the value of loop AF. The other loops, AH, BF,
BH, CF, CH, DF, and DH, operate similarly.

51

Input Keys Added

Al

@

—

BI

&

CI

e

—i

01

>

D1

<I—/1j—/1—

EQD

EO1

EE

=

ﬂ—“/r'

E10

<]_”/

1]

Ell

EM

=3]

CE

Al

iy -

Al

mw_._

FO

P

]

52

In the diagram at left, key E and key F (bottom right) have been added to the circuit.
Keys E and F allow one to set a loop to value 1 without touching the loop’s key.

For example, to set loop AF to 1 without touching key AF, one must not push key A or
key B, which closes relay AE. Then you hold down key E to put value 1 on wire D1.
Findly, temporarily pushing key D makes EN temporarily 1. Because AE is closed,
EN=1 powers relay AG’s electromagnet and closes AG. D1’s value of 1 can now go
through key AG to loop AF, thereby making loop AF have value 1.

53

Memory (Clear Key Added)

MEMORY

BIT O

l

BIT 1

—

o .

r- - """ " " 0 =/ — L =
m__| mﬂ| mﬁ| mﬁ| n FJAI
|
2 . z z |
2 @)) _
_
- - - Y
r.___l._. G,—_l G,—_l: r._,—_l: " EJ.—I
_
))) DI
L L _
S g 3 g z z Z & |
il i |
277w 277 wh 277w\ 277 w\
#_ﬁ A A 0 R R
: :)
2 £Y7] g (" 2] g
mw_._ i/] "] | 3
L o o _______ g e

In this circuit, key C, wire CL (for CLear), rdlays AC, BC, CC, and DC, normdly closed
rdays AD, BD, CD, and DD, and wires HOO, HO1, H10 and H11 (H for Hold, or
remember) have been added to the circuit. These additions allow loops to be ‘cleared’ to
value 0 by manipulating keys outside the dashed box (memory) without touching the loop
keys.

The diagram above shows a memory within the dashed box. The memory can be
controlled by the keys outside the dashed box at the bottom of the diagram. What a
memory does will be explained first. Then, how the memory works will be described.

AF, AH, BF, BH, CF, CH, DF, and DH are each relay keys of loops. Y ou can change the
value of loop AF from O to 1 by smply pressing key AF down. Similarly, you can
change the value of loop AF from 1 to O by lifting key AF. To determine whether aloop
has value 0 or value 1, just look at the loop’s key. If the key is down, then the loop has
value 1. If the key is up, then the loop has value 0. The value of a loop stays the same
until you change it.

However, suppose that the dashed box was a physical box and you could not reach inside
the box. If you buy a memory chip at a store, the circuitry is enclosed in a plastic box
with wires PO, Al, A0, CL (This may be called WR for ‘WRite.”), EN, D1, DO and
GRound wire, GR, sticking out. The circuitry uses transistors instead of relays for
switches, so even if you broke the box open, you couldn’t change the values by hand. (A
memory from a store would probably have more address lines (wires) like A2, A3, ...
A20 and data lines like D2, D3, ... D7.)

The memory is constructed so that the values in the loops can be examined and changed

using only keys A, B, C, D, E, and F and light bulbs G and H which are all outside the
box and are not part of the memory.

55

Where Power Reachesin a Memory

MEMORY

BIT O

l

BIT 1

%

e | o
_ _ _]
| ! ! !
AT AN T AT
T o (] =]
A) a A
]
~ ~ ~ b=
_] ‘——l. ‘——|= ‘——|=
4] o o [
T m o]
0 £ £ £

Al
ac, ™
e, B

~1

ED

co
|
.
CE
-~
I

atan®)

g _.-"_l

.“_n m,,_na N 2\ 5 °
® ® ® E .
2d" %J_l_ ww_._ m,,_l_ -
e 4 mv_._] 2] 3
: : :
|||||||||||||||||||| _ ©

s

56

The bold wires in the diagram at left, show which wires are powered.

A wire is powered only if it is connected to the top of the battery (represented by a
triangle in the lower left corner of the diagram, as shown below).

power

Notice the new symbol used for keys AC and AE. Keys AC and AE are normally open
keys. However, they are closed now because their electromagnets are powered.
Therefore, they are represented as:

closed, normally open key

__1

instead of as:

open, normally open key

J_

Electricity can flow from left to right (or right to left) through a closed key even if it’s a
closed but normally open key.

57

Similarly, an open, normally closed key is represented as.

open, normally closed key
instead of as.

closed, normally closed key

—

58

Notice that, in the diagram of memory, al of the loops (AF, AH, BF, BH, CF, CH, DF,
and DH) have value 0 because al of those normally open keys are open.

AF is “bit 1’ of ‘latch 00’ and has value 0. AH ishit O of latch 00 and also has value O.

Y ou should follow the power from the top of the battery (the triangle in the lower left of
the diagram of memory above) and see why certain wires are bold and the rest are
normal. Remember, eectricity can’t go through open keys. Electricity also does not
travel between crossing wires. Crossing wires are not touching (not connected). You
should also understand why some electromagnets are powered and others aren’t, and how
powering the electromagnet of a key closes a normally open key and, in later diagrams,
opens anormally closed key.

59

Now, suppose we want to store value 01 in latch 10. This means we want to keep key CF
open for value 0 and close key CH for value 1. This is called ‘writing’ value 01 to
address 10.

To do this, you first select latch 10 by pressing key A and not pressing key B. This
selects latch 10 as indicated by the bold select 10 wire, ‘S10,” in the diagram below. Key
A controls address wire 1, labeled Al in the diagram, and key B controls address wire O,
labeled AO in the diagram. Both address wires, A1 and AO, together, are caled the
address bus. A group of similar wires are, together, called a ‘bus.” Pressing key A and
not pressing key B results in power going through the circuit as indicated by bold linesin
the diagram below. Notice that horizontal wire S10 has power (is bold) while SO0, S01,
and S11 do not have power. This selects latch 10.

60

Selecting the Address

MEMORY

BIT O

l

BIT 1

%

r
I

|

|

|

I

|

|

I

I

|

|

I

|

|

|
L
FO

ulu}

D1

B
EG
Ci

HOO
EQD
HO1
EO1
H1i0D
E10

EN
D
_/‘

Al
ac, ™
1
HE
-~
|
ED
i |
-
BE
o~
|
o
Ting
-
ct,
4
oo
B |
-
o,
|

CL

Al

Al
~

61

The second step in writing value 01 to address (latch) 10 isto press key F and not press
key E as in the following diagram. Not pressing key E gives value 0 to data wire D1 and
pressing key F gives vaue 1 to data wire DO. Both data wires, D1 and DO, are, together,
called the ‘data bus’ just as both address wires, Al and AO, are, together, called the
‘address bus.” The first and second steps can be done simultaneously. This results in
power going through the circuit as indicated by the bold wires in the diagram below.
Wire DO is bold and, so, has value 1.

62

o

LATCH

— <3

C
o 4
= o

T

5
53— <
(]
I

—

LATCH

£— =

Selecting the Data to be Written

MEMORY

| AD HOO
s | I
A, Y AF, AB- InH, AL.
| AR AEB 500]
| J‘ ~ ﬁf, EOn
|
|)| B0 HOL
: . BC, ""ﬁll |BF, Ei | I EBHy EBI
BA -
y - by spt

g oo] =B
|
!)\ co HiO

| CH cl
e e | 1 L’“ﬂ—/“ -+ 1

& z1o
| J -HZI 1 CE,, E10
|
!)\ oo Hit
I OH
y oc, “'!I'l OF, | I " 01

| =L st] Ij -l Ij -|

DE E11
143 L] C \

|
4
L - = - |} — - - _ _ __ __ _ _ - _ _
FO Al ag CL EN o1
) C o, E E

63

The third step in writing 01 to address 10 is pressing the enable key, ‘D,” which controls
the enable (‘EN’) wire. This results in power going through the circuit as indicated in
bold in the following diagram. Notice that loop CH now has value 1. Loop CH got
power from wire DO through CI. No power went from wire D1 through CG to loop CF
because wire D1 is not powered.

It’s important to remember that pressing the enable key, ‘D,” makes EN=1 and connects
the loops of the selected (by the address wires Al and A0) latch to the data bus wires, D1
and DO.

Pressing Enable (EN)

MEMORY

BIT O

l

BIT 1

%

ulu}

D1

[211]
. |

20

%J @ ‘1 %l s A Ly o N MJ
h = _._ N .._._ A | Jh.._ 2\ hl-_._ g
- - ! - 5
27"] ﬂﬁ_ M1_ :
1/ gf g g 3
ﬂ : 1 _—.nP _—1—
|_ m

ol

65

In the fourth step, key D is released and the enable (EN) wire returns to value O
(unpowered). This results in power flowing through the memory as indicated by bold
wires in the following diagram. Notice that loop CH 4till has value 1 even though loop
CH isno longer connected to data wire DO through relay Cl (because relay Cl is open).

66

Releasing Enable (EN)

MEMORY

BIT O

BIT 1

%

r- - - — - - - - — - - - — — - — — - - mH
m__| mq_| mq_| mq_| | -
_
; . z z _
3) 2 N
_
- - - =Y
G__|.. G~_| u_|.. u_|.. _ 44..
_
NS S
_
3 g = 2 E 2 E G |
= :) |
AR AR TS I A
| | | _ S
o n m m _ -
}] (]] _m N
£/ sf mA MA | = "
ﬂ —.H _—.nP _—.nP — E
- - - _ _ _ _ _ |_ 2

67

Step five: Keys A and F are released and address wire AO and data wire DO get value O
(asindicated in the following diagram). Notice that loop CH still has value 1.

Therefore, to write value 01 to latch 10, you press A and not B to select latch 10; and, to
choose data 01, do not push E and push F. This makes wire A1 have value 1, wire AO
have vaue 0, wire D1 have value O, and wire DO have value 1. Then, while holding A
and F down, temporarily press D to make the enable wire, EN, temporarily 1. Then,
release A and F. This can be described as follows.

1. Select the address and data with the address and data keys A, B, E, and F (A1, AQ, D1
and DO).

2. Temporarily press D (EN).

3. Release the address and data keys.

That’s all there is to storing data in an empty latch.

68

Releasing the Address and Data Keys

MEMORY

BIT O

l

BIT 1

%

r
I

|

|

|

I

|

|

I

I

|

|

I

|

|

|
L
FO

w
w
w

D1

B

| AF .
EF Elz
—
=
Hil
| DF' n]™

27w\ 2f7 w\ zr A8 I =l L AN 4
Mm.. .._ 2\ _._ N _._ A s)
- - - g2
> > > o
(1 all o/ 3] :
Z _|_ mv_H mJ_IP de - @
]] — N

69

To find out what isin alatch, do the following.

1. Select the address of the latch you want to read with keys A (wire A1) and B (wire
A0).

2. Press key ‘D’ to make the ‘EN’ wire have value 1. The lights G and H will indicate
the values of the data bits stored in that latch.

3. Release the enable key D.

4. Release the address keys, A and B.

For example, to read latch 10, first press key A (and not key B) to select latch 10 (as
indicated in the following diagram).

70

Selecting the Addressto Read

MEMORY

BIT O

l

BIT 1

-
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
L
FO

w
w
w

fatan®

B
EG
Ci

=
=
| CF ”
Hil
| DF' a]=

Al
s

27wy 27w\ afT =N 27 " *
h_m : A _._ =Y | 1 A\ 5)
- - - 2
& » - &
(L] dd] . 4
-Ih

71

Second, press key D to make the enable (EN) wire have value 1. Then light H comes on
indicating that bit O of latch 10 has value 1 and light G stays off indicating that latch 10
hasvalue 0 inbit 1. Thisisshown in the following diagram.

Notice that making wire EN have value 1 connects the loops of the selected latch to the
datawires D1 and DO.

72

Enabling (EN) the Output

MEMORY

BIT O

l

BIT 1

D1

~+0

HOO
EQD

HO1

EO1
H1i0D
E10
Hil
Ell

[211]

AE
g
[1
ED
i]
-
BE
r)
[1
ch
Ty
-
CE
'l
4
oo
Ty
-
DEy
4

faaad)

20

27T £Y7] WAN_._ w_l_ 2
sf g g z
—.H _—.nP _—1— ..
- - - - - _ _ _ _ . _ _ ___ __ __ |_ 2

ke

73

Third, release key D when done reading latch 10 (as indicated in the following diagram).
That’s all there is to reading a latch in memory.

74

Releasing Enable (EN)

MEMORY

BIT O

BIT 1

w

CH

|
_
_
_
_
_
A X X _ z
..I_.__—|= G.—_l. _H_.——l. G.——l.- "
_
) & & @
_
2 g 2 m | =) I |
i T |
mw_._ A 27) T 277 N7
&_n A YA g\ | 2 °)

& Z ot i }

. > > “ o

i 2l 2(] A1 | s
|

£ sf mA mA | z

ﬂ -.H _—1— _—1— _ k
_ &

75

To erase a vaue from a latch and make &l of the lach’s loops have value 0, do the
following.

1. Select the latch with keys A (A1) and B (AO0).
2. Temporarily press key C to make the ‘clear’ (CL) wire temporarily have value 1.

The following diagram shows latch 10 selected by pressing A and not pressing key B. It
also shows key C being pressed to clear both of latch 10’s data bits to 0. Don’t press C

until after A is pressed (so that no other latch is accidentally erased).

Notice that pressing C makes the selected ‘H’ (for ‘Hold”) wire, ‘H10,” have value 0.

76

o

LATCH

— <3

C
o 4
= o

T

5
53— &
(]
I

—

LATCH

£— =

Selecting the Address and Clearing (with CL)

MEM

aRY

| A0 HOO
ACy 3 | FFy AB- I BiH AL,
| AR AEB 500]
| J“ ~ ﬁf, EOn
| +
|)| B0 HOL
| . | I EH
. ._EE" EF EG » I . BI]
| =" b sp1 | | | |
| [y] BE Eo1
!)\ co HiO
" CH cl
| ch B -DE“ ‘[—CF/_/Ij—EG/—‘ L/:I’j—/—‘
A z1o
h ﬂ 1 CE i 1 -|
| .J — ~1 '
|
!)\ oo Hit
o, ™ I OH
| . I DF, 0G a I + DI a
| D st | | | |
'm DE E11 -l -|
143 L] - \
| . |
»
L= = — 0| = - - - _ _ _ _ _ - _ _
FO Al ag CL EN o1
& o E 5 F

ulu}

77

Release key CL after clearing latch 10 as indicated in the following diagram. Don’t
release key A until after CL is released so that you don’t accidentally erase another latch.

Writing to a latch will not clear any bits that were previoudy 1, so always clear a latch
before copying (writing) datato it. Therefore, to write to alatch, do the following.

Press the correct address keys (A and B) and data keys (E and F).

Press the clear key, C, to clear the latch.

Release the clear key, C.

Press the enable key, D, to send data from the data wires (D1 and DO) to the latch.
Release the enable key, D.

Release the address keys (A and B) and the data keys (E and F).

ourwWNE

To read data, just do the following.

1. Pressthe correct address keys, A and B, to select the latch to read.

2. Press the enable key, D, to send the latch’s values to the lights, G and H.
3. Release the enable key D.

4. Release the address keys, A and B.

78

BIT O

MEMORY

BIT 1

%

Releasing CL

79

ulu}

Lo
»
o
B

~~-O

D1

[=] o - —_

o ~— — — -
= o — —_

S 2 a z o T w

HOO

[211]

AE
-
I
BD
g
=
BE
o
L1
oo
“uf
=
E
~1
J
oo
“uf
=
E
-~
|

fedan®,

EM

CL

Al

Al

FO

The memory in the drawings is very small. There are only two address wires and two
data wires. Because there are two address wires, there are four possible addresses. 00,
01, 10, and 11, and, so, four latches. Because there are two data wires, each latch has two
loops. Each loop holds one ‘bit’ of information, a 0 or a 1. Four latches with two loops
each means 8 (= 4 x 2) loops total.

The table below shows all bit values in each latch when data 01 has been written to the

loops of latch 10.

| at ch
addr ess
00

01

10

11

bi t
val ues
00
00
01
00

A larger memory with four address bits and four data bits with O in al the loops can be

represented as below.

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t
val ues
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

80

INSTRUCTIONS

The next most important part of a computer, after memory, is the processor. A processor
changes the values in memory as instructed by instructions stored in memory. An
instruction is a group of bits (loop values) in memory that tell the processor to do
something. A group of instructions that instruct the processor to do some task iscalled a
program.

The smple kind of processor described in this book has only one type of instruction, but
that instruction is sufficient to do anything, as will be seen. The instruction is ‘copy’ (and
‘go to’). Each instruction simply copies some bits of data from somewhere in one latch
in memory to somewhere else in another latch in memory. The instruction indicates:

1. which latch to copy data (data is bit (loop) values) from

2. which latch to copy data to

3. which bits to change in the copied-to latch

4. how much to rotate the ‘from’ data before copying some of its bits to the ‘to’ data
latch

5. which latches to get the next instruction from.

In the computer considered here, the number of address bits is the same as the number of
data bits.

81

The explanation of the following example will not be clear at first, but just read through
it. Thenreread it. It will be clear later.

Consider afour-address-hit, four-data-bit memory with the values (in loops) below:

Example Program
latch bit
address val ues

0000 0100 address of instruction

0001 0001 value of a

0010 0001 not 0 =1

0011 0000 not 1 =20
instruction_1 0100 0001 from address

0101 1000 to address

0110 0001 ‘to’ bits to change

0111 1000 instr.addr.and rot.amount
instruction_2 1000 0010 from address

1001 0001 to address

1010 0001 ‘to’ bits to change

1011 1100 instr.addr.and rot.amount
instruction_3 1100 0000 from address

1101 0000 to address

1110 0000 ‘to’ bits to change

1111 1100 instr.addr.and rot.anount

latch addresses arej ust where the program is stored. The brt values are the program

‘Instr.addr.and rot.amount’ is short for ‘next instruction’s address and rotate amount.’

Latch 0000 holds the value 0100 so that the first instruction is in latches 0100, 0101,
0110, and 0111, and islabeled ‘instruction 1’ in the program. Latch 0000 is special and
always holds the address of the next instruction to be executed.

The first word of instruction 1 is in latch 0100 and is 0001. That means that data (bit
values) is copied from latch 0001 in memory.

The second word of instuction_1 isin latch 0101 and is 1000 and indicates that the data
will be copied to latch 1000.

The third word of instruction_1 is in latch 0110 and is 0001 and indicates that only the
rightmost bit, and not the three leftmost bits, of latch 1000 will be changed because only
the rightmost bit of 0001 is 1.

The rightmost two bits of latch 0111 are 00 and indicate that the data in latch 0001 will
not be rotated at dl when data is copied to latch 1000.

The leftmost two bits of latch 0111 are 10 and indicate that the next instruction will bein
latches 1000, 1001, 1010, and 1011. That is, instruction_2 will be executed next.

82

After instruction_1 is executed, the memory has the following bit values.

latch bit
address val ues

0000 1000 <----- | address of instruction

0001 0001 ---| | val ue of a

0010 0001 [not 0 =1

0011 0000 [not 1 =0
instruction_1 0100 0001 |] from address

0101 1000 |] to address

0110 0001 | | ‘to’ bits to change

0111 1000 ---+--| i nstr.addr.and rot.anount
i nstruction_2 1000 0011 <--| from address

1001 0001 to address

1010 0001 ‘to’ bits to change

1011 1100 instr.addr.and rot.amount
instruction_3 1100 0000 from address

1101 0000 to address

1110 0000 ‘to’ bits to change

1111 1100 instr.addr.and rot.amount

The underlined loop vaues (bits) were copied to when instruction_1 was executed. The
italics show from where data was copied. The arrows show how data was copied. The
rightmost bit of latch 0001 has been copied to the rightmost bit of latch 1000. Also, dl
bits of latch 0111 (that is, 1000) have been copied to latch 0000 indicating that the next
instruction will be in latches 1000, 1001, 1010, and 1011 (instruction_2). That is, after
the first instruction, instruction_1, is executed, latch 0000 has value 1000.

The leftmost two bits of latch 0000 are 10, so the instruction executed next is
instruction_2, in latches 1000, 1001, 1010, and 1011.

1. Latch 1000 holds 0011, so datais copied from latch 0011.

2. Latch 1001 holds 0001, so datais copied to latch 0001.

3. Latch 1010 holds 0001, so only the rightmost bit of the ‘to latch,” latch 0001, is copied
to.

4. Latch 1011 holds 1100. The rightmost two bits of 1100 are 00 so the data copied from
is not rotated at all. The leftmost two bits of 1100 are 11, so the next instruction to be
executed will bein latches 1100, 1101, 1110, and 1111 (instruction_3).

83

After instruction_2 is executed, the memory has the following bit values.

| atch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

i nstruction_3 1100
1101

1110

1111

bi t

val ues

address of instruction
val ue of a

not 0 =1

not 1 =0

from address

to address

‘to’ bits to change
instr.addr.and rot.amount
from address

to address

‘to’ bits to change

i nstr.addr.and rot.anount
from addr ess

to address

‘to’ bits to change
instr.addr.and rot.amount

The italics show from where data was copied. The underlining shows to where data was
copied. The arrows show how data was copied.

Latch 0000 now has value 1100, so that the next instruction to be executed is
instruction_3in latches 1100, 1101, 1110, and 1111.

1. Latch 1100 holds 0000, so data will be copied from latch 0000.

2. Latch 1101 holds 0000, so datais copied to latch 0000.

3. Latch 1110 holds 0000, so no data hits are copied (to latch 0000).
4. Latch 1111 holds 1100, so 1100 is copied to latch 0000.

Thisresults in the following bit values in memory.

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

instruction_3 1100
1101

1110

1111

bi t

val ues

address of instruction
val ue of a

not 0 =1

not 1 =0

from address

to address

‘to’ bits to change
instr.addr.and rot.amount
from address

to address

‘to’ bits to change
instr.addr.and rot.amount
from address

to address

‘to’ bits to change

i nstr.addr.and rot. anount

The underlined bits have been copied to from the italic bits.

Thus, instruction_3 changes nothing (because latch 0000 aready held 1100) and leads to

instruction_3 being executed again and again.

Ending a program with an instruction like instruction_3 ensures that nothing else will
happen after the desired instructions (instruction_1 and instruction 2) are executed. It’s
just something for the computer to do until we stop the processor and look in memory for

the results.

85

We will now look at some two-instruction programs. The first instruction will do
something and the second instruction will do nothing. These short computer programs
will show what an instruction (of this smple computer) can do.

Instruction_1 of the following program copies 1111 from latch 0001 to latch 0010.
Notice that, because latch 0110 of instrucion_1 holds 1111, all ‘to data’ bits are copied to.
Instruction_2 does nothing over and over.

Before Copy 1111 to 0010 for 1111

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

1100

1101

1110

1111

bi t

val ues

0100 address of instruction
1111 from data

0000 to data

0000

0001 from address

0010 to address

1111 ‘to’ bits to copy to
1000 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

86

After instruction_1 is executed, the memory has the following values.

instruction_1

instruction_2

After Copy 1111 to 0010 for 1111

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

address of instruction
from dat a
to data

from addr ess

to address

‘to’ bits to copy to
instr.addr.and rot.amount

87

Instruction_1 of the following program copies 0011 from latch 0001 to latch 0010.
Notice that, because latch 0110 of instruction 1 holds 1111, all ‘to’ bits are copied to.

instruction_1

instruction_2

Before Copy 0011 to 0010 for 0011

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

0100 address of instruction
0011 fromdata

0000 to data

0000

0001 from address

0010 to address

1111 ‘to’ bits to copy to
1000 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

88

After instruction_1 is executed, the memory has the following values.

instruction_1

instruction_2

After Copy 0011 to 0010 for 0011

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

address of instruction
from dat a
to data

from address

to address

‘to’ bits to copy to
instr.addr.and rot.amount

89

Instruction_1 of the following program copies the rightmost three bits (111) of 1111 from
latch 0001 to latch 0010 for 0111. Notice that, because latch 0110 of instruction_1 holds
0111, the rightmost three ‘to’ bits are copied to.

instruction_1

instruction_2

Before Copy 111 to 0010 for 0111

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

0100 address of instruction
1111 from data

0000 to data

0000

0001 from address

0010 to address

0111 ‘to’ bits to copy to
1000 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

90

After instruction_1 is executed, the memory has the following values.

instruction_1

instruction_2

After Copy 111 to 0010 for 0111

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

address of instruction
from dat a
to data

from address

to address

‘to’ bits to copy to
instr.addr.and rot.amount

91

Instruction_1 of the following program copies the rightmost three bits (000) of 0000 from
latch 0001 to latch 0010 for 1000. Notice that, because latch 0110 of instruction_1 holds
0111, the rightmost three ‘to’ bits are copied to.

instruction_1

instruction_2

Before Copy 000 to 0010 for 1000

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

0100 address of instruction
0000 fromdata

1111 to data

0000

0001 from address

0010 to address

0111 ‘to’ bits to copy to
1000 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

92

After instruction_1 is executed, the memory has the following vaues.

instruction_1

instruction_2

After Copy 000 to 0010 for 1000

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

address of instruction
from dat a
to data

from address

to address

‘to’ bits to copy to
instr.addr.and rot.amount

93

Instruction_1 of the following program rotates the bits (0010) of latch 0001 one space to
the left (for 0100) and copies dl four rotated bits to latch 0010. Notice that, because
latch 0110 of instruction_1 holds 1111, al four bits are copied to. Also notice that,
because latch 0111 has 01 in the rightmost two bits, the from data is rotated one bit to

the left.

Before Rotate 0010 One Bit L eft for 0100

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

1100

1101

1110

1111

bi t

val ues

0100 address of instruction
0010 fromdata

0000 to data

0000

0001 from address

0010 to address

1111 ‘to’ bits to copy to
1001 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

94

After instruction_1 is executed, the memory has the following values. Latch 0000 now
holds 1001. The right two bits in latch 0000 do not affect what instruction is executed
next. The left two bits of 1001 (in latch 0000) are 10, so the next instruction to be
executed will be instruction_2, in latches 1000, 1001, 1010, and 1011.

After Rotate 0010 One Bit L eft for 0100

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

1100

1101

1110

1111

bi t

val ues

| address of instruction
from dat a
to data

from address
to address
| ‘to’ bits to copy to
| instr.addr.and rot.amount

95

Instruction_1 of the following program rotates the bits (0010) of latch 0001 two spaces to
the left (for 1000) and copies dl four rotated bits to latch 0010. Notice that, because
latch 0110 of instruction_1 holds 1111, all four bits are copied to. Also notice that,
because latch 0111 has 10 in the rightmost two bits, the from data is rotated two bits to

the left.

Before Rotate 0010 Two Bits L eft for 1000

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

1100

1101

1110

1111

bi t

val ues

0100 address of instruction
0010 fromdata

0000 to data

0000

0001 from address

0010 to address

1111 ‘to’ bits to copy to
1010 instr.addr.and rot.amount
0000

0000

0000

1000

0000

0000

0000

0000

96

After instruction_1 is executed, the memory has the following values. Again, the right
two bitsin latch 0000 do not affect what instruction is executed next. The left two bits of
1010 (in latch 0000) are 10, so the next instruction to be executed will be instruction_2,
in latches 1000, 1001, 1010, and 1011

After Rotate 0010 Two Bits L eft for 1000

| at ch

addr ess

0000

0001

0010

0011

instruction_1 0100
0101

0110

0111

instruction_2 1000
1001

1010

1011

1100

1101

1110

1111

bi t

val ues

| address of instruction
from dat a
to data

from address
to address
| ‘to’ bits to copy to
| instr.addr.and rot.amount

97

Instruction_1 of the following program rotates the bits (0010) of latch 0001 three spaces
to the left (for 0001) and copies dl four rotated bits to latch 0010. Notice that, because
latch 0110 of instruction_1 holds 1111, al four bits are copied to. Also notice that,
because latch 0111 has 11 in the rightmost two bits, the from data is rotated three bits to
the left. Notice also that rotating three bits to the left is the same as rotating one bit to the
right.

Before Rotate 0010 Three Bits Left for 0001

latch bit
address val ues

0000 0100 address of instruction

0001 0010 fromdata

0010 0000 to data

0011 0000
instruction_1 0100 0001 from address

0101 0010 to address

0110 1111 ‘to’ bits to copy to

0111 1011 instr.addr.and rot.amount
instruction_2 1000 0000

1001 0000

1010 0000

1011 1000

1100 0000

1101 0000

1110 0000

1111 0000

98

After instruction_1 is executed, the memory has the following values.

After Rotate 0010 Three Bits L eft for 0001

instruction_1

instruction_2

| at ch
addr ess
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

bi t

val ues

| address of instruction
from dat a
to data

from address
to address
| ‘to’ bits to copy to
| instr.addr.and rot.amount

99

The right two bits of the last word (four bits here) of an instruction indicate how many
bitsto rotate to the left according to the following table:

bi t
val ues

00
01
10
11

rotate
| eft
anount

WNPFO

If the rightmost bit value is 1, then there is 1 bit of rotation left. If the left bit value is 1,
then there is an additiona two bits of rotation left.

The following table shows how rotation works with the four bits of a word labeled ‘A,’

‘B,” ‘C,” and ‘D.’
rotate
bi t f our
val ues bits
00 ABCD
01 BCDA
10 CDAB
11 DABC

rotate
| eft
anount

WNEFO

rotate
right
anmount

PN WO

Notice again that rotating 3 bits left is the same as rotating 1 bit right. Similarly, 1 bit left

is 3 bitsright and 2 bits left is 2 bitsright.

100

PROCESSOR

Four-Bit Memory

ot —— e s I S R = A S5
Crrril e

T eyl 5 = =5 5
14

2 N S

The circuit above shows a memory with four data wires (D3, D2, D1, and DO) and four
address wires (A3, A2, Al, and A0). Because there are four address wires, there are
sixteen possible latch addresses: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000,
1001, 1010, 1011, 1100, 1101, 1110, and 1111. Only two latches, 0000 and 1111, are
shown. Therest are implied by the gap in the circuit diagram.

101

REGISTER
ooo

REGISTER
ool

REGISTER
o1io

REGISTER
011

REGISTER
100

REGISTER
101

REGISTER
110

REGISTER
111

LATCH
oooo

LATCH
1111

Two Memories Connected

MDJUlr.
HD.‘/Ulr‘
DDJUlr.

L

C
L
[

L
E
M
F

EIT =

BIT 2

BIT D

L
Lo
»

L/ﬂ_/]_

T_/ﬂ_/l_

I_/_Ij_/]_

{1_-."
'

4
4
TX

L/_Ij_/]_.

LJ
»
»

L/_Ij_/]_.

LJ
T
Tk

L/_Ij_/]_.

X
%
.

I_/_Ij_/]_.

L/_Ij_/]_.

o) o)))

L/_Ij_/]_.

L/_Ij_/]_.

T

AN q_‘-.' L/ﬂ_/]_. T_/ﬂ_/l_. Lfﬂ./r
L 14145 hij

ANE q_‘-.' L/ﬂ_/]_. T_/ﬂ_/l_. Lfﬂ./r
G I Y | —E

L/ﬂ_/]_.

ey ?vk

L/_Ij_/]_.

A\ =m

o

102

The circuit diagram above shows a memory with four address wires on the bottom
connected with a memory with three address wires on the top. Room has been Ieft in the
top memory for additional circuitry later. The two memories share data wires D3, D2,
D1, and DO. The three-address-wire memory has address wires RA2, RA1, and RAQ,
clear wire CLR, and enable wire ENR. In the top memory, the latches are called registers
and the address wires are called RA2 for Register Address 2, etc. CLR stands for CLear
Register. ENR stands for ENable Register.

Because both memories share data wires D3, D2, D1, and DO, data can be copied from a
latch of the bottom memory to aregister of the top memory or from aregister to alatch.

To copy data from a latch to aregister, first select the register with register address keys
RA2, RA1, and RAQ. Second, temporarily press the CLR key to clear the register loops
to all 0’s. Third, select the latch address with address keys A3, A2, Al, and A0 (while
continuing to select the register with RA2, RA1, and RAO0). Fourth, temporarily press the
enable keys, ENR and EN, to connect the selected register loops and the selected latch
loops to the data wires D3, D2, D1, and DO.

Similarly, to copy data from a register to a latch, first select the latch with address keys
A3, A2, Al, and AO. Second, temporarily press the clear key, CL (not CLR), to clear the
latch. Third, select the register with register address keys RA2, RA1, and RAQ. Fourth,
temporarily press the enable keys, ENR and EN. This connects the register and latch
loops to the data bus wires, D3, D2, D1, and DO, and, thereby, to each other.

103

L oops Controlling Lights

loop 3 loop 2 loop 1 loop O
ARt Aau Aau A

o O - O
light3 light2 lLight1 light0

The circuit above shows four loops controlling four lights.

104

Rotate 1 Circuitry

A B C D
loop 3 loop 2 loop 1 loop 0

M S

tate 1
s s S Nt S

light3 light2 light1 lighto

In the circuit above, if the ‘rotate 1’ key is not pressed, then loop3 controls light 3, loop 2
controlslight 2, loop 1 controls light 1, and loop O controls light O.

However, if the ‘rotate 1’ key is pressed, then loop 3 controlslight O, loop 2 controls light
3, loop 1 controls light 2, and loop 0 controls light 1. One can say that when the ‘rotate
1’ key is pressed, then the loop values are rotated one bit to the left. There is no bit to the
left of bit 3, so bit 3 isrotated to the right end to bit O.

The following table indicates what pressing the ‘rotate 1’ key does.
Rotate 1 [f| Light Values Rotate left
m amount in bits
0 A/B|C|D 0
1 1

105

Rotate Two Bits Circuitry

A B C D
loop 3 loop 2 loop 1 loop 0
4 4 4 N

LmJ L L ; J o 2
5 & & &
light3 light2 light1 light 0

In the circuit above, if the ‘rotate 2’ key is not pressed, then loop 3 controls light 3, loop 2
controlslight 2, loop 1 controls light 1, and loop O controls light O.

However, if the ‘rotate 2’ key is pressed, then loop 3 controlslight 1, loop 2 controls light
0, loop 1 controls light 3, and loop 0 controls light 2. One can say that when the ‘rotate

2’ key is pressed, then the loop values are rotated two bits to the left.

The following table indicates what pressing the ‘rotate 2’ key does.

Rotate 2 [f| Light Values Rotate left

3121|110 [lamount in bits

106

Rotate Circuitry

rotate loop3 loop2 loopl loopO

|

| — — i’—b

! |

L] e
==

In the circuit above, if neither the ‘rotate 1° key nor the ‘rotate 2’ key is pressed, then
loop 3 controls light 3, loop 2 controls light 2, loop 1 controls light 1, and loop 0 controls
light 0. If rotate 1 is pressed and rotate 2 is not pressed, then the loop signas are rotated
1 bit to the left on the way to the lights. If rotate 2 is pressed and rotate 1 isnot pressed,
then the loop values are rotated 2 bits to the left on the way to the lights. Findly, if both
the rotate 1 key and the rotate 2 key are pressed, then the loop values are rotated three
bitsto the left. For example, the value in loop O isrouted to light 3.

The following table indicates what pressing one or both ‘rotate’ keys does.

Rotate 2 | Rotate 1 ||| Light values Rotate left

3121|110 [llamount in bits

0 0 A|B|C|D 0
0 1 B|C|D|A 1
1 0 C/IDIA|B 2
1 1 DIA|B|C 3

107

Mask Circuitry

+o A

In the circuit above, if loop C has value O, then light B gets the valueinloop D. If loop C
has value 1, then light B gets the valuein loop A.

108

Mask Four Bits

oz tpar Fogar Epgoao

| NI B3 YT B2 Y Bl Y] BO
ﬂ________________J
mask ooz |[dgoz [P 41 Co

ooz ooz oo <O Do

In the left circuit above, C3 controls whether the value of A3 or the value of D3 goes to
B3. The other circuits behave smilarly.

109

Rotate and M ask

rotate
cireuit

| NI B3 YT B2 —TyT Bl —y B0l
ﬂ_________________l
mask ooz |[¢gex (ool (oo

circuit

ooz oo oo gD

In the circuit above, there is a ‘rotate circuit’ and a ‘mask circuit.’

As an example of the operation of this circuit, consider the case of ‘rotate 1’ being
pressed, ‘rotate 2’ not pressed, C3=1,C2=1,C1=0,and CO=0. Then B3 getsA2, B2
gets Al, B1 gets D1, and BO gets DO. Try to follow the signals in the circuit and see
why.

This will be the logic unit of our smple processor. (The logic units of most processors
do arithmetic too and so are called arithmetic logic units or, abbreviating, ALU’s.)

110

Delay Circuitry
A A B B

In the circuit above, when key A is pressed, electromagnet B is powered and key B
closes. It takestimefor B to close after A ispressed. That is, light B comes on about one
hundredth of a second after light A. This isindicated by the following ‘timing diagram’
that shows when the lights come on. Time 0 is 0 seconds. Time 1 is one hundredth of a

second (later).

Timing Diagram for Lights

A B

0 10 1
time () L—

time 1

111

Two Delays

In the circuit above, after key A is pressed it takes one hundredth of a second for key B to
close. After key B closes, it takes one hundredth of a second for key C to close.
Therefore, after key A is pressed, it takes two hundredths of a second for light C to come
on. In the following timing diagram for the circuit above, time O is O seconds, time 1 is
one hundredth of a second, and time 2 is two hundredths of a second.

Timing Diagram for Lights

A B C

o 10 1 0 1
time () L= L
time 1

time 2

112

Delay Line

delay line
N
e — DA
Al |
Pt EEn Hn S Ha En OB

In the circuit (called a delay line) above, light B comes on ten hundredths of a second
after light A. Ten hundredths of a second is one tenth of a second, so light B comes on
one tenth of a second after key A is pressed (as indicated in the diagram below). (The
small amount of time between the time key A is pressed and the time light A comes on is
ignored.) Time 0 is0 seconds and time 1 is one tenth of a second in the diagram below.

(When a key closes, it can bounce open and closed a few times. This possible problem

will be ignored, except to say that using normally closed relays in a delay line might
reduce the problem. This problem does not exist in a delay line made with transistors.)

Timing Diagram for Delay Line
A B

0 10 1

time () e L
time 1

113

Tapped Delay Line

tapped delay line
_____________ OA
QJJ_‘QJ‘IV‘IV‘IV‘Iq"‘lq'ﬁVﬂded-’jd-’ |
| %%%%%%%%%H:C
T oy T oy vy By Ry Ry By oy Ry R : D
!_ 4'/74‘/14"1 ‘s K Rup Ry Ryl <1-’—|<1-’—:OE

The circuit above is called a tapped delay line. Wires A, B, C, D, and E are called taps.
Light B comes on one tenth of a second after light A, light C comes on two tenths of a
second after light A, light D comes on three tenths of a second after light A, and light E
comes on four tenths of a second after light A (as indicated in the timing diagram below).

114

Timing Diagram for Tapped Delay Line

A B C D E

g 10 1 0 10 1 0 1
timeO'—L
time 1

time 2 e

time 3 o

time 4 —‘

115

Timing Circuit

0
Kl Jetgrtor %o
e QC | pMa 4nQ
[QD KOG i Har
= QEQF O hg
OH Ol

5 5 s
5 5 s
55
5 5 [
5 s [
A
LR (LR
R

E
5
b
5
5
5
5
;
X
0

Timing Circuit’s Timing Diagram

A BCDEVF GH I

o 10 10 10 1 0 10 1 0 10 10 1
time 1
time 2 o

time 3 —]
time 4

116

The timing diagram at left corresponds to the circuit above. Lights A, B, C, D, and E
come on, in order, as before. However, the behaviors of lights F, G, H, and | are more
complex.

When light B comes on at time 1, relay J closes. Then electricity can go from the top of
the battery (a triangle in the circuit diagram above), through closed relay J and normally
closed relay K, to light F. Therefore, when light B comes on, light F also comes on.
However, when light D comes on at time 3, normally closed relay K opens and light F
goes out. That is, at time 1, F comes on and, at time 3, F goes out as indicated in the
timing diagram.

Similarly, light G comes on when light B comes on, and light G goes out when light C
comes on. Similarly, light H turns on when light D comes on, and light H goes off when
light E comes on.

The behavior of light | is more complex. At time 1, light B comes on and relay P closes.
Electricity can then go through keys P and Q to light I. At time 2, light C turns on and
normally closed relay Q opens, turning light | off. Therefore, light | turns on at time 1,
and goes off at time 2. At time 3, light D comes on, relay R closes, and electricity goes
from the top of the battery, through key R and the normally closed S key, to light I. At
time 4, light E turns on and normally closed relay S opens and light | goes off.
Therefore, light | turnson at time 1, off at time 2, on at time 3, and off at time 4.

With Processor Power (PP) L oop

oAl |
Pmmmrmrmrr,, @ g o
A T e e e Ie
bbby 2 o -
AT T BT BT T B — s
<t 0 0 J) @
F ¢ H I

P

The circuit above is the same as the previous circuit except that al but one connection to
power is replaced by a connection to loop ‘PP.” (‘PP’ stands for Processor Power.) After
key ‘PP’ is pressed, key PP stays down and power goes to the circuit. Then, when key J
is pressed and held down, output signals F, G, H, and I are generated as indicated in the
timing diagram, above. Notice how the right-hand side of the circuit above looks
somewhat like the right-hand part of the timing diagram above.

117

With Feedback Through Normally Closed Key K

o4l |

L M E —— B

e T T]

T ey e

Cro Tttty s 1] o,

T T T T I T $ 1
<]-’1-_' [2
TP F & H I

In the circuit above, key Jin the upper left has been replaced by the normally closed relay
K in the lower center of the circuit. The circuit above generates the timing diagram
below when loop key PP in the lower left is pressed at time 0. Loop PP stays down after
itis pressed.

When PP is first pressed, eectricity can flow from PP, through normaly closed relay K
to light A and to the electromagnet of relay L in the upper left of the diagram. Relay L
then powers relay M. Asthe relays turn on, one after another, lights B, C, D, and then E
turn on. When light E turns on, the normally closed relay K opens, light A goes out, and
relay L opens. One hundredth of a second after relay L opens, relay M opens because
electricity is no longer getting to the electromagnet of relay M. The relays in the delay
line then open one after another and lights B, C, D, and E go off one after another. When
light E goes off, no power gets to the electromagnet of normally closed relay K and relay
K closes. When relay K closes, eectricity can get to light A and then lights B, C, D, and
E turn on.

Thus, A, B, C, D, and E turn on one after another. Then A, B, C, D, and E go off one
after another. Then A, B, C, D, and E turn on one after another. Then A, B, C, D, and E
go off one after another. This pattern repeats as long as loop key PP stays down.

Light F is on only when light B is on and light D is off. Similarly, light G is on only
when light B ison and light C is off. Also smilarly, light H is on only when light D ison
and light E is off.

When light B is on and light C is off, relays N and O are closed and light | is on.
Similarly, when light D is on and light E is off, relays P and Q are closed and light | ison.
Therefore, light | is only on when light B is on and light C is off and when light D ison
and light E is off.

The circuit above is cdled a clock. It generates signals F, G, H, and | over and over
again asindicated in the timing diagram below.

118

O 0 -] oy W ks) BN = O

e e R e S T Ry Y
= N = o

—
SN n

Timing Diagram with Feedback
A B CDUEF G H

19 10 10 10 10 10 10 10 1

L

i

i

I

119

The circuit below shows two latches of memory at the bottom, latch 0000 and latch 1111.
The other fourteen latches are not shown. It also shows a processor above the memory.
The processor is mainly made of latches. Latches in a processor are called registers.
Register 001 is not a latch, however, because it doesn’t have loops.

Writing to a latch will not clear any bits that were previoudy 1, so always clear a latch
before writing data to it. Therefore, to write to alatch, do the following.

1. Pressthe correct address keys (A3, A2, Al, and A0O) and data keys (D3, D2, D1, and
DO).

2. Pressthe clear key, CL, to clear the latch.

3. Releasethe clear key, CL.

4. Pressthe enable key, EN, to copy datato the latch.

5. Release the enable key, EN.

6. Releasethe address keys, A3, A2, Al and AO, and the data keys, D3, D2, D1 and DO.

To read data from alatch, do the following.

Press the correct address keys, A3, A2, Al and AQ, to select the latch to read.

Press the enable key, EN, to send the latch’s values to the lights, D3, D2, D1, and DO.
Release the enable key EN.

Release the address keys, A3, A2, Al and AO.

el =

Notice that reading a latch connects the loops of the latch to the data bus wires, D3, D2,
D1, and DO.

Similarly, writing to a register will not clear any bits that were previously 1, so always
clear a register before writing data to it. Therefore, to write to a register (except ‘register’
001, which has no loops to write to), do the following.

1. Press the correct register address keys (RA2, RA1, and RAO) and data keys (D3, D2,
D1, and DO).

2. Press the clear register key, CLR, to clear the register.

Release the clear register key, CLR.

Press the enable register key, ENR, to copy data to the register.

Release the enable register key, ENR.

. Release the register address keys RA2, RA1 and RAO, and the data keys, D3, D2, D1
and DO.

XU AW

120

To read register data, just do the following.

1. Press the correct register address keys, RA2, RA1 and RADO, to select the register to
read.

2. Press the enable register key, ENR, to copy the register’s values to the lights D3, D2,
D1, and DO.

3. Release the enable register key, ENR.

4. Release the register address keys, RA2, RA1 and RAO.

Notice that reading a register connects the loops of the register to the data bus wires, D3,
D2, D1, and DO.

Do the following to copy data from a latch to a register (except for register 001).

1. Select the register with RA2, RA1, and RAO.

2. Temporarily press CLR to clear the register.

3. Select the latch in memory with A3, A2, Al, and AO.

4. Temporarily press ENR and EN to connect the register loops and latch loops to the
data bus wires, D3, D2, D1, and DO, and so to each other.

5. Release all keys.

Do the following to copy data from a register to a latch.

1. Select the latch with A3, A2, Al, and AO.

2. Temporarily press CL to clear the latch.

3. Select the register with RA2, RA1, and RAO.

4. Temporarily press ENR and EN to connect the register loops and latch loops to the
data bus wires, D3, D2, D1, and DO, and so to each other.

5. Release all keys.

121

L.L.L. L_L_
Rl R|R cl| E
gl ala L| n BIT 2 BIT 2 BIT 1 BIT O
2l 1|0 R| R
FROM DATA = T T T Lo
A LLLERT T P
RTATE 4 T4 T4 T
l_I] | |
ROTATE J
LEFT & g 1J na H T T
R ER g
REGISTER |~]@/r]@/r]@/r]@Jr
001 . — L‘ L‘ L‘
MASK s | P Lrlry L] Ledr |
EEEISTER ~ _E' djl d'/l djl]
TO DATA - | | | Le |
REGISTER e g _13_/] _13_/1 _ﬂ_/l
01t g . —E
MEXTY o T P TAVE I_/&/_.
IEDE;IGI-IHSTTEER Ty _E ﬂj] ﬂj] U]]
FROM ADDR. 3 | I | | L]
REGITER T _E :r/] jj] :r/] :TJ]
o —— —— | = |
T ADDR. o
REGISTER vy o L/]J]_' L/]J]_' L{]Jr L{]J]_'
110 L1l 1]y —]ﬁ
| SAT i i —— 1
/_‘-'.' | | | L]
et | P P O
580
ﬁl’ENm | - | | | ._/J ._/J
- 1 1 1 u|
SAI
CLM
|~ s | | | L gr |
IISHDTEICDH U]]j-/]]j-/l ﬂ-/l]j-/-l
—1 p— 1 1 '_E
u
caren) L L L L T Mot o o et
1111 ._-I ._-I ._-I ._-I _E
Pl [alal al a cl|l e o D D]
el |2]2| 1|0 L| w 3 2 1 G
Neldaaalia S S S

122

An instruction is executed in nine steps. Step 1 copies the address of the instruction from
latch 0000 of the memory to the processor. Steps 2, 3, 4, and 5 copy the four words of
the instruction to the processor. Step 6 copies the ‘from data’ to the processor. Step 7
copies the ‘to data’ to the processor. Step 8 copies the result from the processor to the
memory. Step 9 copies the address of the next instruction to be executed from the
processor to latch 0000 of the memory.

The timing diagram that follows, as well as the explanation that follows, tells the order in
which to press the keys to execute an instruction with the circuit in the diagram above.
Look at the timing diagram below and the circuit above as you read about each step.
The following nine steps are tedious, but try to get through them or, at least, study step 1
and read through the rest.

1. The first step in executing an instruction is to copy the vaue in latch 0000 to register
111. Latch 0000 holds the address of the instruction to be executed. To copy the
contents of latch 0000 to register 111, the following is done.

First, RA2 is pressed (gets set to 1), RA1 gets 1, and RAO gets 1. This selects register
111, the instruction address register. SAF, SAT, and SAl are each set to O (not pressed),
which selects latch 0000. (This will become clear later.) Then, CLR (CLear Register) is
temporarily pressed to clear register 111. Then ENM (ENable Memory) and ENR
(ENable Register) are temporarily pressed. When ENM and ENR are pressed, the loops
of both latch 0000 and register 111 are connected to the data bus. Therefore, the values
in latch 0000 can flow to the loops of (just cleared) register 111 causing register 111 to
have the same values as latch 0000. Register 111 then (also) holds the address of the
instruction to be executed next.

2. The second step in executing an instruction is to copy the first word (four bits) of the
instruction to register 101, the ‘from address register,” because the first four bits (word)
of an instruction are the address from which the data will be copied. RA0O and RA2 are
pressed and RAI is released to select register 101. Key SAI, for Select Address of
Instruction, is pressed, routing the left two bits of register 111 to the address wires, A3
and A2. Pressing key SAI also routes the values of SA1 (Select Address bit 1) and SAO
(Select Address bit 0) to Al and A0 of the memory. SA1 and SAO are not pressed, so Al
and A0 get 0. Next, CLR is temporarily pressed, thereby clearing register 101. Next,
ENR and ENM are temporarily pressed, connecting to data bus register 101 and the first
latch (whose address ends in 00) of the instruction to be executed. Thus the first word of
the instruction is copied to latch 101.

3. Third, the second word of the instruction is copied to ‘to address register 110.” This is
done by pressing RA2, pressing RA1, and not pressing RAO. Also SAl is pressed, SA1
(Select Address hit 1) is not pressed, and SAO is pressed. Then CLR is temporarily
pressed to clear register 110. Then ENM and ENR are temporarily pressed to copy the
contents of the second word (4 bits) of the instruction to register 110.

123

4. Fourth, the third word of the instruction is copied to ‘mask register 010.” This is done
by not pressing RA2, pressing RA1, and not pressing RAO. Also SAI (Select Address of
Instruction) is pressed, SA1 is pressed, and SAQ isnot pressed. Then CLR is temporarily
pressed to clear register 010. Then ENM and ENR are temporarily pressed to copy the
contents of the third word (4 bits) of the instruction to register 010.

5. Fifth, the fourth word of the instruction is copied to ‘next/rotate register 100.” This is
done by pressing RA2, not pressing RA1, and not pressing RAO. Also SAI is pressed,
SA1 is pressed, and SAO is pressed. Then CLR is temporarily pressed to clear register
100. Then ENM and ENR are temporarily pressed to copy the contents of the fourth
word (4 bits) of the instruction to register 100.

6. Sixth, RA2, RA1, and RAO are not pressed to select register 000, the ‘from data
register.” SAF (Select Address of From data) is pressed to route the address in the ‘from
address register 101’ to the memory’s address wires A3, A2, Al, and A0. CLR is then
temporarily pressed to clear register 000. Next, ENM and ENR are temporarily pressed
to copy the contents of memory pointed to by ‘from address register 101” to ‘from data
register 000.’

7. Seventh, RA2 is not pressed, RA1 is pressed, and RAO is pressed to select ‘to data
register 011.” SAT (Select Address of To data) is pressed to route the address in ‘to
address register 110’ to the memory’s address wires A3, A2, Al, and A0. CLR is then
temporarily pressed to clear register 011. Next, ENM and ENR are temporarily pressed
to copy the contents of memory pointed to by ‘to address register 110’ to ‘to data register
011,

8. Eighth, RA2 is not pressed, RA1 is not pressed, and RAO is pressed to select ‘back
data register 001.” SAT is pressed to route the address in ‘to address register 110’ to the
memory’s address wires, A3, A2, Al, and A0. Next, CLM (CLear Memory, not CLR,
CLear Register) is temporarily pressed to clear the latch in memory pointed to by ‘to
address register 110.” ENR and ENM are then temporarily pressed to copy some rotated
bits of ‘from data register 000’ and not rotated bits of ‘to data register 011’ to the address
in memory pointed to by ‘to address register 110.” If the rightmost bit of ‘next/rotate
register 100’ is 1, then the from data is rotated 1 bit left. If the second-to-rightmost bit of
‘next/rotate register 100’ is 1, then the from data is rotated an additional 2 bits left. If a
bit of ‘mask register 010’ is 0, then the corresponding bit of ‘to data register 011’ is
copied back to memory. However, if a bit of ‘mask register 010’ is 1, then the
corresponding rotated bit of ‘from data register 000’ is copied back to memory. Notice
that because CLM was pressed instead of CLR, a latch of memory was cleared and
copied to instead of a register.

124

9. Ninth, RA2 is pressed, RA1 is not pressed, and RAO is not pressed to select
‘next/rotate register 100.” SAI, SAF, and SAT are not pressed, so no address goes to the
memory, so latch 0000 is selected. Next, CLM (not CLR) is temporarily pressed to clear
latch 0000 in memory. ENR and ENM are then temporarily pressed to copy the data in
‘next/rotate register 100’ to latch 0000 in memory. This prepares for the next instruction.
Notice, again, that because CLM was pressed instead of CLR, a latch of memory was
cleared and copied to instead of a register.

125

\O OO0 ~J O\ =L —

Timing Diagram for Instruction

EMM
CLM CLR ENME SAI 3SAl SA0 SAT SAF RAZ RAl RAD
o 10 10 10 10 {0 10 10 10 10 10 1

INCREASIMNG
TIME

]

126

Clock Circuit for Processor

5hl SA0 S5AT SAF RAZ RAL RAD

ENM SAI

cLM CLR

7 r T
1 0 i 4 o D m M
1 r G « I & m .
N m -
17 m O
q 7 G I m 5
1 a m O

- L i
c | Y1 N2 Y12 B YL N LT YL NI ,ﬁm
17 N7 e Nl \ala Y1 71 3 uam|m
yille 2 O

1|

R0 T T N 0 8 8 e ol B B B 0 B T 8 T,EL

..w_u_.u r.,__h_.u__.,_.u_.,_.u_u.u_u_.u_h_n_ .u__.,_.u_u.u_u.u r.,__h_.u__.,_.u_.,_.u__u.u_u_.u_u_u .u__.,_.u_.,_.u_u.u .u_.,_ s .u_u.u_u_.u_u_

S b & Sl b6 6 GGG S 6 GG GG 0 1 & G5 6 6
okl el sl b el gl el sl el sl el ol ol o el el el
okl el sl b el gl Rl el el el sl el sl ol e el el
okl el sl b Rl gl Rl ol el el ol ol o el el el
okl L RA SRl b Rl g Rl gl Sl Sl Rl Rl g Rl gl Rl o o el gl A A R U RN
1 51 55 6 6 5 1
5556550151515) 6550165 515 5 5) S S S S

127

The preceding clock circuit shows a circuit that repeatedly generates the timing diagram
signals. The outputs of this circuit can be connected to the processor to make the
processor repeatedly execute instructions as indicated in the diagram of the complete
(though ssmple) computer in the diagram below.

The operation of aclock has already been explained.

It takes about 361 hundredths of a second for the timing diagram to be generated. Then
al outputs of the right hand side are O for another about 361 hundredths of a second.
Then the timing diagram is generated again, etc. Therefore, it takes this computer about
722 hundredths of a second to execute each instruction! This is one main reason that
transistors are now used. Transistors are millions of times faster. The other reason is that
a relay costs as much as millions of interconnected transistors. However, a transistor-
based computer works in the same way as a relay-based computer. The cheapness of
transistors alows much more memory. It also allows extra things to be added to the
processor like more registers and extra circuits to do certain common things, like multiply
two numbers together, more quickly.

128

The whole computer is illustrated on the following two pages. The clock, processor and
memory are shown and interconnected. The processor includes the rotate and mask
circuitry.

To use the computer below, first enter the program and data into the memory with the
keys at the bottom of the circuit: A3, A2, Al, AO, CL, EN, D3, D2, D1, and DO. Then,
press PP at the bottom of the circuit to make the computer run. Wait until the program is
finished and lift up key PP. Then use the keys at the bottom of the circuit to read the
results from memory.

129

130

SRl SAD SAT SAF RAg2 RAl RAD

ENM 551

CLM CLE

i v ,,_1 h
 — r G —
,_ T — Ca—
N w”
f - :
o I 0 I m
e L i
- .
z Y17 \ala \ale Y177 e Y17 B B 12
il \ala \ala \ala il \ala 2Nz
e e |1
gl
AT 99 AT G A T T 95995 5.9 5505
1161 11 161 515 1 1 5161 1 6 1 6 S 1 R 1 1 S
.u_u .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_ .u_u .u_u_ .u_u_ u_.,_ .u_.,_
u_u u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_ u_u 1.,__H_ u__u_ 1.,__.1_ 1..__.,_
515 1 o e
3l sl ol el el el ekl el
R e e A e e e e e
R e e e e A

FROM DATA
REGISTER
ooo

ROTATE
LEFT 1

ROTATE
LEFT 2

BACE
REGISTER
o001

MASK
REGISTER
oio

TO DATA
REGISTER
o011

MEXTY
ROTATE
REGISTER
100

FROM ADDR.
REGISTER
101

TO ADDR.
REGISTER
110

INSTE.ADDE.

REGISTER
111

LATCH
oooo

LATCH
1111

e s
R B4 N4 b
I_I 1 1 1
N0} R, i =
_-‘I _=| 1 -;I 1 a1
L |y g
TG
e R Syl R I S
7N L/_lj./l_. L/_lj./_l_. L/E../_. L/H./}_.
ey s
3 | | | L
| P T (S I S I S = 0 I 5
14341
SAlF _E —-‘;J —{lJ _J;J _.i_';'J
s L L L. L
| P T 'jj_' 'jj_'] B
*j—j—j—:!é AL AT T T
o e e g e
s By Jg SIS s)
L1 14 1.1 —E
(e rr 3 3 [3 3

131

PROGRAMMING

We will now consider how to program a 16-bit rather than 4-bit computer.

A 16-bit computer has 16 bits in each ‘word’ and 65536 words of memory. This is
because there are 65536 possible 16-bit addresses: 0000000000000000,
0000000000000001, 0000000000000010, 0000000000000011, 0000000000000100, etc.

The instruction still consists of four words, but now each instruction is 16 bits long. An
example instruction is:

| abel addr ess dat a comrent

instr_1 0000000000000100 0000000000000001 from address
0000000000000101 0000000000000010 to address
0000000000000110 0000000011111111 ‘to’ bits to copy to
0000000000000111 0000000000100000 jinstr.addr.and rot.anmount

The labels and comments are not part of the program. The addresses just show where the
datais stored. The data isthe program. An instruction written with instructions that are
just 1’s and 0’s is a machine language instruction. Machine language instructions are
called ‘machine code.’

‘|nstr.addr.and rot.amount’ is short for ‘next instruction’s address and rotate amount.’

Notice that there are now four (italic) rotate bits (0000). They cause the copied-from data
to be rotated according to the following table.

132

16-Bit Rotate Table

rotate rotate rotate
bi t 16 left right

val ues bits anmount anmount
0000 ABCDEFGHI JKLMNCOP 0 0
0001 BCDEFGHI JKLMNGCPA 1 15
0010 CDEFGH JKLMNOPAB 2 14
0011 DEFGH JKLMNOPABC 3 13
0100 EFGH JKLMNOPABCD 4 12
0101 FGH JKLMNOPABCDE 5 11
0110 GHl JKLMNOPABCDEF 6 10
0111 H JKLMNOPABCDEFG 7 9
1000 I JKLIMNOPABCDEFGH 8 8
1001 J KL MNOPABCDEFGHI 9 7
1010 KLMNOPABCDEFGH! J 10 6
1011 LMNOPABCDEFGHI JK 11 5
1100 MNOPABCDEFGHI JKL 12 4
1101 NOPABCDEFGHI JKLM 13 3
1110 OPABCDEFGHI JKLIW 14 2
1111 PABCDEFGHI JKLMNO 15 1

The bits to the left of the rotate bits in latch 0000000000000111 are 000000000010 and
indicate that the next instruction will be in latches 0000000000001000,
0000000000001001, 0000000000001010, and 0000000000001011.

Latch 0000000000000100 holds 0000000000000001, so data is copied from latch
0000000000000001.

Latch 0000000000000101 holds 0000000000000010, so data is copied to latch
0000000000000010.

Latch 0000000000000110 holds 0000000011111111, so the rightmost 8 bits of the ‘to’
latch are copied to.

133

Next, we will consider how to make a program that adds 1 to any number between 0 and
0.

First we need a way to represent the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 with only the
bit values 0 and 1. The following table shows how we will do it.

Tablel

nunber representation
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O©CoO~NOUITAWNEFO

Next we need atable indicating what the answer is for each possible number 0 to 9.

Table?2

nunber answer
1

O©CoO~NOUITWNEFO
QOO ~NOOUTR_RWN

[

Next, we rewrite this table as;

Table 3

nunber answer
01
02
03
04
05
06
07
08
09
10

O©CoO~NOUITRWNEFO

134

Next, we use table 1 to write table 3 with 1°s and 0’s. That is, we replace all 0’s in table
3 with 0000, all 1’s with 0001, and both 2’s with 0010, etc. This gives us the following

table.

Table4

nunber
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

answer

00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00010000

Next, we write table 4 as data in memory.

| abel

addlt abl

addr ess
(nunber)
0000000001000000
0000000001000001
0000000001000010
0000000001000011
000000000100010
000000000100010
000000000100011
000000000100011
000000000100100
000000000100100

o

[

o

=Y

o

[

Table5

dat a
(answer)

0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000010000

conment

This kind of table is called a lookup table because you can look up the answer init. A
lookup table can be made to do any function with a limited number of possible inputs.
This function is called ‘increment’ (add 1) and has 10 possible inputs: 0, 1, 2, 3, 4, 5, 6, 7,

8, and 9.

135

Next, we decide where the number to increment and the answer will be stored in

memory.

| abel

addr ess

0000000000000000

0000000000000001 0000000000001001
0000000000000000

0000000000000010

dat a

0000000000100000

conment

start 0000000000001000
nunber to increnment
answer

Next, we write the program. The program is a list of instructions that tell the processor
how to manipulate data. That is, the program tells the processor from where and to where

copy data.

| abel

instr_1

instr_2

instr 3

addr ess

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

dat a

0000000000000001
0000000000001100
0000000000001111
0000000000110000

0000000001000000
0000000000000010
0000000011111111
0000000001000000

0000000000000000
0000000000000000
0000000000000000
0000000001000000

conment

from address

to address

‘to’ bits to copy to
instr.addr.and rot.
from address

to address

‘to’ bits to copy to
instr.addr.and rot.
from address

to address

‘to’ bits to copy to
instr.addr.and rot.

136

The whole program, including table, data, and instructions, follows.

| abel

instr_1

Instr 2

Instr_ 3

Addltabl

Program to Add 1

addr ess

0000000000000000
0000000000000001
0000000000000010

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

000000000100000
0000000001000001
000000000100001
000000000100001
000000000100 0
000000000100 0
000000000100
000000000100
0000000001001 00
0000000001001001

= O

(=]

(=]
O

(=]

O
Lol (=}

O

= O

dat a

0000000000100000

0000000000001001
0000000000000000

0000000000000001
0000000000001100
0000000000001111
0000000000110000

0000000001000000
0000000000000010
0000000011111111
0000000001000000

0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000010000

conment

start 0000000000001000

nunber to increnment
answer

from address

to address

‘to’ bits to copy to
instr.addr.and rot.
from address

to address

‘to’ bits to copy to

instr.addr.and rot.

from address
to address
‘to’ bits to copy to

instr.addr.and rot.

137

After instruction 1 (at ‘instr 1) is executed, the memory has the following values. Italics
show to where data was copied and arrows show from where data was copied.

| abel

instr_1

instr 2

instr_3

addltabl

After Instruction 1 Has Been Executed

addr ess

0000000000000000
0000000000000001
0000000000000010

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

000000000100000
0000000001000001
000000000100001
000000000100001
000000000100 0
000000000100 0
000000000100
000000000100
0000000001001
0000000001001

Lol (=}

(=]

(=]
O

(=]

O
o

|O

(=]
o

|o|

00
001

Lol (=}

dat a

0000000000110000

0000000000001001
0000000000000000

0000000000000001
0000000000001100
0000000000001111
0000000000110000
0000000001001001
0000000000000010
0000000011111111
0000000001000000
0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000010000

P

conment

start 0000000000001000

nunber to increnment

answer

from addr ess

to address

‘to’ bits to copy to
instr.addr.and rot.
from address

to address

‘to’ bits to copy to
instr.addr.and rot.
from addr ess

to address

‘to’ bits to copy to
instr.addr.and rot.

138

After instruction 2 is executed, the memory has the following values.

[talics show to

where data was copied and arrows show from where data was copied.

After Instruction 2 Has Been Executed

| abel addr ess dat a comrent
0000000000000000 0000000001000000 <----]|start0000000000001000
0000000000000001 0000000000001001 | nunber to increnent
0000000000000010 0000000000010000 <--| | answer
| |
instr 1 0000000000001000 0000000000000001 | | from address
0000000000001001 0000000000001100 | | to address
0000000000001010 0000000000001111 | | ‘to’ bits to copy to
0000000000001011 0000000000110000 | | instr.addr.and rot.
instr 2 0000000000001100 0000000001001001 | | from address
0000000000001101 0000000000000010 | | to address
0000000000001110 0000000011111111 | | ‘to’ bits to copy to
0000000000001111 0000000001000000 -+-| instr.addr.and rot.
instr 3 0000000000010000 0000000000000000 | from address
0000000000010001 0000000000000000 | to address
0000000000010010 0000000000000000 | ‘to’ bits to copy to
0000000000010011 0000000001000000 | instr.addr.and rot.
|
addltabl 0000000001000000 0000000000000001 |
0000000001000001 0000000000000010 |
0000000001000010 0000000000000011 |
0000000001000011 0000000000000100 |
0000000001000100 0000000000000101 |
0000000001000101 0000000000000110 |
0000000001000110 0000000000000111 |
0000000001000111 0000000000001000 |
0000000001001000 0000000000001001 |
0000000001001001 0000000000010000 —---|

Now, the result of 1 being added to 9 is 10 and the result, 10, written as 00010000, is
stored in the last eight bits of latch 0000000000000010.

Instruction 3 (‘instr 3”) does nothing but execute over and over until the processor is
stopped.

The program calculates what one more than nine is and finds that the answer is ten. Nine

is represented as 1001 in latch 0000000000000001 and ten is represented as 00010000 in
latch 0000000000000010.

139

Next, we will consider how to make a program that adds two numbers, from O to 9
together.

Again, we will represent the numbers 0 through 9 with only 1’s and 0’s as indicated in
the following table.

Table6

Nunber Representation
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O©CoO~NOUITWNEFO

Next, we need a table that shows the answer for each possible pair of numbers from 0 to
9. Thisisthe addition table we studied so hard to learn in grade school and is reproduced
below.

Addition Table

1] 2| 3| 4] 5] 6| 7
omo| 1, 2| 3| 4| 5| 6| 7| 8| 9
11, 2| 3| 4] 5| 6| 7] 8| 9/10
22| 3, 4]/ 5| 6| 7| 8| 9/10|11
33| 4, 5| 6| 7| 8] 9]10[11|12
4041 5| 6| 7| 8] 91101112 |13
S5 6| 7] 8| 9/10]11|12/13 |14
6ffi6| 7| 8| 9110111213 ,14 |15
/7] 8| 9/10]11112/13|14,15|16
88| 9/10]1112,1314|15|16 |17
9ll9110111]12{13/14/15]/16,17 18

140

Next, we rewrite the addition table above as bel ow.

Addition Table Listing

0+ 0=00
0O0+1=01
0+2 =02
0+ 3 =083
0+4 =04
0+5=05
0 +6 =06
0+ 7 =07
0+ 8 =208
0+9 =09
1+0=01
1+1=02
8 +9 =17
9+0 =09
9+1=10
9+2 =11
9 +3 =12
9 +4 =13
9 +5 =14
9 +6 =15
9 +7 =16
9 +8 =17
9 +9 =18

Only some of the table elements are listed above to save space.

141

Next, substituting according to table 6, we rewrite the table above as below.

Addition Tablefor Program

| abel addr ess dat a comrent
addt abl e 0000001000000000 0000000000000000 O + 0 = 00
0000001000000001 0000000000000001 O + 1 =01
0000001000000010 0000000000000010 O + 2 = 02
0000001000000011 0000000000000011 O + 3 = 03
0000001000000100 0000000000000100 O + 4 = 04
0000001000000101 0000000000000101 O + 5 = 05
0000001000000110 0000000000000110 O + 6 = 06
0000001000000111 0000000000000111 O + 7 = 07
0000001000001000 0000000000001000 O + 8 = 08
0000001000001001 0000000000001001 O + 9 = 09
0000001000010000 0000000000000001 1 + 0 =01
0000001000010001 0000000000000010 1 + 1 = 02
0000001010001001 0000000000010111 8 + 9 = 17
0000001010010000 0000000000001001 9 + 0 = 09
0000001010010001 0000000000010000 9 + 1 = 10
0000001010010010 0000000000010001 9 + 2 =11
0000001010010011 0000000000010010 9 + 3 = 12
0000001010010100 0000000000010011 9 + 4 = 13
0000001010010101 0000000000010100 9 + 5 = 14
0000001010010110 0000000000010101 9 + 6 = 15
0000001010010111 0000000000010110 9 + 7 = 16
0000001010011000 0000000000010111 9 + 8 = 17
0000001010011001 0000000000011000 9 + 9 = 18

Of course, in the actual program’s table, all one hundred table elements must be included.

The table begins at 0000001000000000. It can begin anywhere in memory, just so table
data doesn’t overlap other data.

142

Next, we write the whole program, including data, instructions, and table. We want to
add 9 + 7. That is, we want to caculate C=A+B where A is 9, B is 7, and C is the
answer. The underlining and italics are just to highlight data for the person reading the

program and do not affect the program.

don’t matter because no bits are copied.

| abel

start

A

B

C
instr_1

instr_2

instr_3

instr_4

addt abl e

In instr_4, the first two 16-bit words of data

Addition Program

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

0000001000000000
0000001000000001
0000001000000010

0000001010010110
0000001010010111
0000001010011000
0000001010011001

dat a

0000000000010000
0000000000001001
0000000000000111
0000000000000000
0000000000000001
0000000000001100
0000000011110000
0000000000100100
0000000000000010
0000000000001100
0000000000001111
0000000000110000
0000001000000000
0000000000000011
0000000011111111
0000000001000000
0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000000
0000000000000001
0000000000000010

0000000000010101
0000000000010110
0000000000010111
0000000000011000

conment

start 0000000000000100
9 (A

7 (B)

answer (O

from address of A

to instr_3's from addr.
copy to these bits

go to instr_2, rot. 4
from address of B

to instr_3's from addr.
copy to these bits

go to instr_3, no rot.
from addt abl e

to address of C

copy to these bits

go to instr_4, no rot.
doesn’ t matter

doesn’ t matter

copy NO bits

go to this instruction

0+ 0=00
0O0+1=01
0+2 =02
9 +6 =15
9 +7 =16
9 +8 =17
9 +9 =18

143

In the program above, instr_1 copies the value of A (9) to instr_3. Instr_2 copies the
value of B (7) to instr_3. Instr 3 copies the result (16) from the ‘addtable’ to C. Instr 4
does nothing repeatedly. The program below shows, after the program has run, from
where the data has been copied and to where the data has been copied in italics. You
should try to see from where and to where the data was copied by each instruction:
instr_1, instr 2, and instr 3.

| abel

start

A

B

C
instr_1

instr_2

instr_3

instr_4

addt abl e

After Addition Program Has Run

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

0000001000000000
0000001000000001
0000001000000010

0000001010010110
0000001010010111
0000001010011000
0000001010011001

dat a

0000000001000000

0000000000001001
0000000000000111
0000000000010110
0000000000000001
0000000000001100
0000000011110000
0000000000100100

0000000000000010
0000000000001100
0000000000001111
0000000000110000

0000001010010111
0000000000000011
0000000011111111
0000000001000000

0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000000
0000000000000001
0000000000000010

0000000000010101
0000000000010110
0000000000010111
0000000000011000

conment

start 0000000000000100
9 (A

7 (B)

answer (Q

from address of A

to instr 3’s from addr.

copy to these bits
go to instr_2, rot. 4
from address of B

to instr 3’'s from addr.

copy to these bits

go to instr_3, no rot.
from addt abl e

to address of C

copy to these bits

go to instr_4, no rot.
doesn’ t matter
doesn’ t matter

copy NO bits

go to this instruction

0+ 0=00
0O0+1=01
0+2 =02
9 +6 =15
9 +7 =16
9 +8 =17
9 +9 =18

144

The following program multiplies two numbers together. It calculates C = A X B where
Ais9, B is7 and Cisthe answer (63). It isthe same as the addition program except that
it uses a multiplication table rather than an addition table.

| abel

start

A

B

C
instr_1

instr_2

instr_3

instr_4

mul tiply

Multiplication Program

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011

0000010000000000
0000010000000001
0000010000000010

0000010010010110
0000010010010111
0000010010011000
0000010010011001

dat a

0000000000010000

0000000000001001
0000000000000111
0000000000000000
0000000000000001
0000000000001100
0000000011110000
0000000000100100

0000000000000010
0000000000001100
0000000000001111
0000000000110000

0000010000000000
0000000000000011
0000000011111111
0000000001000000

0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000000
0000000000000000
0000000000000000

0000000001010100
0000000001100011
0000000001110010
0000000010000001

conment

start 0000000000000100
9 (A

7 (B)

answer (O

from address of A

to instr_3's from addr.
copy to these bits

go to instr_2, rot. 4
from address of B

to instr_3's from addr.
copy to these bits

go to instr_3, no rot.
frommltiply table

to address of C

copy to these bits

go to instr_4, no rot.
doesn’ t matter

doesn’ t matter

copy NO bits

go to this instruction

0 X0 =00
0 X1=00
0 X2 =00
9 X6 =54
9 X7 =63
9 X8 =72
9 X9 =281

Notice that one can save a lot of work by salvaging (copying) instructions from a
program one has already written for use in a new, similar program. Tables can often be
salvaged as well.

145

The following program adds two two-digit numbers, A (99) and B (87), together for a
result of C (186). First, it adds the right digits together (9+7) for aresult of 16. 16is6
with a carry. Then, the carry, 1, is added to 9 and 8 for aresult of 18. That makes the
entire answer 186. Adding 1+9+8 together requires an add with carry, so we need atable
with carry of 1 or O as below. For this table, there are 200 possibilities. There are 2
values of carry (0 or 1), 10 values of one input (0-9), and 10 vaues of another input (0-9)
for 2 X 10 X 10 = 200 possibilities. Notice the carry, ‘+0’ and ‘+1,” in the upper left of
the tables below. The two tables below are two halves of the entire table.

Add with Carry Table

+0f0] 1] 2] 3| 4] 5] 6] 7] 8] 9
ofo | 1| 2| 3| 4| 5| 6| 7| 8] 9
i1, 2] 3| 4, 5] 6] 7| 8] 910
202 3| 4, 5| 6| 7| 8| 9/10]11
33| 4| 5| 6| 7| 8] 91101112
a4M4| 5, 6] 7| 8| 9110111213
Sfi5] 6| 7] 8] 9/10]11]12|13|14
6j6| 7| 8| 9/1011,1213|14|15
/7] 8| 9/10/11|12/13]14|15|16
88| 9110/11]12/13/14|15/16 17
ol9110/11112]113]14[15]16]1718

+1l 0 1] 2] 3| 4] 5] 6] 7| 8] 9
o1 2| 3| 4, 5/ 6| 7 8] 910
i 2| 3| 4/ 5| 6| 7] 8| 9/10/11
201 3| 4/ 5| 6| 7| 8] 9101112
3 4 5/ 6| 7|, 8] 9/10/11]12|13
40 5| 6| 7| 8] 911011121314
S 6] 7] 8| 9/10111|12/13]14|15
6ff 7| 8| 9/10/11/12|13/14]15|16
/8 9110111121314 |15/16 |17
8l 9/10/11|12,13/14|15/16 17|18
910111112113 /14115/16(17|18)19

146

The ‘add with carry’ table for the program is shown below. Notice that the carry is
represented with only 1 bit because carry can only have two values, 0 or 1. A normal
digit requires 4 bits for the 10 possibilities, 0-9.

| abel

addt abl e 0000001000000000
0000001000000001
0000001000000010

Add with Carry Table Listing

addr ess

0000001010010110
0000001010010111
0000001010011000
0000001010011001

0000001100000000
0000001100000001
0000001100000010

0000001110010110
0000001110010111
0000001110011000
0000001110011001

dat a

0000000000000000
0000000000000001
0000000000000010

0000000000010101
0000000000010110
0000000000010111
0000000000011000

0000000000000001
0000000000000010
0000000000000011

0000000000010110
0000000000010111
0000000000011000
0000000000011001

0
0
0

Oo0O0O
+ 4+ + +
© © © ©
+ 4+ + +

e N

PR R
+ + + +
© © © ©
+ + + +
© 0~

conment

+
+
+

+

+
oNoNe]

0
0
0

+
+
+

+

+
NEFPO

NEFPO

©oo~NO»

00
01
02

15
16
17
18

01
02
03

16
17
18
19

147

In the program below, instr_1, instr_2, and instr_3 are exactly as in the previous addition
Instr_1 and instr_2 copy the right digits of A (9) and B (7) into instr_3 and
instr_3 copies the result (16) from addtable to the right two digits of C.

program.

Instr_4, instr_5, instr_6, and instr_7 add the left digits of A and B together with the carry
bit in C. Instr_4 copies the left digit of A (9) into instr_7. Instr_5 copies the left digit of
B (8) into instr_7. Instr_6 copies the carry bit (1) from the middle digit of C to instr_7.
Instr_7 copies the result, (1 + 9 + 8 =) 18, into the left two digits of C for atotal result in
al three digits of C of 186.

| abel

start

A

B

C
instr_1

nstr_2

nstr_3

nstr_4

nstr_5

nstr_6

nstr_7

nstr_8

Add Two Digits Program

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011
0000000000011100
0000000000011101
0000000000011110
0000000000011111
0000000000100000
0000000000100001
0000000000100010
0000000000100011

dat a

0000000000010000

0000000010011001
0000000010000111

0000000000000000

0000000000000001
0000000000001100
0000000011110000
0000000000100100

0000000000000010
0000000000001100
0000000000001111
0000000000110000

0000001000000000

0000000000000011
0000000011111111
0000000001000000

0000000000000001
0000000000011100
0000000011110000
0000000001010000

0000000000000010
0000000000011100
0000000000001111
0000000001101100

0000000000000011
0000000000011100
0000000100000000
0000000001110100

0000001000000000

0000000000000011
0000111111110000
0000000010000100

0000000000000000
0000000000000000
0000000000000000
0000000010000000

conment

start 0000000000000100
99 (A

87 (B)

answer (O

from address of A

to instr 3’'s from addr.

copy to these bits
go to instr_2, rot. 4
from address of B

to instr_3's from addr.

copy to these bits

go to instr_3, no rot.
from addt abl e

to address of C

copy to these bits

go to instr_4, no rot.
from address of A

to instr 7’'s from addr.

copy to these bits
go to instr_5, no rot.
from address of B

to instr 7’'s from addr.

copy to these bits
toinstr_6,rot.4 right
fromaddr.of C (carry)

toinstr_7’'s from addr.

copy to this bit
toinstr_7,rot.4 left
from addt abl e

to address of C

copy to these bits

go to instr_8, rot. 4
doesn’ t matter
doesn’ t matter

copy NO bits

go to this instruction

148

addt abl e 0000001000000000 0000000000000000 0 + O + O = 00
0000001000000001 0000000000000001 O + 0 + 1 =01
0000001000000010 0000000000000010 O + O + 2 = 02
0000001010010110 0000000000010101 O + 9 + 6 = 15
0000001010010111 0000000000010110 O + 9 + 7 = 16
0000001010011000 0000000000010111 O + 9 + 8 = 17
0000001010011001 0000000000011000 O + 9 + 9 = 18
0000001100000000 0000000000000001 1 + 0 + 0 = 01
0000001100000001 0000000000000010 1 + 0 + 1 = 02
0000001100000010 0000000000000011 1 + 0 + 2 = 03
0000001110010110 0000000000010110 1 + 9 + 6 = 16
0000001110010111 0000000000010111 1 + 9 + 7 = 17
0000001110011000 0000000000011000 1 + 9 + 8 = 18
0000001110011001 0000000000011001 1 + 9 + 9 = 19

In some high level languages, instructions 1 through 7 can be written with one
instruction, ‘C = A + B.” You type in ‘C = A+ B.” Then you run another program that is
called a compiler. The compiler converts ‘C = A + B’ into all that machine language,
instr 1 through instr 7. A compiler can greatly ease writing programs. Writing
programs in machine language (1’s and 0’s) is relatively difficult. (Most other processors
have a hardware adder, so C = A + B becomes few instructions though many bits are
added.)

149

The program below shows the result of running the program above. To and from where
data has been copied is underlined and in italics. The answer is 000110000110, or 186,
and is stored in the word (16 bits) labeled ‘C.” The first word (the first 16 data bits) of
instr 3 now holds 1001,0111 or 9,7 and the first word of instr 7 now holds 1,1001,1000
or 1,9,8, where the 1 in 1,9,8 is represented by only 1 bit (1).

| abel

start

A

B

C
instr_1

nstr_2

nstr_3

nstr_4

nstr_5

nstr_6

nstr_7

nstr_8

After Add Two Digits Program Has Run

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011
0000000000011100
0000000000011101
0000000000011110
0000000000011111
0000000000100000
0000000000100001
0000000000100010
0000000000100011

dat a

0000000010000000

0000000010011001
0000000010000111

0000000110000110

0000000000000001
0000000000001100
0000000011110000
0000000000100100

0000000000000010
0000000000001100
0000000000001111
0000000000110000

0000001010010111

0000000000000011
0000000011111111
0000000001000000

0000000000000001
0000000000011100
0000000011110000
0000000001010000

0000000000000010
0000000000011100
0000000000001111
0000000001101100

0000000000000011
0000000000011100
0000000100000000
0000000001110100

0000001110011000

0000000000000011
0000111111110000
0000000010000100

0000000000000000
0000000000000000
0000000000000000
0000000010000000

conment

start 0000000000000100
99 (A

87 (B)

answer (Q

from address of A

to instr_3’s from addr.

copy to these bits
go to instr_2, rot. 4
from address of B

to instr 3’s from addr.

copy to these bits

go to instr_3, no rot.
from addt abl e

to address of C

copy to these bits

go to instr_4, no rot.
from address of A

to instr 7’'s from addr.

copy to these bits
go to instr_5, no rot.
from address of B

to instr 7’'s from addr.

copy to these bits
toinstr_6,rot.4 right
fromaddr.of C (carry)

to instr 7’'s from addr.

copy to this bit
toinstr_7,rot.4 left
from addt abl e

to address of C

copy to these bits

go to instr_8, rot. 4
doesn’ t matter
doesn’ t matter

copy NO bits

go to this instruction

150

addt abl e 0000001000000000
0000001000000001
0000001000000010

0000001010010110

0000001010010111

0000001010011000
0000001010011001

0000001100000000
0000001100000001
0000001100000010

0000001110010110
0000001110010111

0000001110011000

0000001110011001

0000000000000000 O + O + 0 = 00
0000000000000001 O + 0 + 1 =01
0000000000000010 O + O + 2 = 02
0000000000010101 O + 9 + 6 = 15
0000000000010110 0 + 9 + 7 = 16
0000000000010111 O + 9 + 8 = 17
0000000000011000 O + 9 + 9 = 18
0000000000000001 1 + 0 + 0 = 01
0000000000000010 1 + 0 + 1 = 02
0000000000000011 1 + 0 + 2 = 03
0000000000010110 1 + 9 + 6 = 16
0000000000010111 1 + 9 + 7 = 17
0000000000011000 1 + 9 + 8 = 18
0000000000011001 1 + 9 + 9 = 19

151

The program below includes an example of ‘branching.” Branching in a program means
that either some instructions or some other instructions are executed depending on a
value (usually a bit) in memory (or, in most processors, in a register). Branch bits are
often called flags. In the program below, the rightmost bit in latch A (at address
0000000000000001) is a flag and determines whether instr 4 or instr 5 is executed.
Instr 4 copies the ‘all 1’s pattern’ (1111111111111111) in latch C to latch B. Instr 5
copies the ‘1,0 pattern’ (1010101010101010) from latch D to latch B. If latch A has
value 1, then instr 5 is executed. If A has value 0, then instr 4 is executed. In the
program below, A has value 1 so instr 5 is executed and B gets the ‘1,0 pattern.’

Instr_3 does nothing but go to the next instruction because it copies no bits. Instr_3 has
0000000001000000 in latch (address) 0000000000001111, so, normdly, instr_4, at
address 0000000000010000, would be executed next. However, instr_2 copies the
rightmost bit (1) from A into the fifth-from-rightmost bit of latch 0000000000001111 so
that latch 0000000000001111 contains 0000000001010000 and instr 5, at address
0000000000010100, is executed after instr_3. The instructions are then executed in the

following order: instr_2, instr_3, instr_5, instr_6. Notice that instr_4 is skipped.

| abel

start

o0 w>

instr_2

instr_3

instr_4

instr_5

instr_6

Branching Program

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011

dat a

0000000000100000
0000000000000001
0000000000000000
1111111111111111
1010101010101010

0000000000000001
0000000000001111
0000000000010000
0000000000110100
0000000000000000
0000000000000000
0000000000000000
0000000001000000
0000000000000011
0000000000000010
1111111111111111
0000000001100000

0000000000000100
0000000000000010
1111111111111111
0000000001100000

0000000000000000
0000000000000000
0000000000000000
0000000001100000

conment

start 0000000000001000

flag(1 or 0)right
val ue to change
all 1’s pattern
1,0 pattern

fromA

to next of
change this bit
to instr_3,
doesn’ t matter
doesn’ t matter
copy NO bits

toinstr 4 CRinstr_5

fromC pattern
to B

copy all bits
to instr_B6,
fromD pattern
to B

copy all bits
to instr_B6,
doesn’ t matter
doesn’ t matter
copy NO bits

go to this instruction

instr_3

rot.4

bi t

no rot.

no rot.

152

The result of running the program above is shown below. Notice that B now holds
1010101010101010 and that address 0000000000001111 now holds 0000000001010000

instead of 0000000001000000.

copied.

| abel

start

O0Om>

instr_2

instr_3

instr_4

instr_5

instr_6

[talics show to where and from where values have been

After Branching Program Has Run

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011

dat a

0000000001100000

0000000000000001
1010101010101010

1111111113111111

1010101010101010

0000000000000001
0000000000001111
0000000000010000
0000000000110100

0000000000000000
0000000000000000
0000000000000000
0000000001010000

0000000000000011
0000000000000010
1111111111111111
0000000001100000

0000000000000100
0000000000000010
1111111111111111
0000000001100000

0000000000000000
0000000000000000
0000000000000000
0000000001100000

conment

start 0000000000001000
flag(1l or O)right bit
val ue to change

all 1’s pattern

1,0 pattern

fromA

to next of instr_3
change this bit
toinstr_3, rot.4
doesn’ t matter
doesn’ t matter

copy NO bits
toinstr 4 ORinstr_5
fromC pattern

to B

copy all bits

to instr_6, no rot.
fromD pattern

to B

copy all bits

to instr_6, no rot.
doesn’ t matter
doesn’t matter

copy NO bits

go to this instruction

153

The following program is the same as the previous one (before it was run) except that A
now has value 0 instead of value 1 (in the rightmost bit). This means that instr_4 will be
executed instead of instr 5 and B will get 1111111111111111 from C rather than
1010101010101010 from D. The instructions are executed in the following order:
instr_2, instr_3, instr_4, instr_6. Instr_5 is not executed.

instr_3

instr_4

instr_5

instr_6

Branching Program with Flag =0

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011

dat a

0000000000100000

0000000000000000
0000000000000000

1111111113111111

1010101010101010

0000000000000001
0000000000001111
0000000000010000
0000000000110100

0000000000000000
0000000000000000
0000000000000000
0000000001000000

0000000000000011
0000000000000010
1111111111111111
0000000001100000

0000000000000100
0000000000000010
1111111111111111
0000000001100000

0000000000000000
0000000000000000
0000000000000000
0000000001100000

conment

start 0000000000001000
flag(1l or O)right bit
val ue to change

all 1’s pattern

1,0 pattern

fromA

to next of instr_3
change this bit
toinstr_3, rot.4
doesn’ t matter
doesn’ t matter

copy NO bits
toinstr 4 CRinstr_5
fromC pattern

to B

copy all bits

to instr_6, no rot.
fromD pattern

to B

copy all bits
toinstr_6, no rot.
doesn’ t matter
doesn’ t matter

copy NO bits

go to this instruction

154

The following program shows the result of executing the preceding program. Notice that
B now contains 1111111111111111 from C and address 0000000000001111 still
contains 0000000001000000. Instr_4 has been executed instead of instr_5.

After Branching Program with Flag =0 Has Run

| abel

start

o0 w>

instr

instr

instr

instr

instr

2

23

_4

5

_6

addr ess

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100

0000000000001000
0000000000001001
0000000000001010
0000000000001011
0000000000001100
0000000000001101
0000000000001110
0000000000001111
0000000000010000
0000000000010001
0000000000010010
0000000000010011
0000000000010100
0000000000010101
0000000000010110
0000000000010111
0000000000011000
0000000000011001
0000000000011010
0000000000011011

dat a

0000000001100000
0000000000000000
1111111113111111
1111111113111111
1010110010101010

0000000000000001
0000000000001111
0000000000010000
0000000000110100
0000000000000000
0000000000000000
0000000000000000
0000000001000000
0000000000000011
0000000000000010
1111111111111111
0000000001100000
0000000000000100
0000000000000010
1111111111111111
0000000001100000
0000000000000000
0000000000000000
0000000000000000
0000000001100000

conment

start 0000000000001000
flag(1l or O)right bit
val ue to change

all 1’s pattern

1,0 pattern

fromA

to next of instr_3
change this bit
toinstr_3, rot.4
doesn’ t matter
doesn’ t matter

copy NO bits
toinstr 4 CRinstr_5
fromC pattern

to B

copy all bits
toinstr_6, no rot.
fromD pattern

to B

copy all bits

to instr_6, no rot.
doesn’ t matter
doesn’ t matter

copy NO bits

go to this instruction

155

MISCELLANEOUS

Computer with Input and Output

processor, including clock

MEmory —v — . . |
LATCH [~ T T T 4 T—fﬂjl L/ﬂJ] Lxﬂjl L ﬂJ}
oooo YT -

memao N L] o —]
Lr-‘mé?—lF I P S 1 -|j'/1 'Ij_/] ﬂ-/] ﬂ-/_|
1101 I -
input >— — >]
o | TR = 3] 12| Il | 10_]
output o - - —— L
PV I o oy iy [03c77] 026771 0167]] 00027

141 ¢ 131 »—E
F Al Al ala c| E o o o 0
Fl |22 1o C| n 3 0 : o
el Gaaaliald S S S

Inputs and outputs have been added to the computer above in place of two memory
latches. When data is written to (copied to) ‘output latch 1111,” then each loop, O3, O2,
O1, and OO0, will turn on its light if a 1 is stored in the loop. When data is read from
(copied from) input ‘latch’ 1110 (It’s not really a latch because it doesn’t have loops.),
then a 1 will be copied from key 13 if key I3 is pressed. If key 3 isnot pressed, thenaOis
copied from 13. 12,11, and 10 work similarly.

156

For example, the following one-instruction program (for the four-bit computer above)
copies data from address (input ‘latch’) 1110 to address (output latch) 1111 over and over
again. Therefore, when the program is running, pressing key I3 turns on light O3,
pressing key 12 turns on light O2, pressing key I1 turns on light O1, and pressing key 10
turns on light OO0.

| abel address data comrent

start 0000 100 start at 0100

instr_1 0100 1110 frominputs
. 0101 1111 to outputs
0110 1111 copy all bits
0111 0100 repeat this instruction, no rotate

The keys PP, A3, A2, ...D0 along the bottom of the computer diagrammed above allow
you to control the computer. You can write to memory, start the processor, stop the
processor, and read the results from memory. These keys are, together, called the control
panel. A control panel controlled early computers. However, today a keyboard controls
a computer. A keyboard is a lot of keys similar to the input keys. The computer runs a
program that checks for key presses and reacts accordingly. That program is called an
operating system. A joystick may control a game computer. Inside a typical joystick are
keys that the joystick bumps into. Those keys and the keys under the joystick’s buttons
are also like the input keys above. The outputs can control motors (like in a disk drive)
rather than lights.

157

Transistors

Modern computers use two types of transistors, which correspond to the two types of
relays. An N-channe transistor corresponds to a normally open relay. A P-channd
transistor corresponds to a normaly closed relay. However, transistors have some
idiosyncrasies and you can’t simply replace relays with transistors to make a successful
transistor-based design. It takes about twice as many transistors as relays to do
something. Of course, the high speed and low cost of transistors make transistors vastly
superior in spite of the extra design effort required. The millions of transistors in a
modern microprocessor allow for more than one type of instruction. For example,
besides, or instead of, rotate and mask, the instruction set can include add, subtract,
multiply, divide, etc.

The Future

This completes the explanation of how the vast mgority of computers work now. One
instruction is executed at a time. In modern designs, it is common for the ensuing
instruction to be started before the prior instruction finishes, so a few instructions can be
executed at once. There are designs that alow many instructions to be executed at once;
but such computers, though very fast, are relatively hard to program and, mainly for that
reason, have not become very popular. Most such designs use many (often relatively
simple) computers, each of which can execute an instruction at once, and which
communicate with each other through inputs and outputs. Computers with such designs
are called paralld computers and are probably what will be used in the future. For
example, | have an idea for a computer that would be able to execute thousands of
instructions at a time and ill be programmed amost the same way as a normal
computer. That will have to be the subject of another book.

158

