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Introduction  

Computers are the most complex machines that have ever been created.  Very few people really  know  how  they  work.  This  book  will  tell  you  how  they  work  and  no  technical knowledge  is  required. 

It  explains  the  operation  of  a simple,  but  fully  functional, computer  in   complete  detail. 

The  simple  computer  described  consists  mainly  of  a processor  and  main  memory.  Relays,  which  are  explained,  are  used  in  the  circuitry instead  of  transistors  for  simplicity.  This  book  does  not  cover  peripherals  like  modems, mice, disk drives, or monitors. 

Did  you  ever  wonder  what  a  bit,  a  pixel,  a  latch,  a  word  (of  memory),  a  data  bus,  an address bus, a memory, a register, a processor, a timing diagram, a clock (of a processor), an  instruction, or  machine  code  is?  Though  most  explanations  of  how  computers  work are a lot of analogies or require a background in electrical engineering, this book will tell you   precisely  what  each  of  them  is  and  how  each  of  them  works  without  requiring   any previous knowledge of computers or electronics.  However, this book starts out very easy and gets harder as it goes along.  You must read the book starting at the first page and not skip around because later topics depend on understanding earlier topics.  How far you can get may depend on your background.  A junior high school science background should be enough.  There is  no  mathematics required  other than simple addition and multiplication. 

This  is  a  short  book,  but  it  must  be  studied  carefully.  This  means  that  you  will have to read some parts more than once to understand them.  Get as far as you can.  You will be much more knowledgeable about how computers work when you are done than when you started,  even  if  you  are not able to get  through  the  whole text.  This is a  technical book though  it  is  aimed  at  a  non-technical  audience.  Though  this  book  takes  considerable effort to understand, it is  very  easy for what it explains.  After you have studied this book, if you go back and read it, it will seem simple.  Good Luck! 
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Simple Circuit 

 









The  picture  above shows a ‘battery’ connected  to  a  ‘light  bulb’ by  a  ‘power wire’ and  a 

‘ground  wire.’  A  power  wire  is  a  wire  connected  directly  to  the  top  of  the  battery.  A ground  wire  is  a  wire  connected  directly  to  the  bottom  of  the  battery.  Any  electrical machine is called a circuit. 
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Simple Diagram 

 







The  diagram  above  also  shows  a  ‘battery’  connected  to  a  ‘light  bulb’ by a ‘power wire’ 

and a ‘ground wire.’  This  diagram  means the same as the picture on page 2.  The ground wire  is  not  shown   because  it  is  assumed  that  one  connection  of  every  light  is  always connected  to  the  bottom  of  the  battery  by  a  ground  wire   in  diagrams.  Diagrams  are simpler to draw than pictures that mean the same thing. 
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Key Circuit 

 







The picture above shows the ‘top of’ a ‘battery’ connected by a ‘power wire’ to a ‘key’ 

that is connected by a ‘light wire’ to a ‘light bulb.’  



A key is a flat piece of springy steel that is bent up so that the key only touches the wire to the key’s right when the key is pressed down by someone’s finger. 



When someone pushes the key down, the right end of the key touches the light wire and electricity  flows  from  the  top  of  the  battery,  through  the  power  wire,  the  key,  and  the light wire, to the light bulb, turning the light bulb on. 



When the key is released, the key springs back up.  Now the key does  not  touch the light wire and electricity can  not  get from the key to the light wire to the light bulb so that the light bulb goes  off. 
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Key Diagram 

 





The diagram above shows the same circuit as the preceding picture. 



Again, there is also a wire from the other connection of the light bulb back to the bottom of  the  battery,  but that  wire  does not  need to be shown  because  the other  connection of every  light  is  connected  to  the  bottom  of  the  battery  and  you  know  the  ground  wire  is there without drawing it. 
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Electromagnet 







The picture above shows the top of a battery connected by a wire to an electromagnet. 



An electromagnet is a coil of (plastic coated) wire.  An electromagnet becomes magnetic when  electricity goes through  it, just  as a  light bulb glows  when electricity goes  through the light bulb. 



The  wire  that  makes  up  the  coil  of  wire  that  is  the  electromagnet  has  two  ends (connections). 

There  is  also  a  ‘ground  wire’  from  the  other  connection  of  the electromagnet back to the bottom of the battery. 
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Electromagnet Diagram 

 







The diagram above shows the same circuit as the preceding picture. 



The  wire  that  makes  up  the  coil  of  wire  that  is  the  electromagnet  has  two  ends (connections). 

There  is  also  a  ground  wire  from  the  other  connection  of  the electromagnet back to the bottom of the battery, as in the picture, but that wire does  not need to be shown because the other connection of  every  electromagnet is connected to the bottom of the battery. 



13 





Relay 

 



The picture above shows a ‘bottom key’ that controls an electromagnet. 



The  electromagnet,  in  turn,  controls  the  top  key.  A  key  and  the  electromagnet  that controls it are,  together, called a  relay.  The relay is in the dashed box. 



When  the  bottom  key  is  pressed,  the  electromagnet  is  powered  and  the  electromagnet becomes magnetic.  That makes the electromagnet attract the top key and pull the top key down  just  like  a  finger  can  push  a  key  down.  A  magnet  (or  a  powered  electromagnet) attracts  the  top  key  because  the  top  key  is  made  of  steel.  A  magnet  (or  a  powered electromagnet) does not attract the wires because the wires are made of copper. 



 Important:  The  electromagnet  does   not  ever  touch  the  top  key.  No  electricity  can  go from the electromagnet to the wires attached to the top key. 
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A computer is almost entirely made up of a lot of relays (today, transistors) connected by wires.  Just how the relays are connected and just what they do is the main subject of this book. Other concepts, especially programming, will also be explained. 



(Today,  transistors  are  used  instead  of  relays  for  lower  cost  and  greater  speed.  The design  remains  practically  the  same,  however.  Relays  are  easier  to  understand  and,  so, will be used in this explanation.)  





Relay Diagram 

 







The diagram above shows the same circuit as the previous picture in a different way. 
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One Battery and Touching Wires 

 







In this picture, only  one battery  powers all the circuitry in the previous picture.  Note the symbol for wires that touch. 
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One Battery and Connected Wires Diagram 

 



This diagram shows the same circuit as the previous picture in a different way.  Touching wires are connected wires. 
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Loop 



 

 

Loop Diagram 







18 



The  picture  and  diagram  at  left  show  a  relay  that  controls  its   own  electromagnet!  The square  of wire  that  takes electricity from the key of the relay to the electromagnet of the same relay is called a ‘loop.’   



No electricity can get from the top of the battery to the electromagnet because the key is up.  However,  if  someone presses the key, then electricity  can  get to the electromagnet. 

Then, the  electromagnet  will hold the key down -  even if the person lets go of the key!  So we  say  that  the  loop   remembers  that  the  key  was  pressed.  Remember  that  the  key normally springs up because it is springy and bent upward. 



Similarly,  if  someone  then  lifts  up  the  key  (A  person  is  much  stronger  than  a  little electromagnet.),  then  no  electricity  will  reach  the  electromagnet  and  the  key  will  remain up even after the person releases the key.  So we say that the loop  remembers  that the key was lifted up. 



Most relays in a computer are used to make loops, or connect the loops together. 
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Pixel 



Pixel Diagram 
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The picture and diagram above show a loop that controls a light bulb.  A light bulb that is controlled by a loop is called a ‘pixel.’   



In a diagram, where a horizontal wire and a vertical wire meet,  without crossing, there  is a connection of the two wires. 



Therefore,  when  the  key  is  pressed,  electricity  can  flow  from  the  top  of  the  battery, through  the key, to both the light and the electromagnet.  When the key is down and the light bulb is glowing, one says that the loop has value ‘1’ and the pixel is ‘on.’  The loop has  value  ‘1’  even  if  there  is  not  a  light bulb,  just  so  the  loop  wire  has  electricity  going through it, to the electromagnet, because the key is down. 



When the key is  up  and the light bulb is  not  glowing, one says that the loop has value ‘0’ 

and the pixel is ‘off.’  The loop has value ‘0’ even if there is not a light bulb - just so the loop wire does  not  have electricity going through it (because the key is up). 
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Normally Closed Key 



 

 

Normally Closed Key Diagram 
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The  picture  and  diagram  at  left  show  the  top  of  a  battery  connected  by  a  wire  to  a normally closed key, that is connected by another wire to a light bulb. 



A  diagram  of  an  electrical  machine  is  called  a  circuit  diagram,  a  diagram,  a  schematic (pronounced ske-ma’-tic) diagram, or just a schematic. 



The  normally  closed  key  is  different  from  the  keys  described  previously.  The  normally closed key is also a springy piece of steel, but is bent so that it normally  is  connected to the right wire.  Therefore, the light bulb in the circuit above is normally on.  However, if you push  down  on the normally closed key, the light bulb becomes disconnected from the 

‘ power  wire’ and the light goes out. 



A  key  is  called  ‘closed’  when  electricity  can  flow  through  it  from  a  wire  on  its  left  to  a wire on its right. 

A key is called ‘open’ when electricity  can’t  flow through it from a wire on the left to a wire on the right. 



A normally closed key is normally closed, but is open when you push it down. 

A normally open key is normally open, but is closed when you push it down. 



A relay is called closed if its key is closed. 

A relay is called open if its key is open. 



An  electromagnet  is  called  ‘powered’  if  the  electromagnet  is  connected  to  the  top  of  a battery,  even  if that electromagnet is connected to the top of the battery through a series of   closed  keys.  In  fact,  any  piece  of  wire  is  called  ‘powered’  if  that  piece  of  wire  is connected to the top of a battery,  even  if that piece of wire is connected to the top of the battery through a series of  closed  keys. 



Any piece of wire that is powered is said to have value ‘1.’   

Any piece of wire that is  not  powered is said to have value ‘0.’   



The values of the wire in a loop as described previously are a special case of these rules for assigning values to wires. 
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Normally Closed Relay 
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Normally Closed Relay Diagram 







The  preceding  picture  and  diagram  show  a  bottom  key  that  controls  an  electromagnet. 

The  electromagnet, in turn, controls the  top, normally closed key.  A normally closed key and the electromagnet that controls it are,  together, called a normally closed relay. 



When  the  bottom  key  is  pressed,  the  electromagnet  is  powered  and  the  electromagnet becomes  magnetic.  That  makes  the  electromagnet  attract  the  top,  normally  closed  key and pull  the top,  normally  closed key down, just like a finger can push a normally closed key  down.  A  magnet  (or  a  powered  electromagnet)  attracts  the  normally  closed  key because  the  normally  closed  key  is  made  of  steel.  When  the  bottom  key  is  pressed,  the light turns  off. 



In  other  words,  when  the  bottom  key  is  pressed,  the  electromagnet  energizes, disconnecting the top key. 
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Clear Key 



Clear Key Diagram 



The picture and diagram above show a loop as before, but a normally closed key has been added.  As long as the normally closed key is closed, the loop works as before. 



However,  if  the  normally  closed  key  is  pressed,  then  the  normally  closed  key  will  be open  and  electricity  will  not  reach  the  electromagnet,  so  the  electromagnet  will  not  be magnetic,  and  the  normally  open  key  will  pop  up  if it  was  down.  If  the  normally  open key already was up, it will stay up. 



Therefore,  pressing  the  normally  closed  key  will  clear  the  value  of  the  loop  to  ‘0.’  

Therefore, this normally closed key is called the ‘clear key’ for the loop. 
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Loop to Loop Data Transfer 



In the circuit above, the ‘connecting key’ connects loop A and loop B.  Both loops have value  0.  Temporarily  pressing  ‘loop  key  A’  gives  the  value  1  to  loop  A.  Now, temporarily  pressing  the  ‘connecting  key’  will  make  loop  B  have  value  1.  That  is because  when  loop  A  has  value  1,  loop  key  A  is  closed,  loop  wire  A  has  value  1,  and when  the  connecting  key  is  closed,  electricity  can  reach  the  electromagnet  of  loop  B, giving loop B value 1. 



However,  if  loop  A  has  value  0,  and  loop  B  has  value  0,  and  the  connecting  key  is pressed, then both loops keep their values of 0. 



Therefore,  if  one temporarily presses  ‘clear  key  B’ to  clear loop B to  value 0, and then temporarily presses the connecting key, whatever value is in loop A will be copied to loop B.  Then loop A and loop B will have the same value. 
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Oscillator 



 

 

Oscillator Diagram 
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The  picture  and  diagram  at  left  show  a  normally  closed  relay  that  controls  its   own electromagnet.  The square of  wire that  takes electricity from the normally closed key of the  relay  to  the  electromagnet  of  the  same  normally  closed  relay  is  called  a  feedback wire.  (Notice that this circuit is different from a loop circuit, which uses a normally open relay.)  This  circuit  is  called  an  oscillator  because  the  relay  oscillates  (changes  back  and forth) between open and closed. 



Electricity  can  get from  the top  of the  battery, through  the  closed, normally  closed relay key  to  the  electromagnet.  The  electromagnet  then  pulls  the  normally  closed  key  down and   opens  the  normally closed  key.  Because  the  normally  closed  key  is  now  open,  no electricity  can  get  to  the  electromagnet.  The  electromagnet  now  no  longer  attracts  the normally closed key and the normally closed key closes. 



 Thus,  the  normally closed key repeatedly opens  and closes  without anyone touching the key.  The  feedback  wire  gets  value  1,  then  value  0,  then  value  1,  etc.  It  takes  a  relay about a hundredth of a second to change values. 



Just  as  a  normal  loop  is  the  basis  of  a  computer  memory,  this  feedback  circuit  is a  key part  of  a  computer’s  clock.  A  computer’s  clock  is  a  circuit  that  repeatedly  generates signals (1 and 0 values). 
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Keys in Series 



 

 

Keys in Series Diagram 







In the picture and diagram above, one must press both ‘key D’ AND ‘key E’ to turn the light on. 
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AND Gate Circuit 



In the circuit above, the three triangles are all the top of the  same  battery.  When ‘key D’ 

AND  ‘key  E’  close,  then  the  light  comes  on.  When  ‘key  A’  is  pressed,  then  ‘key  D’ 

closes.  When ‘key B’ is pressed, then ‘key E’ closes.  Therefore, when ‘key A’ and ‘key B’ are pressed, the light turns on.  Another way of describing the operation of the circuit is  to  say  that  ‘output  wire  C’  gets  value  1  only  when  ‘input  wire  A’  gets  value  1  AND 

‘input wire B’ gets value 1. 



The  following  table  also  shows  that  ‘output  wire  C’  has  value  1  only  when  both  ‘input wire A’ has value 1 AND ‘input wire B’ has value 1. 



AND gate truth table 

A 

B 

C 

0 

0 

0 

0 

1 

0 

1 

0 

0 

1 

1 

1 
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AND Gate Circuit with Symbol 



The  diagram  above  shows  a  circuit  with  the  symbol  for  an  ‘AND  gate’ which  is shown, alone, below. 

AND Gate Symbol 



The  light  in  the  circuit  below  only  comes  on  whey  key  D,  key  E,  AND  key  F  are   all pressed. 

Three Keys in Series 
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Keys in Parallel 



 

 

Keys in Parallel Diagram 





In  the  picture and  diagram  above,  one  need  only  press   either ‘key  D’  OR  ‘key  E’  (or both) to turn the light on. 
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OR Gate Circuit 



In the circuit above, as always, the  crossing wires do not touch  and are  not  connected to each other.  When ‘key D’ OR ‘key E’ (or both) closes, the light comes on.  When ‘key A’  is  pressed,  then  ‘key  D’  closes.  When  ‘key  B’  is  pressed,  then  ‘key  E’  closes. 

Therefore,  when  ‘key  A’  OR  ‘key  B’  is  pressed,  the  light  turns  on.  Another  way  of describing  the  operation  of  this  circuit  is  to  say  that  ‘output  wire  C’  gets  value  1  only when ‘input wire A’ has value 1 OR ‘input wire B’ has value 1. 



The following table also shows that ‘output wire C’ gets value 1 only when either ‘input value A’ has value 1 OR ‘input wire B’ has value 1. 



OR gate truth table 

A 

B 

C 

0 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 
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OR Gate Circuit with Symbol 



The  diagram  above  shows  a  circuit  with  the  symbol  for  an  ‘OR  gate’  which  is  shown alone, below. 

 

OR Gate Symbol 
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Three Keys in Parallel 



The light in the circuit above turns on when key D, key E, OR key F is pressed. 
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Normally Closed Key 



 

 

 

Normally Closed Key Diagram 

 







In the picture and diagram above, the light is on, as we have seen before.  One must press the normally closed key D down to turn the light  off. 
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NOT Gate Circuit 

 





In the circuit above,  the  triangles are both the  top of the  same  battery.  When ‘key A’ is pressed, ‘key D’ is pulled down and the light goes  off.  That is, when ‘key A’ is pressed, normally  closed  ‘key  D’  opens.  Therefore,  when  ‘key  A’  is  pressed,  the  light  goes   off. 

Another way of describing the operation of the circuit is to say that ‘output wire C’ gets value 0 when ‘input wire A’ gets value 1.  ‘Output wire C’ gets value 1 when ‘input wire A’ gets value 0. 



The  following  table  also  shows  that  ‘output  wire  C’  gets  value  0  only  when  ‘input  wire A’ gets value 1. 



NOT gate truth table 

A 

C 

0 

1 

1 

0 
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NOT Gate Circuit with Symbol 







The  diagram  above  shows  a  circuit  with  the  symbol  for  a  ‘NOT  gate’  which  is  shown alone, below. 

 

 

NOT Gate Symbol 
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Interconnected Gates 







The  diagram  above  shows  that  the  output  of  an  AND  gate  can  be  the  input  for  a  NOT 

gate.  The circuit above can also be represented with gate symbols as below. 

 

 

Interconnected Gates with Symbols 
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A  ‘NAND  gate’  can  be  constructed  from  an  AND  gate  followed  by  a  NOT  gate  as indicated below. 

 

Constructed NAND Gate 







A NAND gate can be represented by the single symbol in the circuit below. 

 

 

NAND Gate Circuit 
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A lone NAND gate is pictured below. 

 

 

NAND Gate 









The truth table for the NAND gate is shown below. 





NAND gate truth table 

A 

B 

C 

0 

0 

1 

0 

1 

1 

1 

0 

1 

1 

1 

0 
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MEMORY 
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(Address) Decoder 
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The diagram at left shows a ‘decoder.’  A and B are the inputs to the decoder and I, J, K, and L are the outputs.  The truth table for this circuit is shown below. 



A  B  I  J  K  L 

0  0  1  0  0  0 

0  1  0  1  0  0 

1  0  0  0  1  0 

1  1  0  0  0  1 



Normally  closed  relay  AA  is  closed. 

Normally  closed  relay  AB  is  also  closed. 

Therefore, electricity can travel from the top of the battery, through AA and AB, to light I. 



 If  keys  A  and  B  are  both  pressed,  then  normally  open  relays  DA  and  DB  are  closed (because their electromagnets are powered) and electricity can reach light L. 



Similarly,  if  key  A  is  pressed  and  key  B  is  not  pressed,  then  normally  open  relay  CA  is closed and  normally closed relay  CB is closed and light K is on. 



Finally, if key A is  not  pressed and key B is pressed, then light J is on. 



Wire PO  is  power.  A1  and  A0  are  address wire 1 and  address wire 0.  PO  has value 1. 

A1 can have value 1 or 0, and A0 can have value 1 or 0. 
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Truth Table Generator 
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In the preceding circuit, keys A and B are the inputs and lights G and H are the outputs. 

The truth table for the circuit above is shown below. 



A  B  G  H 

0  0  1  0 

0  1  0  1 

1  0  0  0 

1  1  1  1 



For example, if neither A nor B is pressed, then S00 is powered (has value 1) because the normally  closed relays  AA  and  AB are then closed.  BB is open so S01 is 0, CA is open so S10 is 0, and both DA and DB are open so S11 is 0.  Because S00 is powered, AG is closed and electricity can go from the top of the battery (indicated by a triangle), through relay AG, to wire D1 to light G, so G is on.  Relay AI is also closed but relay AI’s key is not  connected to the top of the battery so  no  electricity gets to light H. 



For another example, if  both  keys A and B are pressed, then A=1 and B=1 and relays DA and DB are  closed.  That makes S11=1 and closes relays DG and DI.  Electricity can go from the top of the battery through DG and D1 to light G and through DI and D2 to light H.  Therefore, A=1 and B=1 results in G=1 and H=1 as in the truth table. 



D1 and D0 are data wire 1 and data wire 0.  D1 can have value 1 or 0 and D0 can be 1 or 0. 
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ROM (Read-Only Memory) With Enable (EN) Key (D) 
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The circuit above has the following truth table: 



EN  A1  A0  D1  D0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

1 

1 

1 

1 



If  key  D  (EN)  is  not  pressed  (‘EN’  stands  for  ‘enable.’),  then  EN  is  0,  so   no  electricity gets  to  the  electromagnets  of  AG  and  AI.  Similarly,  BG,  BI,  CG,  CI,  DG,  and  DI  are open if D (EN) is  not  pressed.  Therefore, if D (EN) is  not  pressed, then  no  electricity can get to lights G and H as indicated in the truth table. 



If A and B are  not  pressed (A1=0 and A0=0), then electricity gets to the electromagnet of AE and closes relay AE.  If D is then pressed (EN=1), then electricity can go from the top of the battery, through D and through AE to the electromagnets of AG and AI.  AG and AI then  close and electricity can go from the top of the battery, through AG, to wire D1 

and light G. 



The truth table above can also be represented as below. 



EN  A1  A0  D1  D0 

0 

X 

X 

0 

0 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

0 

1 

1 

1 

1 

1 



The  X’s  mean  0   or  1.  That  is,  the  row  with  X’s  means  that if  EN is 0, then D1=0 and D0=0 no matter what values A1 and A0 have. 
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Loops Added 
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In  the  circuit  above,  eight  loops have been added  to the  previous circuit.  The  loops  are labeled  AF, AH, BF,  BH, CF, CH, DF, and DH.  Each loop can have value 0 or 1.   The truth table fore this circuit is shown below. 



EN  A1  A0  D1  D0 

0 

X 

X 

0 

0 

1 

0 

0 

AF  AH 

1 

0 

1 

BF  BH 

1 

1 

0 

CF  CH 

1 

1 

1 

DF  DH 



To make loop AF have value 1, just press key AF down.  Key AF will stay down because it is part of a loop.  To make AF have value 0 again, just lift key AF up.  It will stay up on its own.  In the truth table, ‘AF’ means the value of loop AF.  The other loops, AH, BF, BH, CF, CH, DF, and DH, operate similarly. 
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Input Keys Added 
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In  the  diagram  at  left,  key  E  and  key  F  (bottom  right)  have  been  added  to  the  circuit. 

Keys E and F allow one to set a loop to value 1 without touching the loop’s key. 



For example, to set loop AF to 1 without touching key AF, one must   not  push key A or key  B,  which  closes  relay  AE.  Then  you  hold  down  key  E  to  put  value  1  on  wire  D1. 

Finally,  temporarily  pushing  key  D  makes  EN  temporarily  1.  Because  AE  is  closed, EN=1  powers  relay  AG’s  electromagnet  and  closes  AG.  D1’s  value  of  1  can  now  go through key AG to loop AF, thereby making loop AF have value 1. 
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Memory (Clear Key Added) 
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In this circuit, key C, wire CL (for CLear), relays AC, BC, CC, and DC, normally closed relays  AD,  BD,  CD,  and  DD,  and  wires  H00,  H01,  H10  and  H11  (H  for  Hold,  or remember) have been added to the circuit.  These additions allow loops to be ‘cleared’ to value 0 by manipulating keys outside the dashed box (memory) without touching the loop keys. 



The  diagram  above  shows  a   memory  within  the  dashed  box.  The  memory  can  be controlled  by  the  keys  outside  the  dashed  box  at  the  bottom  of  the  diagram.  What  a memory does will be explained first.  Then,  how  the memory works will be described. 



AF, AH, BF, BH, CF, CH, DF, and DH are each relay keys of loops.  You can change the value  of  loop  AF  from  0  to  1  by  simply  pressing  key  AF  down.  Similarly,  you  can change the value of loop AF from 1 to 0 by lifting key AF.  To determine whether a loop has value 0 or value 1, just look at the loop’s key.  If the key is down, then the loop has value 1.  If the key is up, then the loop has value 0.  The value of a loop stays the same until you change it. 



However, suppose that the dashed box was a physical box and you could not reach inside the  box.  If  you  buy  a  memory  chip  at  a  store,  the  circuitry  is  enclosed  in  a  plastic  box with  wires  PO,  A1,  A0,  CL  (This  may  be  called  WR  for  ‘WRite.’),  EN,  D1,  D0  and GRound  wire,  GR,  sticking  out.  The  circuitry  uses  transistors  instead  of  relays  for switches, so even if you broke the box open, you couldn’t change the values by hand.  (A memory  from a  store  would  probably  have  more  address  lines  (wires)  like  A2,  A3,  ... 

A20 and data lines like D2, D3, ...  D7.)   



The memory is constructed so that the values in the loops can be examined and changed using  only  keys  A,  B,  C,  D,  E,  and  F  and  light  bulbs  G  and H which are all outside the box and are  not  part of the memory. 
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Where Power Reaches in a Memory 
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 The bold wires in the diagram at left, show which wires are powered.  



A  wire  is  powered  only  if  it  is  connected  to  the  top  of  the  battery  (represented  by  a triangle in the lower left corner of the diagram, as shown below). 





power 



Notice  the new  symbol  used  for keys AC  and AE.  Keys AC  and AE are  normally open key s. 

However,  they  are   closed   now  because  their  electromagnets  are  powered. 

Therefore, they are represented as:  

 closed, normally open key 



instead of as:  



open, normally open key 



Electricity can flow from left to right (or right to left) through a closed key even if it’s a closed but  normally open key. 
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Similarly, an  open, normally closed key is represented as: 



 open, normally closed key 



instead of as:  



closed, normally closed key 
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Notice  that,  in  the  diagram of memory, all of the  loops  (AF, AH, BF, BH, CF, CH, DF, and DH) have value  0  because all of those normally open keys are  open. 



AF is ‘bit 1’ of ‘latch 00’ and has  value  0.  AH is bit 0 of latch 00 and also has  value  0. 



You should follow the power from the top of the battery (the triangle in the lower left of the  diagram  of  memory   above)  and  see  why  certain  wires  are   bold  and  the  rest  are normal.  Remember,  electricity   can’t  go  through   open  keys.  Electricity  also  does   not travel  between   crossing  wires.  Crossing  wires  are   not  touching  (not  connected).  You should also understand why some electromagnets are powered and others aren’t, and how powering  the  electromagnet  of  a  key  closes  a   normally  open  key  and,  in  later  diagrams, opens  a  normally closed key. 
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Now, suppose we want to store value 01 in latch 10.  This means we want to keep key CF 

 open  for  value  0  and   close  key  CH  for  value  1.  This  is  called  ‘ writing’  value  01  to address  10. 



To  do  this,  you   first  select  latch  10  by  pressing  key  A  and   not  pressing  key  B.  This selects latch 10 as indicated by the  bold  select 10 wire, ‘S10,’ in the diagram  below.  Key A controls address wire 1, labeled A1 in the diagram, and key B controls address wire 0, labeled  A0  in  the  diagram.  Both  address  wires,  A1  and  A0,  together,  are  called  the address  bus.  A  group  of similar wires are, together, called a ‘bus.’  Pressing key A and not  pressing key B results in power going through the circuit as indicated by  bold  lines  in the diagram below.  Notice that horizontal wire S10 has power (is bold) while S00, S01, and S11 do  not  have power.  This selects latch 10. 
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Selecting the Address 
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The   second  step  in  writing value 01 to address (latch) 10 is to press key F and  not  press key E as in the following diagram.  Not  pressing key E gives value 0 to data wire D1 and pressing  key F gives value 1 to data wire D0.  Both data wires, D1 and D0, are, together, called  the  ‘data  bus’  just  as  both  address  wires,  A1  and  A0,  are,  together,  called  the 

‘address  bus.’  The  first  and  second  steps  can  be  done  simultaneously.  This  results  in power  going  through  the  circuit  as  indicated  by  the   bold  wires  in  the  diagram  below. 

Wire D0 is bold and, so, has value 1. 
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Selecting the Data to be Written 
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The  third  step in writing 01 to address 10 is pressing the enable key, ‘D,’ which controls the  enable  (‘EN’)  wire.  This  results  in  power  going  through  the  circuit  as  indicated  in bold  in  the  following  diagram.  Notice  that   loop   CH  now  has  value  1.  Loop  CH  got power from wire D0 through CI.  No  power went from wire D1 through CG to loop CF 

because wire D1 is  not  powered. 



It’s important to remember that pressing the enable key, ‘D,’ makes EN=1 and connects the loops of the selected (by the address wires A1 and A0) latch to the data bus wires, D1 

and D0. 
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Pressing Enable (EN) 
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In  the  fourth  step,  key  D  is  released  and  the  enable  (EN)  wire  returns  to  value  0 

(unpowered).  This  results  in  power  flowing  through  the  memory  as  indicated  by  bold wires  in  the  following  diagram.  Notice  that  loop  CH  still  has  value 1  even though  loop CH is no longer connected to data wire D0 through relay CI (because relay CI is open). 
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Releasing Enable (EN) 
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Step  five:  Keys  A  and  F  are  released and address  wire  A0  and data  wire  D0 get value 0 

(as indicated in the following diagram).  Notice that  loop CH still has value 1.  



Therefore, to write value 01 to latch 10, you press A and  not  B to select latch 10; and, to choose  data  01,  do   not   push  E  and  push F.  This makes  wire A1 have  value 1,  wire A0 

have  value  0,  wire  D1  have  value  0,  and  wire  D0  have  value  1.  Then,  while  holding  A and  F  down,  temporarily  press  D  to  make  the  enable  wire,  EN,  temporarily  1.  Then, release A and F.  This can be described as follows. 



1.  Select the address and data with the address and data keys A, B, E, and F (A1, A0, D1 

and D0). 

2.  Temporarily press D (EN). 

3.  Release the address and data keys. 



That’s all there is to storing data in an  empty  latch. 
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Releasing the Address and Data Keys 
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To find out what is in a latch, do the following. 



1.  Select  the  address  of  the  latch  you  want  to  read  with  keys  A  (wire  A1)  and  B  (wire A0). 

2.  Press  key  ‘D’  to  make  the  ‘EN’  wire  have  value  1.  The  lights G and H will indicate the values of the data bits stored in that latch. 

3.  Release the enable key D. 

4.  Release the address keys, A and B. 



For  example,  to  read  latch  10,  first  press  key  A  (and   not  key  B)  to  select  latch  10  (as indicated in the following diagram). 
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Selecting the Address to Read 
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 Second, press key D to make the enable (EN) wire have value 1.  Then light H comes on indicating  that  bit  0  of  latch  10 has value  1 and light G stays  off indicating that  latch 10 

has value 0 in bit 1.  This is shown in the following diagram. 



Notice  that  making wire  EN  have value  1  connects the loops  of the  selected latch to the data wires D1 and D0. 
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Enabling (EN) the Output 
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 Third, release key D when done reading latch 10 (as indicated in the following diagram). 

That’s all there is to reading a latch in memory. 
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Releasing Enable (EN) 
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To   erase  a  value  from  a  latch  and  make  all  of  the  latch’s  loops  have  value  0,  do  the following. 



1.  Select the latch with keys A (A1) and B (A0). 

2.  Temporarily press key C to make the ‘clear’ (CL) wire temporarily have value 1. 



The following diagram shows latch 10 selected by pressing A and  not  pressing key B.  It also shows key C being pressed to clear both of latch 10’s data bits to 0.  Don’t press C 

until after A is pressed (so that no other latch is accidentally erased). 



Notice that pressing C makes the selected ‘H’ (for ‘Hold’) wire, ‘H10,’ have value 0. 
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Selecting the Address and Clearing (with CL) 
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Release  key  CL  after  clearing  latch  10  as  indicated  in  the  following  diagram.  Don’t release key A until  after  CL is released so that you don’t accidentally erase another latch. 







Writing  to a  latch  will   not  clear   any  bits  that  were  previously  1,  so   always  clear  a  latch before copying (writing) data to it.  Therefore, to write to a latch, do the following. 



1.  Press the correct address keys (A and B)  and  data keys (E and F). 

2.  Press the clear key, C, to clear the latch. 

3.  Release the clear key, C. 

4.  Press the enable key, D, to send data from the data wires (D1 and D0) to the latch. 

5.  Release the enable key, D. 

6.  Release the address keys (A and B) and the data keys (E and F). 





To  read  data, just do the following. 



1.  Press the correct address keys, A and B, to select the latch to read. 

2.  Press the enable key, D, to send the latch’s values to the lights, G and H. 

3.  Release the enable key D. 

4.  Release the address keys, A and B. 





78 





Releasing CL 
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The  memory  in  the  drawings  is  very  small.  There  are  only  two  address  wires  and  two data  wires.  Because  there  are  two  address  wires,  there  are  four  possible  addresses:  00, 01, 10, and 11, and, so, four latches.  Because there are two data wires, each latch has two loops.  Each loop holds one ‘bit’ of information, a 0 or a 1.  Four latches with two loops each means 8 (= 4 x 2) loops total. 

The  table  below  shows  all  bit  values  in  each  latch  when  data  01  has been written to the loops of latch 10. 

latch 

bit 

address 

values 

00 

00 

01 

00 

10 

01 

11 

00 







A larger memory with  four  address bits and  four  data bits with 0 in all the loops can be represented as below. 

 

latch  bit 

address  values 

0000  0000   

0001  0000   

0010  0000   

0011  0000   

0100  0000    

0101  0000   

0110  0000   

0111  0000   

1000  0000   

1001  0000   

1010  0000   

1011  0000   

1100  0000   

1101  0000    

1110  0000   

1111  0000   
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INSTRUCTIONS 

 



The next most important part of a computer, after memory, is the processor.  A processor changes  the  values  in  memory  as  instructed  by  instructions  stored  in  memory.  An instruction  is  a  group  of  bits  (loop  values)  in  memory  that  tell  the  processor  to  do something.  A group of instructions that instruct the processor to do some task is called a program. 



The simple  kind of processor  described in this book has only one type of instruction, but that instruction is sufficient to do anything, as will be seen.  The instruction is ‘copy’ (and 

‘go  to’).  Each  instruction  simply copies some bits of data from somewhere in one latch in memory to somewhere else in another latch in memory.  The instruction indicates: 1.  which latch to copy data (data is bit (loop) values) from 2.  which latch to copy data to 

3.  which bits to change in the copied-to latch 

4.  how  much  to  rotate  the  ‘from’  data  before  copying  some  of  its  bits  to  the  ‘to’  data latch 

5.  which latches to get the next instruction from. 



In the computer considered here, the number of address bits is the same as the number of data bits. 
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The  explanation  of  the following  example  will not  be clear  at  first, but just  read through it.  Then reread it. It will be clear later. 



Consider a four-address-bit, four-data-bit memory with the values (in loops) below: Example Program 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0001

value of a 

001 0

0001

not  0 = 1 

001 1

0000

not  1 = 0 

instruction_1 

0100  0001  from address  

0101  1000  to address 

0110  0001  ‘to’ bits to change 

0111  1000

instr.addr.and rot.amount 

instruction_2 

1000  0010  from address 

1001  0001  to address 

1010  0001  ‘to’ bits to change 

1011  1100

instr.addr.and rot.amount 

instruction_3 

1100  0000  from address 

1101  0000  to address  

1110  0000  ‘to’ bits to change 

1111  1100

instr.addr.and rot.amount 



 Only the 1's and 0's are part of the program.  The rest is just comments for a person.  The latch addresses are just where the program is stored .  The bit values are the program.  



‘ Instr.addr.and rot.amount’ is short for ‘next instruction’s address and rotate amount.’  



Latch  0000  holds  the  value  0100  so  that  the  first  instruction  is  in  latches  0100,  0101, 0110, and 0111, and is labeled ‘instruction_1’ in the program.  Latch 0000 is special and always holds the address of the next instruction to be executed. 



The  first  word  of  instruction_1  is  in  latch  0100  and  is  0001.  That  means  that  data  (bit values) is copied  from  latch 0001 in memory. 



The second word  of instuction_1 is in latch 0101  and is 1000 and indicates that the data will be copied  to  latch 1000. 



The  third  word  of  instruction_1  is  in  latch  0110  and  is  0001  and  indicates  that  only  the rightmost  bit, and   not  the three  leftmost bits, of latch 1000 will be changed because only the rightmost bit of 0001 is 1. 



The  rightmost  two bits  of latch 0111  are 00 and indicate that  the  data in latch 0001 will not  be rotated at all when data is copied to latch 1000. 



The leftmost two bits of latch 0111 are 10 and indicate that the next instruction will be in latches 1000, 1001, 1010, and 1011.  That is, instruction_2 will be executed next. 
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After instruction_1 is executed, the memory has the following bit values. 



latch  bit 

address  values 

0000  1000 <-----| 

address of instruction 

0001  000 1 ---|  | 

value of a 

0010  0001 

|  | 

not 0 = 1 

0011  0000 

|  | 

not 1 = 0 

instruction_1

0100  0001 

|  | 

from address 

0101  1000 

|  | 

to address 

0110  0001 

|  | 

‘to’ bits to change 

0111   1000 ---+--| 

instr.addr.and rot.amount 

instruction_2 

1000  0011 <--| 

from address 

 

1001  0001 

to address 

1010  0001 

‘to’ bits to change 

1011  1100 

instr.addr.and rot.amount 

instruction_3 

1100  0000 

from address 

1101  0000 

to address 

1110  0000 

‘to’ bits to change 

1111  1100 

instr.addr.and rot.amount 

 

The underlined  loop values  (bits)  were  copied to when  instruction_1 was executed.  The italics  show from  where data  was copied.  The arrows show how data was copied.  The rightmost  bit  of latch 0001  has been copied to  the  rightmost  bit  of latch 1000.  Also,  all bits  of  latch  0111 (that  is,  1000)  have been copied to  latch 0000  indicating that  the  next instruction  will  be  in  latches  1000,  1001,  1010,  and  1011  (instruction_2).  That  is,  after the first instruction, instruction_1, is executed, latch 0000 has value 1000. 







The  leftmost  two  bits  of  latch  0000  are  10,  so  the  instruction  executed  next  is instruction_2, in latches 1000, 1001, 1010, and 1011. 



1.  Latch 1000 holds 0011, so data is copied from latch 0011. 

2.  Latch 1001 holds 0001, so data is copied to latch 0001. 

3.  Latch 1010 holds 0001, so only the rightmost bit of the ‘to latch,’ latch 0001, is copied to. 

4.  Latch 1011 holds 1100.  The rightmost two bits of 1100 are 00 so the data copied from is  not  rotated  at  all.  The leftmost two bits of 1100 are 11, so the next instruction to be executed will be in latches 1100, 1101, 1110, and 1111 (instruction_3). 
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After instruction_2 is executed, the memory has the following bit values. 



latch  bit 

address  values 

0000  1100 <-----| 

address of instruction 

0001  0000 <--|  | 

value of a 

0010  0001

|  | 

not 0 = 1 

0011  000 0 ---|  | 

not 1 = 0 

instruction_1 

0100  0001 

| 

from address 

0101  1000 

| 

to address 

0110  0001 

| 

‘to’ bits to change 

0111  1000       | 

instr.addr.and rot.amount 

instruction_2 

1000  0011 

| 

from address 

1001  0001 

| 

to address 

1010  0001 

| 

‘to’ bits to change 

1011   1100 ------| 

instr.addr.and rot.amount 

instruction_3 

1100  0000 

from address 

1101  0000 

to address 

1110  0000 

‘to’ bits to change 

1111  1100 

instr.addr.and rot.amount 



The italics show from where data was copied.  The underlining shows to where data was copied.  The arrows show how data was copied. 







Latch  0000  now  has  value  1100,  so  that  the  next  instruction  to  be  executed  is instruction_3 in latches 1100, 1101, 1110, and 1111. 



1.  Latch 1100 holds 0000, so data will be copied from latch 0000. 

2.  Latch 1101 holds 0000, so data is copied to latch 0000. 

3.  Latch 1110 holds 0000, so  no  data bits are copied (to latch 0000). 

4.  Latch 1111 holds 1100, so 1100 is copied to latch 0000. 
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This results in the following bit values in memory. 



latch  bit 

address  values 

0000  1100 <-----| 

address of instruction 

0001  0000 

| 

value of a 

0010  0001 

| 

not 0 = 1 

0011  0000 

| 

not 1 = 0 

instruction_1 

0100  0001 

| 

from address 

0101  1000 

| 

to address 

0110  0001 

| 

‘to’ bits to change 

0111  1000 

| 

instr.addr.and rot.amount 

instruction_2 

1000  0011 

| 

from address 

1001  0001 

| 

to address 

1010  0001 

| 

‘to’ bits to change 

1011  1100 

| 

instr.addr.and rot.amount 

instruction_3 

1100  0000 

| 

from address 

1101  0000 

| 

to address 

1110  0000 

| 

‘to’ bits to change 

1111   1100 ------| 

instr.addr.and rot.amount 

 

The underlined bits have been copied to from the italic bits. 



Thus,  instruction_3 changes nothing  (because latch 0000 already held 1100) and leads to instruction_3 being executed again and again. 



Ending  a  program  with  an  instruction  like  instruction_3  ensures  that  nothing  else  will happen  after  the desired instructions  (instruction_1 and  instruction_2) are  executed.  It’s just something for the computer to do until we stop the processor and look in memory for the results. 
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We  will  now  look  at  some  two-instruction  programs.  The  first  instruction  will  do something  and  the  second  instruction  will  do  nothing.  These  short  computer  programs will show what an instruction (of this simple computer) can do. 



Instruction_1  of  the  following  program  copies  1111  from  latch  0001  to  latch  0010. 

Notice that, because latch 0110 of instrucion_1 holds 1111, all ‘to data’ bits are copied to. 

Instruction_2 does nothing over and over. 





Before Copy 1111 to 0010 for 1111 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  1111

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  1111

‘to’ bits to copy to 

0111

1000

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After instruction_1 is executed, the memory has the following values. 





After Copy 1111 to 0010 for 1111 



latch  bit 

address  values 

0000  1000 <------| address of instruction 

0001  1111 ---| 

| from data 

0010  1111 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  1111

| ‘to’ bits to copy to 

0111  1000 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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Instruction_1  of  the  following  program  copies  0011  from  latch  0001  to  latch  0010. 

Notice that, because latch 0110 of instruction_1 holds 1111, all ‘to’ bits are copied to. 





Before Copy 0011 to 0010 for 0011 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0011

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  1111

‘to’ bits to copy to 

0111  1000

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After instruction_1 is executed, the memory has the following values. 





After Copy 0011 to 0010 for 0011 

 

latch  bit 

address  values 

0000  1000 <------| address of instruction 

0001  0011 ---| 

| from data 

0010  0011 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  1111

| ‘to’ bits to copy to 

0111  1000 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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Instruction_1 of the following program copies the rightmost three bits (111) of 1111 from latch 0001 to latch 0010 for 0111.  Notice that, because latch 0110 of instruction_1 holds 0111, the rightmost three ‘to’ bits are copied to. 

 

Before Copy 111 to 0010 for 0111 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  1111

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  0111

‘to’ bits to copy to 

0111  1000

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After instruction_1 is executed, the memory has the following values. 

 

After Copy 111 to 0010 for 0111 

 

latch  bit 

address  values 

0000  1000 <------| address of instruction 

0001  1111 ---| 

| from data 

0010  0111 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  0111

| ‘to’ bits to copy to 

0111  1000 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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Instruction_1 of the following program copies the rightmost three bits (000) of 0000 from latch 0001 to latch 0010 for 1000.  Notice that, because latch 0110 of instruction_1 holds 0111, the rightmost three ‘to’ bits are copied to. 

 

Before Copy 000 to 0010 for 1000 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0000

from data 

0010  1111

to data          

 

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  0111

‘to’ bits to copy to 

0111  1000

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After instruction_1 is executed, the memory has the following values. 

 

After Copy 000 to 0010 for 1000 

 

latch  bit 

address  values 

0000  1000 <------| address of instruction 

0001  0000 ---| 

| from data 

0010  1000 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  0111

| ‘to’ bits to copy to 

0111  1000 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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Instruction_1 of the following program rotates the bits (0010) of latch 0001 one space to the  left  (for  0100)  and  copies  all  four  rotated  bits  to  latch  0010.  Notice  that,  because latch  0110  of  instruction_1  holds  1111,  all  four  bits  are  copied  to.  Also  notice  that, because  latch 0111 has 01  in the rightmost  two  bits,  the from data is rotated  one  bit to the left.  

 

Before Rotate 0010 One Bit Left for 0100 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0010

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  1111

‘to’ bits to copy to 

0111  1001

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After  instruction_1  is  executed,  the  memory  has  the  following  values.  Latch  0000  now holds  1001.  The  right  two  bits  in  latch  0000  do   not  affect  what  instruction  is  executed next.  The  left  two  bits  of  1001  (in  latch  0000)  are  10,  so  the  next  instruction  to  be executed will be instruction_2, in latches 1000, 1001, 1010, and 1011. 

 

After Rotate 0010 One Bit Left for 0100 

 

latch  bit 

address  values 

0000  1001 <------| address of instruction 

0001  0010 ---| 

| from data 

0010  0100 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  1111

| ‘to’ bits to copy to 

0111  1001 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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Instruction_1 of the following program rotates the bits (0010) of latch 0001  two  spaces to the  left  (for  1000)  and  copies  all  four  rotated  bits  to  latch  0010.  Notice  that,  because latch  0110  of  instruction_1  holds  1111,  all  four  bits  are  copied  to.  Also  notice  that, because latch 0111 has 10 in the rightmost two bits, the from data is rotated two bits to the left.  

 

Before Rotate 0010 Two Bits Left for 1000 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0010

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  1111

‘to’ bits to copy to 

0111  1010

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After  instruction_1  is  executed,  the  memory  has  the  following  values.  Again,  the  right two bits in latch 0000 do  not  affect what instruction is executed next.  The left two bits of 1010 (in  latch 0000)  are 10,  so the  next instruction to be executed  will be instruction_2, in latches 1000, 1001, 1010, and 1011 

 

After Rotate 0010 Two Bits Left for 1000 

 

latch  bit 

address  values 

0000  1010 <------| address of instruction 

0001  0010 ---| 

| from data 

0010  1000 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  1111

| ‘to’ bits to copy to 

0111  1010 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

 

1101  0000   

1110  0000   

1111  0000 
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Instruction_1 of the following program rotates the bits (0010) of latch 0001 three spaces to  the left (for 0001)  and copies all four rotated bits to latch 0010.  Notice that, because latch  0110  of  instruction_1  holds  1111,  all  four  bits  are  copied  to.  Also  notice  that, because latch 0111 has 11 in the rightmost two bits, the from data is rotated three bits to the left.  Notice also that rotating three bits to the left is the same as rotating one bit to the right. 

 

Before Rotate 0010 Three Bits Left for 0001 

 

latch  bit 

address  values 

0000  0100  address of instruction 

0001  0010

from data 

0010  0000

to data                              

0011  0000 

instruction_1 

0100  0001  from address  

0101  0010  to address 

0110  1111

‘to’ bits to copy to 

0111  1011

instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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After instruction_1 is executed, the memory has the following values. 

 

After Rotate 0010 Three Bits Left for 0001 

 

latch  bit 

address  values 

0000  1011 <------| address of instruction 

0001  0010 ---| 

| from data 

0010  0001 <--| 

| to data 

0011  0000 

| 

instruction_1 

0100  0001 

| from address  

0101  0010 

| to address 

0110  1111

| ‘to’ bits to copy to 

0111  1011 -------| instr.addr.and rot.amount 

instruction_2 

1000  0000   

1001  0000 

1010  0000 

1011  1000   

1100  0000   

1101  0000   

1110  0000   

1111  0000 
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The  right  two  bits  of  the  last  word  (four  bits  here)  of  an  instruction  indicate  how  many bits to rotate to the left according to the following table: rotate 

bit 

left 

values      amount 

 

00 

0 

01 

1 

10 

2 

11 

3 

If the rightmost bit value is 1, then there is 1 bit of rotation left.  If the left bit value is 1, then there is an additional two bits of rotation left. 

The  following  table  shows  how  rotation  works  with  the four bits of a word labeled ‘A,’ 

‘B,’ ‘C,’ and ‘D.’   

rotate 

rotate 

rotate 

bit 

four 

left 

right 

values 

bits 

amount 

amount 

 

00 

ABCD 

0 

0 

01 

BCDA 

1 

3 

10 

CDAB 

2 

2 

11 

DABC 

3 

1 

Notice again that rotating 3 bits left is the same as rotating 1 bit right.  Similarly, 1 bit left is 3 bits right and 2 bits left is 2 bits right. 
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PROCESSOR 

 

Four-Bit Memory 

 





The circuit above shows  a memory with  four data wires (D3,  D2, D1, and  D0) and four address  wires  (A3,  A2,  A1,  and  A0).  Because  there  are  four  address  wires,  there  are sixteen possible latch addresses: 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001,  1010,  1011,  1100,  1101,  1110,  and  1111.  Only  two  latches,  0000  and  1111,  are shown.  The rest are implied by the gap in the circuit diagram. 
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Two Memories Connected 
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The  circuit  diagram  above  shows  a  memory  with  four  address  wires  on  the  bottom connected with a memory with three address wires on the top.  Room has been left in the top  memory  for  additional  circuitry  later.  The two  memories  share  data  wires  D3,  D2, D1,  and  D0.  The  three-address-wire  memory  has  address  wires  RA2,  RA1,  and  RA0, clear wire CLR, and enable wire ENR.  In the top memory, the latches are called registers and the address wires are called RA2 for Register Address 2, etc.  CLR stands for CLear Register.  ENR stands for ENable Register. 



Because both memories share data wires D3, D2, D1, and D0, data can be copied from a latch of the bottom memory to a register of the top memory or from a register to a latch. 



To copy data from a latch to a register, first select the register with register address keys RA2, RA1, and RA0.  Second, temporarily press the CLR key to clear the register loops to  all  0’s.  Third,  select  the  latch  address  with  address  keys  A3,  A2,  A1, and A0 (while continuing to select the register with RA2, RA1, and RA0).  Fourth, temporarily press the enable  keys,  ENR  and  EN,  to  connect  the  selected  register  loops  and  the  selected  latch loops to the data wires D3, D2, D1, and D0. 



Similarly,  to  copy  data  from  a  register  to  a  latch,  first  select the latch with address keys A3, A2, A1, and A0.  Second, temporarily press the clear key, CL ( not  CLR), to clear the latch.  Third, select the register with register address keys RA2, RA1, and RA0.  Fourth, temporarily  press  the  enable  keys,  ENR  and  EN.  This  connects  the  register  and  latch loops to the data bus wires, D3, D2, D1, and D0, and, thereby, to each other. 
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Loops Controlling Lights 

 







The circuit above shows four loops controlling four lights. 
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Rotate 1 Circuitry 

 







In the circuit above, if the ‘rotate 1’ key is  not  pressed, then loop3 controls light 3, loop 2 

controls light 2, loop 1 controls light 1, and loop 0 controls light 0. 



However, if the ‘rotate 1’ key  is  pressed, then loop 3 controls light 0, loop 2 controls light 3, loop 1 controls light 2, and loop 0 controls light 1.  One can say that when the ‘rotate 1’ key is pressed, then the loop values are rotated one bit to the left.  There is  no  bit to the left of bit 3, so bit 3 is rotated to the right end to bit 0. 



The following table indicates what pressing the ‘rotate 1’ key does. 



Rotate 1  Light Values 

Rotate left 

3  2  1  0  amount in bits 

0 

A  B  C  D 

0 

1 

B  C  D  A 

1 
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Rotate Two Bits Circuitry 

 








In the circuit above, if the ‘rotate 2’ key is  not  pressed, then loop 3 controls light 3, loop 2 

controls light 2, loop 1 controls light 1, and loop 0 controls light 0. 



However, if the ‘rotate 2’ key  is  pressed, then loop 3 controls light 1, loop 2 controls light 0, loop 1 controls light 3, and loop 0 controls light 2.  One can say that when the ‘rotate 2’ key is pressed, then the loop values are rotated two bits to the left. 



The following table indicates what pressing the ‘rotate 2’ key does. 



Rotate 2  Light Values 

Rotate left 

3  2  1  0  amount in bits 

0 

A  B  C  D 

0 

1 

C  D  A  B 

2 
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Rotate Circuitry 

 







In  the  circuit  above,  if  neither  the  ‘rotate  1’  key  nor  the  ‘rotate  2’  key  is  pressed,  then loop 3 controls light 3, loop 2 controls light 2, loop 1 controls light 1, and loop 0 controls light 0.  If rotate 1 is pressed and rotate 2 is  not  pressed, then the loop signals are rotated 1 bit to the left on the way to the lights.  If rotate 2 is pressed and rotate 1 is  not  pressed, then the loop values are rotated 2 bits to the left on the way to  the lights.  Finally, if  both the  rotate  1  key  and  the  rotate  2  key  are  pressed, then the  loop values are  rotated three bits to the left.  For example, the value in loop 0 is routed to light 3. 



The following table indicates what pressing one or both ‘rotate’ keys does. 



Rotate 2  Rotate 1 

Light values 

Rotate left 

3  2  1  0  amount in bits 

0 

0 

A  B  C  D 

0 

0 

1 

B  C  D  A 

1 

1 

0 

C  D  A  B 

2 

1 

1 

D  A  B  C 

3 
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Mask Circuitry 

 







In the circuit above, if loop C has value 0, then light B gets the value in loop D.  If loop C 

has value 1, then light B gets the value in loop A. 
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Mask Four Bits 





In the left circuit above, C3 controls whether the value of A3 or the value of D3 goes to B3.  The other circuits behave similarly. 
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Rotate and Mask 

 







In the circuit above, there is a ‘rotate circuit’ and a ‘mask circuit.’ 



As  an  example  of  the  operation  of  this  circuit,  consider  the  case  of  ‘rotate  1’  being pressed, ‘rotate 2’  not  pressed, C3 = 1, C2 = 1, C1 = 0, and C0 = 0.  Then B3 gets A2, B2 

gets  A1,  B1  gets  D1,  and  B0  gets  D0.  Try  to  follow  the  signals  in  the  circuit  and  see why. 



This  will  be  the  logic  unit  of  our  simple  processor.  (The  logic units  of most  processors do arithmetic too and so are called arithmetic logic units or, abbreviating, ALU’s.) 110 







Delay Circuitry 

 







In  the  circuit  above,  when  key  A  is  pressed,  electromagnet  B  is  powered  and  key  B 

closes.  It takes time for B to close after A is pressed.  That is, light B comes on about one hundredth  of  a  second  after  light  A.  This  is indicated  by the  following  ‘timing diagram’ 

that shows when the lights come on.  Time 0 is 0 seconds.  Time 1 is one hundredth of a second (later). 





Timing Diagram for Lights 

 







111 







Two Delays 

 







In the circuit above, after key A is pressed it takes one hundredth of a second for key B to close.  After  key  B  closes,  it  takes  one  hundredth  of  a  second  for  key  C  to  close. 

Therefore, after key A is pressed, it takes two hundredths of a second for light C to come on.  In the  following timing  diagram for  the circuit above, time  0 is  0 seconds,  time  1 is one hundredth of a second, and time 2 is two hundredths of a second. 







Timing Diagram for Lights 
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Delay Line 







In  the  circuit  (called  a  delay  line)  above,  light  B  comes  on  ten  hundredths  of  a  second after light A.  Ten hundredths of a second is  one  tenth of a second, so light B comes on one  tenth  of  a  second  after  key  A  is  pressed  (as  indicated  in  the  diagram  below).  (The small amount of time between the time key A is pressed and the time light A comes on is ignored.)  Time 0 is 0 seconds and time 1 is one  tenth  of a second in the diagram below. 



(When  a  key  closes,  it  can  bounce  open  and  closed  a  few  times.  This  possible  problem will  be  ignored,  except  to  say  that  using  normally  closed  relays  in  a  delay  line  might reduce the problem.  This problem does not exist in a delay line made with transistors.) Timing Diagram for Delay Line 
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Tapped Delay Line 

 







The circuit above is  called a  tapped  delay line.  Wires A, B, C, D, and E are called taps. 

Light  B  comes  on  one   tenth  of a second after  light A,  light C comes  on two  tenths of  a second after light A, light D  comes on three tenths of a second after light A, and light E 

comes on four tenths of a second after light A (as indicated in the timing diagram below). 
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Timing Diagram for Tapped Delay Line 
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Timing Circuit 

 



 

 

 

Timing Circuit’s Timing Diagram 
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The  timing  diagram  at  left  corresponds  to  the  circuit  above.  Lights  A,  B,  C,  D,  and  E 

come  on,  in  order,  as before.  However, the  behaviors of  lights  F, G, H, and  I are more complex. 



When light B comes on at time 1, relay J closes.  Then electricity can go from the top of the battery  (a triangle in  the circuit diagram above), through  closed  relay J and  normally closed  relay  K,  to  light  F.  Therefore,  when  light  B  comes  on,  light  F  also  comes  on. 

However,  when  light  D  comes  on  at  time  3,  normally  closed  relay  K   opens  and  light  F 

goes  out.  That  is,  at  time  1,  F  comes  on  and,  at  time  3,  F  goes  out  as  indicated  in  the timing diagram. 



Similarly,  light  G  comes  on  when  light  B  comes  on,  and  light  G  goes  out  when  light  C 

comes on.  Similarly, light H turns on when light D comes on, and light H goes off when light E comes on. 



The behavior of light I is more complex.  At time 1, light B comes on and relay P closes. 

Electricity can then  go through  keys P and Q  to light I.  At  time  2, light C turns on and normally  closed  relay  Q  opens,  turning  light  I  off.  Therefore, light I  turns on at  time 1, and goes  off at time  2.  At  time 3, light D comes on, relay R closes, and electricity goes from the  top  of the battery,  through  key  R and the normally closed S key, to light I.  At time  4,  light  E  turns  on  and  normally  closed  relay  S  opens  and  light  I  goes  off. 

Therefore, light I turns on at time 1, off at time 2, on at time 3, and off at time 4. 



With Processor Power (PP) Loop 





The circuit above is the same as the previous circuit except that all but one connection to power is replaced by a connection to loop ‘PP.’  (‘PP’ stands for Processor Power.)  After key ‘PP’ is pressed, key PP stays down and power goes to the circuit.  Then, when key J 

is pressed and held down, output signals F, G, H, and I are generated as indicated in the timing  diagram,  above.  Notice  how  the  right-hand  side  of  the  circuit  above  looks somewhat like the right-hand part of the timing diagram above. 
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With Feedback Through Normally Closed Key K 





In the circuit above, key J in the upper left has been replaced by the normally closed relay K  in  the  lower  center  of  the  circuit.  The  circuit  above  generates  the  timing  diagram below when loop key PP in the lower left is pressed at time 0.  Loop PP stays down after it is pressed. 



When  PP  is  first  pressed,  electricity  can  flow  from  PP,  through  normally  closed  relay  K 

to  light  A and  to the  electromagnet of relay L  in the  upper  left  of the  diagram.  Relay L 

then powers relay M.  As the relays turn on, one after another, lights B, C, D, and then E 

turn on.  When light E turns on, the  normally closed relay  K opens, light A goes out, and relay  L  opens.  One  hundredth  of  a  second  after  relay  L  opens,  relay  M  opens  because electricity  is  no  longer  getting  to  the  electromagnet  of  relay  M.  The  relays  in  the  delay line then open one after another and lights B, C, D, and E go off one after another.  When light E goes off,  no  power gets to the electromagnet of normally closed relay K and relay K closes.  When relay K closes, electricity can get to light A and then lights B, C, D, and E turn on. 



Thus,  A, B,  C,  D, and  E  turn on  one after  another.  Then A,  B, C,  D, and E go off one after another.  Then A, B, C, D, and E turn on one after another.  Then A, B, C, D, and E 

go off one after another.  This pattern repeats as long as loop key PP stays down. 



Light  F  is  on  only  when  light  B  is  on  and  light  D  is  off.  Similarly,  light  G  is  on  only when light B is on and light C is off.  Also similarly, light H is on only when light D is on and light E is off. 



When  light  B  is  on  and  light  C  is  off,  relays  N  and  O  are  closed  and  light  I  is  on. 

Similarly, when light D is on and light E is off, relays P and Q are closed and light I is on. 

Therefore,  light I is  only on  when light B is on  and light C is off  and  when light D is on and light E is off. 



The  circuit  above  is  called  a  clock.  It  generates  signals  F,  G,  H,  and  I  over  and  over again as indicated in the timing diagram below. 
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Timing Diagram with Feedback 
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The circuit below shows two latches of memory at the bottom, latch 0000 and latch 1111. 

The other fourteen  latches are  not shown.  It also shows a processor above the memory. 

The  processor  is  mainly  made  of  latches.  Latches  in  a  processor  are  called  registers. 

Register 001 is not a latch, however, because it doesn’t have loops. 

Writing  to  a  latch  will   not  clear   any  bits  that  were  previously  1,  so   always  clear  a  latch before writing data to it.  Therefore, to write to a latch, do the following. 

1.  Press the correct address keys (A3, A2, A1, and A0) and data keys (D3, D2, D1, and D0). 

2.  Press the clear key, CL, to clear the latch. 

3.  Release the clear key, CL. 

4.  Press the enable key, EN, to copy data to the latch. 

5.  Release the enable key, EN. 

6.  Release the address keys, A3, A2, A1 and A0, and the data keys, D3, D2, D1 and D0. 

To  read  data from a latch, do the following. 

1.  Press the correct address keys, A3, A2, A1 and A0, to select the latch to read. 

2.  Press the enable key, EN, to send the latch’s values to the lights, D3, D2, D1, and D0. 

3.  Release the enable key EN. 

4.  Release the address keys, A3, A2, A1 and A0. 

Notice that reading a latch connects the loops of the latch to the data bus wires, D3, D2, D1, and D0. 

Similarly,  writing  to  a  register  will   not  clear  any  bits  that  were  previously  1,  so   always clear a register before writing data to it.  Therefore, to write to a register (except ‘register’ 

001, which has no loops to write to), do the following. 

1.  Press the correct register address keys (RA2, RA1, and RA0) and data keys (D3, D2, D1, and D0). 

2.  Press the clear register key, CLR, to clear the register. 

3.  Release the clear register key, CLR. 

4.  Press the enable register key, ENR, to copy data to the register. 

5.  Release the enable register key, ENR. 

6.  Release the register address keys RA2, RA1 and RA0, and the data keys, D3, D2, D1 

and D0. 
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To  read  register data, just do the following. 

1.  Press  the correct register address keys, RA2, RA1 and RA0, to  select the register to read. 

2.  Press the enable register key, ENR, to copy the register’s values to the lights D3, D2, D1, and D0. 

3.  Release the enable register key, ENR. 

4.  Release the register address keys, RA2, RA1 and RA0. 

Notice that reading a register connects the loops of the register to the data bus wires, D3, D2, D1, and D0. 



Do the following to copy data from a latch to a register (except for register 001). 



1. Select the register with RA2, RA1, and RA0. 

2. Temporarily press CLR to clear the register. 

3. Select the latch in memory with A3, A2, A1, and A0. 

4.  Temporarily  press  ENR  and  EN  to  connect  the  register  loops  and  latch  loops  to  the data bus wires, D3, D2, D1, and D0, and so to each other. 

5. Release all keys. 



Do the following to copy data from a register to a latch. 



1. Select the latch with A3, A2, A1, and A0. 

2. Temporarily press CL to clear the latch. 

3. Select the register with RA2, RA1, and RA0. 

4.  Temporarily  press  ENR  and  EN  to  connect  the  register  loops  and  latch  loops  to  the data bus wires, D3, D2, D1, and D0, and so to each other. 

5. Release all keys. 
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An instruction is executed in nine steps.  Step 1 copies the address of the instruction from latch  0000  of  the memory to  the processor.  Steps 2, 3, 4, and 5 copy the four words of the instruction to the processor.  Step 6 copies the ‘from data’ to the processor.  Step 7 

copies the ‘to data’ to the processor.  Step 8 copies the result from the processor to the memory.  Step  9  copies  the  address  of  the  next  instruction  to  be  executed  from  the processor to latch 0000 of the memory. 



The timing diagram that follows, as well as the explanation that follows, tells the order in which  to  press  the  keys  to  execute  an  instruction  with  the  circuit  in  the  diagram  above. 

 Look  at  the  timing  diagram  below  and  the  circuit  above  as  you  read  about  each  step. 

The following nine steps are tedious, but try to get through them or, at least, study step 1 

and read through the rest. 

1.  The first step in executing an instruction is to copy the value in latch 0000 to register 111.  Latch  0000  holds  the  address  of  the  instruction  to  be  executed.  To  copy  the contents of latch 0000 to register 111, the following is done. 

First,  RA2  is  pressed  (gets  set  to  1),  RA1 gets 1,  and RA0 gets 1.  This selects  register 111, the instruction address register.  SAF, SAT, and SAI are each set to 0 (not pressed), which selects latch 0000.  (This will become clear later.)  Then, CLR (CLear Register) is temporarily pressed  to  clear  register  111.  Then  ENM  (ENable  Memory)  and  ENR 

(ENable  Register) are  temporarily  pressed.  When ENM and ENR are pressed, the loops of both latch 0000 and register 111 are connected to the data bus.  Therefore, the values in  latch  0000  can  flow  to the loops  of (just  cleared) register  111 causing register 111 to have  the  same  values  as  latch  0000.  Register  111  then  (also)  holds  the  address  of  the instruction to be executed next. 

2.  The second step in executing an instruction is to copy the first word (four bits) of the instruction  to  register  101,  the  ‘from address register,’ because the first four bits (word) of  an  instruction  are the address from which the data will be copied.  RA0 and RA2 are pressed  and  RA1  is  released  to  select  register  101.  Key  SAI,  for  Select  Address  of Instruction,  is  pressed,  routing  the  left  two  bits  of  register  111  to  the address wires, A3 

and A2.  Pressing key SAI also routes the values of SA1 (Select Address bit 1) and SA0 

(Select Address bit 0) to A1 and A0 of the memory.  SA1 and SA0 are not pressed, so A1 

and  A0  get  0.  Next,  CLR  is  temporarily  pressed,  thereby  clearing  register  101.  Next, ENR and ENM are temporarily pressed, connecting to data bus register 101 and the first latch (whose address ends in 00) of the instruction to be executed.  Thus the first word of the instruction is copied to latch 101. 

3.  Third, the second word of the instruction is copied to ‘to address register 110.’  This is done  by  pressing  RA2,  pressing  RA1,  and   not  pressing RA0. Also  SAI is pressed, SA1 

(Select  Address  bit  1)  is   not  pressed,  and  SA0  is  pressed.  Then  CLR  is  temporarily pressed  to  clear  register  110.  Then ENM and ENR are  temporarily  pressed to  copy  the contents of the second word (4 bits) of the instruction to register 110. 
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4.  Fourth, the third word of the instruction is copied to ‘mask register 010.’  This is done by  not  pressing RA2, pressing RA1, and  not  pressing RA0.  Also SAI (Select Address of Instruction) is pressed, SA1 is pressed, and SA0 is  not  pressed.  Then CLR is temporarily pressed  to  clear  register  010.  Then ENM and ENR are  temporarily  pressed to  copy  the contents of the third word (4 bits) of the instruction to register 010. 

5.  Fifth, the fourth word of the instruction is copied to ‘next/rotate register 100.’  This is done  by  pressing  RA2,  not  pressing  RA1,  and   not  pressing  RA0.  Also  SAI  is  pressed, SA1  is  pressed,  and  SA0  is  pressed.  Then  CLR  is  temporarily  pressed  to  clear  register 100.  Then  ENM  and  ENR  are  temporarily  pressed  to  copy  the  contents  of  the  fourth word (4 bits) of the instruction to register 100. 

6.  Sixth,  RA2,  RA1,  and  RA0  are   not  pressed  to  select  register  000,  the  ‘from  data register.’  SAF (Select Address of From data) is pressed to route the address in the ‘from address  register  101’  to  the  memory’s  address  wires  A3,  A2,  A1, and A0.  CLR is then temporarily pressed to clear register 000.  Next, ENM and ENR are temporarily pressed to  copy  the  contents  of  memory  pointed  to  by ‘from  address register 101’ to  ‘from  data register 000.’   

7.  Seventh,  RA2  is  not  pressed,  RA1  is  pressed,  and  RA0  is  pressed  to  select  ‘to  data register  011.’  SAT  (Select  Address  of  To  data)  is  pressed  to  route  the  address  in  ‘to address  register  110’  to  the  memory’s  address  wires  A3,  A2,  A1, and A0.  CLR is then temporarily pressed to clear register 011.  Next, ENM and ENR are temporarily pressed to copy the contents of memory pointed to by ‘to  address  register 110’ to ‘to  data  register 011.’   

8.  Eighth,  RA2  is  not  pressed,  RA1  is  not  pressed,  and  RA0  is  pressed  to  select  ‘back data register 001.’ SAT is pressed to route the address in ‘to address register 110’ to the memory’s  address  wires,  A3,  A2,  A1,  and  A0.  Next,  CLM  (CLear  Memory,  not  CLR, CLear  Register)  is  temporarily  pressed  to  clear  the  latch   in  memory  pointed  to  by  ‘to address register 110.’  ENR and ENM are then temporarily pressed to copy some rotated bits of ‘from data register 000’ and  not  rotated bits of ‘to data register 011’ to the address in  memory  pointed  to  by  ‘to  address  register  110.’  If  the  rightmost  bit  of  ‘next/rotate register 100’ is 1, then the from data is rotated 1 bit left.  If the second-to-rightmost bit of 

‘next/rotate register 100’ is 1, then the from data is rotated an additional 2 bits left.  If a bit  of  ‘mask  register  010’  is  0,  then  the  corresponding  bit  of  ‘to  data  register  011’  is copied  back  to  memory.  However,  if  a  bit  of  ‘mask  register  010’  is  1,  then  the corresponding  rotated  bit  of  ‘from data register 000’ is copied back to memory.  Notice that  because CLM  was  pressed  instead  of  CLR,  a  latch  of  memory  was  cleared  and copied to instead of a register. 
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9.  Ninth,  RA2  is  pressed,  RA1  is   not  pressed,  and  RA0  is   not  pressed  to  select 

‘next/rotate register 100.’  SAI, SAF, and SAT are  not  pressed, so  no  address goes to the memory, so latch 0000 is selected.  Next, CLM ( not CLR) is temporarily pressed to clear latch  0000  in  memory.  ENR  and  ENM are then  temporarily  pressed to copy  the data in 

‘next/rotate register 100’ to latch 0000 in memory.  This prepares for the next instruction. 

Notice,  again,  that  because  CLM  was  pressed  instead  of  CLR,  a  latch  of  memory  was cleared and copied to instead of a register. 



125 





Timing Diagram for Instruction 
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Clock Circuit for Processor 
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The  preceding  clock  circuit  shows  a  circuit  that  repeatedly  generates  the timing  diagram signals.  The  outputs  of  this  circuit  can  be  connected  to  the  processor  to  make  the processor  repeatedly  execute  instructions  as  indicated  in  the  diagram  of  the  complete (though simple) computer in the diagram below. 

The operation of a clock has already been explained. 

It takes about 361 hundredths of a second for the timing diagram to be generated.  Then all  outputs  of  the  right  hand  side  are  0  for  another  about  361  hundredths  of  a  second. 

Then the  timing  diagram is generated again, etc.  Therefore, it takes this computer about 722  hundredths  of  a  second  to  execute  each  instruction!  This  is  one  main  reason  that transistors are now used.  Transistors are millions of times faster.  The other reason is that a  relay  costs  as  much  as  millions  of  interconnected  transistors.  However,  a  transistor-based  computer  works  in  the  same  way  as  a  relay-based  computer.  The  cheapness  of transistors  allows  much  more  memory.  It  also  allows  extra  things  to  be  added  to  the processor like more registers and extra circuits to do certain common things, like multiply two numbers together, more quickly. 
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The whole computer is illustrated on the following two pages.  The clock, processor and memory  are  shown  and  interconnected.  The  processor  includes  the  rotate  and  mask circuitry. 



To  use  the  computer  below,  first  enter  the  program  and  data  into  the  memory  with  the keys at the bottom of the circuit: A3, A2, A1, A0, CL, EN, D3, D2, D1, and D0.  Then, press PP at the bottom of the circuit to make the computer run.  Wait until the program is finished  and  lift  up  key  PP.  Then  use  the  keys  at  the  bottom  of  the  circuit  to  read  the results from memory. 
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PROGRAMMING 

 

We will now consider how to program a 16-bit rather than 4-bit computer. 

A  16-bit  computer  has  16  bits  in  each  ‘word’  and  65536  words  of  memory.  This  is because 

there 

are 

65536 

possible 

16-bit 

addresses: 

0000000000000000, 

0000000000000001, 0000000000000010, 0000000000000011, 0000000000000100, etc. 

The instruction still consists of four words, but now each instruction is 16 bits long.  An example instruction is:  

label 

address 

data 

comment 

 

instr_1  0000000000000100  0000000000000001  from address 0000000000000101  0000000000000010  to address 

0000000000000110  0000000011111111  ‘to’ bits to copy to 0000000000000111  000000000010 0000

instr.addr.and  rot.amount 

The labels and comments are  not  part of the program.  The addresses just show where the data is stored.  The data is the program.  An instruction written with instructions that are just  1’s  and  0’s  is  a  machine  language  instruction.  Machine  language  instructions  are called ‘machine code.’ 

‘Instr.addr.and  rot.amount’ is short for ‘next instruction’s address and  rotate amount.’ 

Notice that there are now four ( italic) rotate bits ( 0000).  They cause the copied-from data to be rotated according to the following table. 
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16-Bit Rotate Table 

 

rotate 

rotate 

rotate 

bit 

16             left 

right 

values 

bits 

amount 

amount 

 

0000 

ABCDEFGHIJKLMNOP 

0 

0 

0001 

BCDEFGHIJKLMNOPA 

1 

15  

0010 

CDEFGHIJKLMNOPAB 

2 

14 

0011 

DEFGHIJKLMNOPABC

3 

13 

0100 

EFGHIJKLMNOPABCD 

4 

12 

0101 

FGHIJKLMNOPABCDE 

5 

11  

0110 

GHIJKLMNOPABCDEF 

6 

10 

0111 

HIJKLMNOPABCDEFG 

7 

9 

1000 

IJKLMNOPABCDEFGH     

8 

8 

1001 

JKLMNOPABCDEFGHI 

9 

7 

1010 

KLMNOPABCDEFGHIJ 

10 

6 

1011 

LMNOPABCDEFGHIJK 

11 

5 

1100 

MNOPABCDEFGHIJKL 

12 

4 

1101 

NOPABCDEFGHIJKLM 

13  

3  

1110 

OPABCDEFGHIJKLMN 

14 

2 

1111 

PABCDEFGHIJKLMNO 

15 

1 



The bits  to  the left of the rotate  bits in latch 0000000000000111 are 000000000010 and indicate  that  the  next  instruction  will  be  in  latches  0000000000001000, 0000000000001001, 0000000000001010, and 0000000000001011. 

Latch  0000000000000100  holds  0000000000000001,  so  data  is  copied   from  latch 0000000000000001. 

Latch  0000000000000101  holds  0000000000000010,  so  data  is  copied   to  latch 0000000000000010. 

Latch  0000000000000110  holds  0000000011111111,  so  the  rightmost  8  bits  of  the  ‘to’ 

latch are copied to. 
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Next, we will consider how to make a program that adds 1 to any number between 0 and 9. 

First we need a way to represent the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 with only the bit values 0 and 1.  The following table shows how we will do it. 

Table 1 

 

number  representation 

0  0000 

1  0001 

2  0010 

3  0011 

4  0100 

5  0101 

6  0110 

7  0111 

8  1000 

9  1001 

Next we need a table indicating what the answer is for each possible number 0 to 9. 

Table 2 

 

number  answer 

0 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

9 

 

9  10 

Next, we rewrite this table as:  

Table 3 

 

number  answer 

0  01 

1  02 

2  03 

3  04 

4  05 

5  06 

6  07 

7  08 

8  09 

9  10 
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Next, we use table 1 to write table 3 with 1’s and 0’s.  That is, we replace all 0’s in table 3 with 0000, all 1’s with 0001, and both 2’s with 0010, etc.  This gives us the following table. 



Table 4 

 

number  answer 

0000  00000001 

0001  00000010 

0010  00000011 

0011  00000100 

0100  00000101 

0101  00000110 

0110  00000111 

0111  00001000 

1000  00001001 

1001  00010000 





Next, we write table 4 as data in memory. 

 

Table 5 

 

 

label 

address 

data 

comment 

(number) 

(answer) 

add1tabl 0000000001000000

0000000000000001 

0000000001000001

0000000000000010 

0000000001000010

0000000000000011 

0000000001000011

0000000000000100 

0000000001000100

0000000000000101 

0000000001000101

0000000000000110 

0000000001000110

0000000000000111 

0000000001000111

0000000000001000 

0000000001001000

0000000000001001 

0000000001001001

0000000000010000 

This  kind  of  table  is  called  a  lookup  table  because  you  can  look  up  the  answer  in  it.  A lookup  table  can  be  made  to  do  any  function  with  a  limited  number  of  possible  inputs. 

This function is called ‘increment’ (add 1) and has 10 possible inputs: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. 
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Next,  we  decide  where  the  number  to  increment  and  the  answer  will  be  stored  in memory. 

 

label 

address 

data 

comment 

 

0000000000000000  0000000000100000 

start0000000000001000 

0000000000000001  0000000000001001

number to increment 

0000000000000010  0000000000000000

answer 





Next,  we  write the program.  The  program  is a  list of instructions that tell the processor how to manipulate data.  That is, the program tells the processor from where and to where copy data. 

 

label 

address 

data 

comment 

 

instr_1  0000000000001000  0000000000000001 

from address  

0000000000001001  0000000000001100 

to address 

0000000000001010  0000000000001111     

‘to’ bits to copy to 

0000000000001011  0000000000110000        instr.addr.and rot. 

instr_2  0000000000001100  0000000001000000 

from address  

0000000000001101  0000000000000010 

to address 

0000000000001110  0000000011111111 

‘to’ bits to copy to 

0000000000001111  0000000001000000        instr.addr.and rot. 

instr_3  0000000000010000  0000000000000000 

from address  

0000000000010001  0000000000000000 

to address 

0000000000010010  0000000000000000 

‘to’ bits to copy to 

0000000000010011  0000000001000000        instr.addr.and rot. 
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The whole program, including table, data, and instructions, follows. 



Program to Add 1 

 

label 

address 

data     

comment 

 

0000000000000000  0000000000100000 

start0000000000001000 

0000000000000001  0000000000001001

number to increment 

0000000000000010  0000000000000000

answer 

 

instr_1  0000000000001000  0000000000000001 

from address  

0000000000001001  0000000000001100 

to address 

0000000000001010  0000000000001111 

‘to’ bits to copy to 

0000000000001011  0000000000110000        instr.addr.and rot. 

Instr_2  0000000000001100  0000000001000000 

from address  

0000000000001101  0000000000000010 

to address 

0000000000001110  0000000011111111 

‘to’ bits to copy to 

0000000000001111  0000000001000000        instr.addr.and rot. 

Instr_3  0000000000010000  0000000000000000 

from address  

0000000000010001  0000000000000000 

to address 

0000000000010010  0000000000000000 

‘to’ bits to copy to 

0000000000010011  0000000001000000        instr.addr.and rot. 

 

Add1tabl 0000000001000000

0000000000000001 

0000000001000001

0000000000000010 

0000000001000010

0000000000000011 

0000000001000011

0000000000000100 

0000000001000100

0000000000000101 

0000000001000101

0000000000000110 

0000000001000110

0000000000000111 

0000000001000111

0000000000001000 

0000000001001000

0000000000001001 

0000000001001001

0000000000010000 
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After instruction 1 (at ‘instr_1’) is executed, the memory has the following values.  Italics show to where data was copied and arrows show from where data was copied. 

After Instruction 1 Has Been Executed 

 

label 

address 

data 

comment 

 

0000000000000000   0000000000110000 <----|start0000000000001000 

0000000000000001  0000000000001001 ---| | number to increment 0000000000000010  0000000000000000

| | answer 

| | 

instr_1  0000000000001000  0000000000000001    | | from address 0000000000001001  0000000000001100 

| | to address 

0000000000001010  0000000000001111 

| | ‘to’ bits to copy to 

0000000000001011  0000000000110000 ---+-| instr.addr.and rot. 

instr_2  0000000000001100  000000000100 1001 <--| 

from address  

0000000000001101  0000000000000010 

to address 

0000000000001110  0000000011111111 

‘to’ bits to copy to 

0000000000001111  0000000001000000        instr.addr.and rot. 

instr_3  0000000000010000  0000000000000000 

from address  

0000000000010001  0000000000000000 

to address 

0000000000010010  0000000000000000 

‘to’ bits to copy to 

0000000000010011  0000000001000000        instr.addr.and rot. 

 

add1tabl 0000000001000000

0000000000000001 

0000000001000001

0000000000000010 

0000000001000010

0000000000000011 

0000000001000011

0000000000000100 

0000000001000100

0000000000000101 

0000000001000101

0000000000000110 

0000000001000110

0000000000000111 

0000000001000111

0000000000001000 

0000000001001000

0000000000001001 

0000000001001001

0000000000010000 



138 



After  instruction  2  is  executed,  the  memory  has  the  following  values.  Italics  show  to where data was copied and arrows show from where data was copied. 



After Instruction 2 Has Been Executed 

 

label 

address 

data 

comment 

 

0000000000000000   0000000001000000 <----|start0000000000001000 

0000000000000001  0000000000001001

| number to increment 

0000000000000010  00000000 00010000 <--| | answer 

| | 

instr_1  0000000000001000  0000000000000001 

| | from address  

0000000000001001  0000000000001100 

| | to address 

0000000000001010  0000000000001111 

| | ‘to’ bits to copy to 

0000000000001011  0000000000110000 

| | instr.addr.and rot. 

instr_2  0000000000001100  0000000001001001 

| | from address  

0000000000001101  0000000000000010 

| | to address 

0000000000001110  0000000011111111 

| | ‘to’ bits to copy to 

0000000000001111  0000000001000000 ---+-| instr.addr.and rot. 

instr_3  0000000000010000  0000000000000000 

|

from address  

0000000000010001  0000000000000000 

| 

to address 

0000000000010010  0000000000000000 

| 

‘to’ bits to copy to 

0000000000010011  0000000001000000 

|   instr.addr.and rot. 

| 

add1tabl 0000000001000000

0000000000000001

| 

0000000001000001

0000000000000010

| 

0000000001000010

0000000000000011

| 

0000000001000011

0000000000000100

| 

0000000001000100

0000000000000101

| 

0000000001000101

0000000000000110

| 

0000000001000110

0000000000000111

| 

0000000001000111

0000000000001000

| 

0000000001001000

0000000000001001

| 

0000000001001001

0000000000010000 ---| 



Now,  the  result  of  1  being  added  to  9  is  10  and  the  result,  10,  written  as  00010000,  is stored in the last eight bits of latch 0000000000000010. 

Instruction  3  (‘instr_3’)  does  nothing  but  execute  over  and  over  until  the  processor  is stopped. 

The program calculates what one more than nine is and finds that the answer is ten.  Nine is represented as 1001 in latch 0000000000000001 and ten is represented as 00010000 in latch 0000000000000010. 
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Next,  we  will  consider  how  to  make  a  program  that  adds  two  numbers,  from  0  to  9 

together. 



Again,  we  will  represent  the  numbers  0  through  9  with  only  1’s  and  0’s  as  indicated  in the following table. 

 

 

Table 6 

 

Number  Representation 

0  0000 

1  0001 

2  0010 

3  0011 

4  0100 

5  0101 

6  0110 

7  0111 

8  1000 

9  1001 

 

Next, we need a table that shows the answer for each possible pair of numbers from 0 to 9.  This is the addition table we studied so hard to learn in grade school and is reproduced below. 



Addition Table 





+  0 

1 

2 

3 

4 

5 

6 

7 

8 

9 





0  0 

1 

2 

3 

4 

5 

6 

7 

8 

9 



1  1 

2 

3 

4 

5 

6 

7 

8 

9  10 



2  2 

3 

4 

5 

6 

7 

8 

9  10  11 



3  3 

4 

5 

6 

7 

8 

9  10  11  12 



4  4 

5 

6 

7 

8 

9  10  11  12  13 



5  5 

6 

7 

8 

9  10  11  12  13  14 



6  6 

7 

8 

9  10  11  12  13  14  15 



7  7 

8 

9  10  11  12  13  14  15  16 



8  8 

9  10  11  12  13  14  15  16  17 



9  9  10  11  12  13  14  15  16  17  18 
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Next, we rewrite the addition table above as below. 





Addition Table Listing 

 

0 + 0 = 00 

0 + 1 = 01 

0 + 2 = 02 

0 + 3 = 03 

0 + 4 = 04 

0 + 5 = 05 

0 + 6 = 06 

0 + 7 = 07 

0 + 8 = 08 

0 + 9 = 09 

1 + 0 = 01 

1 + 1 = 02 

  

. 

. 

. 

  

8 + 9 = 17 

9 + 0 = 09 

9 + 1 = 10 

9 + 2 = 11 

9 + 3 = 12 

9 + 4 = 13 

9 + 5 = 14 

9 + 6 = 15 

9 + 7 = 16 

9 + 8 = 17 

9 + 9 = 18 

 

Only some of the table elements are listed above to save space. 
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Next, substituting according to table 6, we rewrite the table above as below. 

 

Addition Table for Program 

 

label  

address 

data 

comment 

 

addtable 0000001000000000

0000000000000000

0 + 0 = 00 

0000001000000001

0000000000000001

0 + 1 = 01 

0000001000000010

0000000000000010

0 + 2 = 02 

0000001000000011

0000000000000011

0 + 3 = 03 

0000001000000100

0000000000000100

0 + 4 = 04 

0000001000000101

0000000000000101

0 + 5 = 05 

0000001000000110

0000000000000110

0 + 6 = 06 

0000001000000111

0000000000000111

0 + 7 = 07 

0000001000001000

0000000000001000

0 + 8 = 08 

0000001000001001

0000000000001001

0 + 9 = 09 

 

0000001000010000

0000000000000001

1 + 0 = 01 

0000001000010001

0000000000000010

1 + 1 = 02 

. 

. 

. 

0000001010001001

0000000000010111

8 + 9 = 17 

 

0000001010010000

0000000000001001

9 + 0 = 09 

0000001010010001

0000000000010000

9 + 1 = 10 

0000001010010010

0000000000010001

9 + 2 = 11 

0000001010010011

0000000000010010

9 + 3 = 12 

0000001010010100

0000000000010011

9 + 4 = 13 

0000001010010101

0000000000010100

9 + 5 = 14 

0000001010010110

0000000000010101

9 + 6 = 15 

0000001010010111

0000000000010110

9 + 7 = 16 

0000001010011000

0000000000010111

9 + 8 = 17 

0000001010011001

0000000000011000

9 + 9 = 18 







Of course, in the actual program’s table,  all  one hundred table elements must be included. 



The table  begins at  0000001000000000.  It can  begin anywhere in memory, just so table data doesn’t overlap other data. 
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Next,  we  write  the  whole  program,  including  data,  instructions,  and  table.  We  want  to add  9  +  7.  That  is,  we  want  to  calculate  C=A+B where  A  is  9,  B  is  7,  and  C  is  the answer.  The  underlining  and  italics  are  just  to  highlight  data  for  the   person  reading  the program  and  do  not  affect  the  program.  In  instr_4,  the  first  two  16-bit  words  of  data don’t matter because  no  bits are copied. 

 

Addition Program 



label 

address 

data 

comment 

 

start 

0000000000000000  0000000000010000  start 0000000000000100 

A 

0000000000000001  000000000000 1001

9 (A) 

B 

0000000000000010  000000000000 0111

7 (B) 

C 

0000000000000011  00000000 00000000

answer (C) 

instr_1  0000000000000100  0000000000000001  from address of A 0000000000000101  0000000000001100  to instr_3’s from addr. 

0000000000000110  0000000011110000  copy to these bits 0000000000000111  0000000000100100  go to instr_2, rot. 4 

instr_2  0000000000001000  0000000000000010  from address of B 

0000000000001001  0000000000001100  to instr_3’s from addr. 

0000000000001010  0000000000001111  copy to these bits 0000000000001011  0000000000110000  go to instr_3, no rot. 

instr_3  0000000000001100  00000010 00000000

from addtable 

0000000000001101  0000000000000011  to address of C 

0000000000001110  0000000011111111  copy to these bits 0000000000001111  0000000001000000  go to instr_4, no rot. 

instr_4  0000000000010000  0000000000000000  doesn’t matter 0000000000010001  0000000000000000  doesn’t matter 

0000000000010010  0000000000000000  copy NO bits 

0000000000010011  0000000001000000  go to this instruction 

 

addtable 0000001000000000

0000000000000000

0 + 0 = 00 

0000001000000001

0000000000000001

0 + 1 = 01 

0000001000000010

0000000000000010

0 + 2 = 02 

. 

. 

. 

0000001010010110

0000000000010101

9 + 6 = 15 

0000001010010111

00000000 00010110

9 + 7 = 16 

0000001010011000

0000000000010111

9 + 8 = 17 

0000001010011001

0000000000011000

9 + 9 = 18 
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In  the  program  above,  instr_1  copies  the  value  of  A  (9)  to  instr_3.  Instr_2  copies  the value of B (7) to instr_3.  Instr_3 copies the result (16) from the ‘addtable’ to C.  Instr_4 

does  nothing  repeatedly.  The  program  below  shows,  after  the  program  has  run,  from where  the  data  has  been  copied  and  to  where  the  data  has  been  copied  in  italics.  You should  try  to  see  from  where  and  to  where  the  data  was  copied  by  each  instruction: instr_1, instr_2, and instr_3. 

 

After Addition Program Has Run 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000001000000  start 0000000000000100 

A 

0000000000000001  000000000000 1001

9 (A) 

B 

0000000000000010  000000000000 0111

7 (B) 

C 

0000000000000011  00000000 00010110  answer (C) instr_1  0000000000000100  0000000000000001  from address of A 0000000000000101  0000000000001100  to instr_3’s from addr. 

0000000000000110  0000000011110000  copy to these bits 0000000000000111  0000000000100100  go to instr_2, rot. 4 

instr_2  0000000000001000  0000000000000010  from address of B 

0000000000001001  0000000000001100  to instr_3’s from addr. 

0000000000001010  0000000000001111  copy to these bits 0000000000001011  0000000000110000  go to instr_3, no rot. 

instr_3  0000000000001100  00000010 10010111

from addtable 

0000000000001101  0000000000000011  to address of C 

0000000000001110  0000000011111111  copy to these bits 0000000000001111  0000000001000000  go to instr_4, no rot. 

instr_4  0000000000010000  0000000000000000  doesn’t matter 0000000000010001  0000000000000000  doesn’t matter 

0000000000010010  0000000000000000  copy NO bits 

0000000000010011  0000000001000000  go to this instruction 

 

addtable 0000001000000000

0000000000000000

0 + 0 = 00 

0000001000000001

0000000000000001

0 + 1 = 01 

0000001000000010

0000000000000010

0 + 2 = 02 

. 

. 

. 

0000001010010110

0000000000010101

9 + 6 = 15 

0000001010010111

00000000 00010110

9 + 7 = 16 

0000001010011000

0000000000010111

9 + 8 = 17 

0000001010011001

0000000000011000

9 + 9 = 18 
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The following program multiplies two numbers together.  It calculates C = A X B where A is 9, B is 7 and C is the answer (63).  It is the same as the addition program except that it uses a multiplication table rather than an addition table. 



 

Multiplication Program 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000000010000  start 0000000000000100 

A 

0000000000000001  000000000000 1001

9 (A) 

B 

0000000000000010  000000000000 0111

7 (B) 

C 

0000000000000011  00000000 00000000

answer (C) 

instr_1  0000000000000100  0000000000000001  from address of A 0000000000000101  0000000000001100  to instr_3’s from addr. 

0000000000000110  0000000011110000  copy to these bits 0000000000000111  0000000000100100  go to instr_2, rot. 4 

instr_2  0000000000001000  0000000000000010  from address of B 

0000000000001001  0000000000001100  to instr_3’s from addr. 

0000000000001010  0000000000001111  copy to these bits 0000000000001011  0000000000110000  go to instr_3, no rot. 

instr_3  0000000000001100  00000100 00000000

from multiply table 

0000000000001101  0000000000000011  to address of C 

0000000000001110  0000000011111111  copy to these bits 0000000000001111  0000000001000000  go to instr_4, no rot. 

instr_4  0000000000010000  0000000000000000  doesn’t matter 0000000000010001  0000000000000000  doesn’t matter 

0000000000010010  0000000000000000  copy NO bits 

0000000000010011  0000000001000000  go to this instruction 

 

multiply 0000010000000000

0000000000000000

0 X 0 = 00 

0000010000000001

0000000000000000

0 X 1 = 00 

0000010000000010

0000000000000000

0 X 2 = 00 

. 

. 

. 

0000010010010110

0000000001010100

9 X 6 = 54 

0000010010010111

00000000 01100011

9 X 7 = 63 

0000010010011000

0000000001110010

9 X 8 = 72 

0000010010011001

0000000010000001

9 X 9 = 81 





Notice  that  one  can  save  a  lot  of  work  by  salvaging  (copying)  instructions  from  a program  one  has already written for use  in a new,  similar  program.  Tables can  often be salvaged as well. 
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The  following  program  adds  two  two-digit  numbers,  A  (99)  and  B  (87),  together  for  a result of C (186).  First, it adds the right digits together (9+7) for a result of 16.  16 is 6 

with  a carry.  Then,  the carry,  1, is  added  to 9  and 8  for a result of 18.   That makes the entire answer 186.  Adding 1+9+8 together requires an add  with carry,  so we need a table with  carry  of  1  or  0  as  below.  For  this  table,  there  are  200  possibilities.  There  are  2 

values of carry (0 or 1), 10 values of one input (0-9), and 10 values of another input (0-9) for 2 X 10 X 10 = 200 possibilities.  Notice the carry, ‘+0’ and ‘+1,’ in the upper left of the tables below.  The two tables below are two halves of the entire table. 

 

 

Add with Carry Table 

 

+0  0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0  0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1  1 

2 

3 

4 

5 

6 

7 

8 

9  10 

2  2 

3 

4 

5 

6 

7 

8 

9  10  11 

3  3 

4 

5 

6 

7 

8 

9  10  11  12 

4  4 

5 

6 

7 

8 

9  10  11  12  13 

5  5 

6 

7 

8 

9  10  11  12  13  14 

6  6 

7 

8 

9  10  11  12  13  14  15 

7  7 

8 

9  10  11  12  13  14  15  16 

8  8 

9  10  11  12  13  14  15  16  17 

9  9  10  11  12  13  14  15  16  17  18 



+1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9  10 

1 

2 

3 

4 

5 

6 

7 

8 

9  10  11 

2 

3 

4 

5 

6 

7 

8 

9  10  11  12 

3 

4 

5 

6 

7 

8 

9  10  11  12  13 

4 

5 

6 

7 

8 

9  10  11  12  13  14 

5 

6 

7 

8 

9  10  11  12  13  14  15 

6 

7 

8 

9  10  11  12  13  14  15  16 

7 

8 

9  10  11  12  13  14  15  16  17 

8 

9  10  11  12  13  14  15  16  17  18 

9  10  11  12  13  14  15  16  17  18  19 
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The  ‘add  with  carry’  table  for  the  program  is  shown  below.  Notice  that  the  carry  is represented  with  only  1  bit  because  carry  can  only  have  two  values,  0  or  1.  A  normal digit requires 4 bits for the 10 possibilities, 0-9. 



 

Add with Carry Table Listing 

 

label 

address 

data 

comment 

 

addtable 0000001000000000

0000000000000000

0 + 0 + 0 = 00 

0000001000000001

0000000000000001

0 + 0 + 1 = 01 

0000001000000010

0000000000000010

0 + 0 + 2 = 02 

. 

. 

. 

0000001010010110

0000000000010101

0 + 9 + 6 = 15 

0000001010010111

0000000000010110

0 + 9 + 7 = 16 

0000001010011000

0000000000010111

0 + 9 + 8 = 17 

0000001010011001

0000000000011000

0 + 9 + 9 = 18 



0000001100000000

0000000000000001

1 + 0 + 0 = 01 

0000001100000001

0000000000000010

1 + 0 + 1 = 02 

0000001100000010

0000000000000011

1 + 0 + 2 = 03 

. 

. 

. 

0000001110010110

0000000000010110

1 + 9 + 6 = 16 

0000001110010111

0000000000010111

1 + 9 + 7 = 17 

0000001110011000

0000000000011000

1 + 9 + 8 = 18 

0000001110011001

0000000000011001

1 + 9 + 9 = 19 
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In the program below, instr_1, instr_2, and instr_3 are exactly as in the previous addition program.  Instr_1  and  instr_2  copy  the  right  digits  of  A  (9)  and  B  (7)  into  instr_3  and instr_3 copies the result (16) from addtable to the right two digits of C. 



Instr_4, instr_5, instr_6, and instr_7 add the left digits of A and B together with the carry bit  in C.  Instr_4 copies the left digit of A (9) into instr_7.  Instr_5 copies the left digit of B (8) into instr_7.  Instr_6  copies the  carry  bit (1) from the middle digit of C to instr_7. 

Instr_7 copies the result, (1 + 9 + 8 =) 18, into the left two digits of C for a total result in all three digits of C of 186. 

 

Add Two Digits Program 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000000010000  start 0000000000000100 

A 

0000000000000001  00000000 10011001

99 (A) 

B 

0000000000000010  00000000 10000111

87 (B) 

C 

0000000000000011  0000 000000000000

answer (C) 

instr_1  0000000000000100  0000000000000001  from address of A 0000000000000101  0000000000001100  to instr_3’s from addr. 

0000000000000110  0000000011110000  copy to these bits 0000000000000111  0000000000100100  go to instr_2, rot. 4 

instr_2  0000000000001000  0000000000000010  from address of B 

0000000000001001  0000000000001100  to instr_3’s from addr. 

0000000000001010  0000000000001111  copy to these bits 0000000000001011  0000000000110000  go to instr_3, no rot. 

instr_3  0000000000001100  00000010 00000000

from addtable 

0000000000001101  0000000000000011  to address of C 

0000000000001110  0000000011111111  copy to these bits 0000000000001111  0000000001000000  go to instr_4, no rot. 

instr_4  0000000000010000  0000000000000001  from address of A 0000000000010001  0000000000011100  to instr_7’s from addr. 

0000000000010010  0000000011110000  copy to these bits 0000000000010011  0000000001010000  go to instr_5, no rot. 

instr_5  0000000000010100  0000000000000010  from address of B 

0000000000010101  0000000000011100  to instr_7’s from addr. 

0000000000010110  0000000000001111  copy to these bits 0000000000010111  0000000001101100  to instr_6,rot.4 right instr_6  0000000000011000  0000000000000011  from addr.of C (carry) 0000000000011001  0000000000011100  to instr_7’s from addr. 

0000000000011010  0000000100000000  copy to this bit 

0000000000011011  0000000001110100  to instr_7,rot.4 left instr_7  0000000000011100  0000001 000000000

from addtable 

0000000000011101  0000000000000011  to address of C 

0000000000011110  0000111111110000  copy to these bits 0000000000011111  0000000010000100  go to instr_8, rot. 4 

instr_8  0000000000100000  0000000000000000  doesn’t matter 0000000000100001  0000000000000000  doesn’t matter 

0000000000100010  0000000000000000  copy NO bits 

0000000000100011  0000000010000000  go to this instruction 148 



addtable 0000001000000000

0000000000000000

0 + 0 + 0 = 00 

0000001000000001

0000000000000001

0 + 0 + 1 = 01 

0000001000000010

0000000000000010

0 + 0 + 2 = 02 

. 

. 

. 

0000001010010110

0000000000010101

0 + 9 + 6 = 15 

0000001010010111  00000000 00010110

0 + 9 + 7 = 16 

0000001010011000

0000000000010111

0 + 9 + 8 = 17 

0000001010011001

0000000000011000

0 + 9 + 9 = 18 



0000001100000000

0000000000000001

1 + 0 + 0 = 01 

0000001100000001

0000000000000010

1 + 0 + 1 = 02 

0000001100000010

0000000000000011

1 + 0 + 2 = 03 

. 

. 

. 

0000001110010110

0000000000010110

1 + 9 + 6 = 16 

0000001110010111

0000000000010111

1 + 9 + 7 = 17 

0000001110011000  00000000 00011000

1 + 9 + 8 = 18 

0000001110011001

0000000000011001

1 + 9 + 9 = 19 





In  some  high  level  languages,  instructions  1  through  7  can  be  written  with  one instruction, ‘C = A + B.’  You type in ‘C = A + B.’  Then you run another program that is called  a  compiler.  The  compiler  converts  ‘C  =  A  +  B’  into  all  that  machine  language, instr_1  through  instr_7. 

A  compiler  can  greatly  ease  writing  programs. 

Writing 

programs in machine language (1’s and 0’s) is relatively difficult.  (Most other processors have  a  hardware  adder,  so  C  =  A  +  B  becomes  few  instructions  though  many  bits  are added.) 
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The program  below shows the result of running the program above.  To and from where data  has  been  copied is  underlined   and  in italics.  The answer is 000110000110,  or  186, and  is  stored in the word (16 bits) labeled ‘C.’  The first word (the first 16 data bits) of instr_3 now holds 1001,0111 or 9,7 and the first word of instr_7 now holds 1,1001,1000 

or 1,9,8, where the 1 in 1,9,8 is represented by only 1 bit (1). 





After Add Two Digits Program Has Run 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000010000000  start 0000000000000100 

A 

0000000000000001  00000000 10011001

99 (A) 

B 

0000000000000010  00000000 10000111

87 (B) 

C 

0000000000000011  0000 000110000110

answer (C) 

instr_1  0000000000000100  0000000000000001  from address of A 0000000000000101  0000000000001100  to instr_3’s from addr. 

0000000000000110  0000000011110000  copy to these bits 0000000000000111  0000000000100100  go to instr_2, rot. 4 

instr_2  0000000000001000  0000000000000010  from address of B 

0000000000001001  0000000000001100  to instr_3’s from addr. 

0000000000001010  0000000000001111  copy to these bits 0000000000001011  0000000000110000  go to instr_3, no rot. 

instr_3  0000000000001100  00000010 10010111

from addtable 

0000000000001101  0000000000000011  to address of C 

0000000000001110  0000000011111111  copy to these bits 0000000000001111  0000000001000000  go to instr_4, no rot. 

instr_4  0000000000010000  0000000000000001  from address of A 0000000000010001  0000000000011100  to instr_7’s from addr. 

0000000000010010  0000000011110000  copy to these bits 0000000000010011  0000000001010000  go to instr_5, no rot. 

instr_5  0000000000010100  0000000000000010  from address of B 

0000000000010101  0000000000011100  to instr_7’s from addr. 

0000000000010110  0000000000001111  copy to these bits 0000000000010111  0000000001101100  to instr_6,rot.4 right instr_6  0000000000011000  0000000000000011  from addr.of C (carry) 0000000000011001  0000000000011100  to instr_7’s from addr. 

0000000000011010  0000000100000000  copy to this bit 

0000000000011011  0000000001110100  to instr_7,rot.4 left instr_7  0000000000011100  0000001 110011000

from addtable 

0000000000011101  0000000000000011  to address of C 

0000000000011110  0000111111110000  copy to these bits 0000000000011111  0000000010000100  go to instr_8, rot. 4 

instr_8  0000000000100000  0000000000000000  doesn’t matter 0000000000100001  0000000000000000  doesn’t matter 

0000000000100010  0000000000000000  copy NO bits 

0000000000100011  0000000010000000  go to this instruction 150 



addtable 0000001000000000

0000000000000000

0 + 0 + 0 = 00 

0000001000000001

0000000000000001

0 + 0 + 1 = 01 

0000001000000010

0000000000000010

0 + 0 + 2 = 02 

. 

. 

. 

0000001010010110

0000000000010101

0 + 9 + 6 = 15 

0000001010010111  00000000 00010110

0 + 9 + 7 = 16 

0000001010011000

0000000000010111

0 + 9 + 8 = 17 

0000001010011001

0000000000011000

0 + 9 + 9 = 18 



0000001100000000

0000000000000001

1 + 0 + 0 = 01 

0000001100000001

0000000000000010

1 + 0 + 1 = 02 

0000001100000010

0000000000000011

1 + 0 + 2 = 03 

. 

. 

. 

0000001110010110

0000000000010110

1 + 9 + 6 = 16 

0000001110010111

0000000000010111

1 + 9 + 7 = 17 

0000001110011000  00000000 00011000

1 + 9 + 8 = 18 

0000001110011001

0000000000011001

1 + 9 + 9 = 19 
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The  program  below  includes  an  example  of  ‘branching.’  Branching in a program means that  either  some  instructions  or  some  other  instructions  are  executed  depending  on  a value  (usually  a  bit)  in  memory  (or,  in  most  processors,  in  a  register).  Branch  bits  are often  called  flags.  In  the  program  below,  the  rightmost  bit  in latch  A  (at  address 0000000000000001)  is  a  flag  and  determines  whether  instr_4  or  instr_5  is  executed. 

Instr_4  copies  the  ‘all  1’s  pattern’  (1111111111111111)  in  latch  C  to  latch  B.  Instr_5 

copies  the  ‘1,0  pattern’  (1010101010101010)  from  latch  D  to  latch  B.  If  latch  A  has value  1,  then  instr_5  is  executed.  If  A  has  value  0,  then  instr_4  is  executed.  In  the program below, A has value 1 so instr_5 is executed and B gets the ‘1,0 pattern.’ 



Instr_3 does nothing but go to the next instruction because it copies  no  bits.  Instr_3 has 00000000010 0 0000  in  latch  (address)  0000000000001111,  so,  normally,  instr_4,  at address  0000000000010000,  would  be  executed  next.  However,  instr_2  copies  the rightmost  bit  (1) from  A into the  fifth-from-rightmost  bit of latch 0000000000001111 so that  latch  0000000000001111  contains  00000000010 1 0000  and  instr_5,  at  address 0000000000010100,  is  executed  after  instr_3.  The  instructions are  then executed  in the following order: instr_2, instr_3, instr_5, instr_6.  Notice that instr_4 is skipped. 



 

Branching Program 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000000100000  start 0000000000001000 

A 

0000000000000001  000000000000000 1

flag(1 or 0)right bit 

B 

0000000000000010   0000000000000000

value to change 

C 

0000000000000011  1111111111111111

all 1’s pattern 

D 

0000000000000100   1010101010101010

1,0 pattern 

 

instr_2  0000000000001000  0000000000000001  from A 

0000000000001001  0000000000001111  to next of instr_3 

0000000000001010  0000000000010000  change this bit 

0000000000001011  0000000000110100  to instr_3, rot.4 

instr_3  0000000000001100  0000000000000000  doesn’t matter 0000000000001101  0000000000000000  doesn’t matter 

0000000000001110  0000000000000000  copy NO bits 

0000000000001111  00000000010 00000  to instr_4 OR instr_5 

instr_4  0000000000010000  0000000000000011  from C pattern 0000000000010001  0000000000000010  to B 

0000000000010010  1111111111111111  copy all bits 

0000000000010011  0000000001100000  to instr_6, no rot. 

instr_5  0000000000010100  0000000000000100  from D pattern 0000000000010101  0000000000000010  to B 

0000000000010110  1111111111111111

copy all bits 

0000000000010111  0000000001100000  to instr_6, no rot. 

instr_6  0000000000011000  0000000000000000  doesn’t matter 0000000000011001  0000000000000000  doesn’t matter 

0000000000011010  0000000000000000  copy NO bits 

0000000000011011  0000000001100000  go to this instruction 152 



The  result  of  running  the  program  above  is  shown  below.  Notice  that  B  now  holds 1010101010101010 and that address 0000000000001111 now holds 00000000010 1 0000 

instead  of  00000000010 0 0000.  Italics  show  to  where and from  where values have been copied. 



 

After Branching Program Has Run 

 

label 

address 

data 

comment 

 

start 

0000000000000000   0000000001100000

start 0000000000001000 

A 

0000000000000001  000000000000000 1

flag(1 or 0)right bit 

B 

0000000000000010   1010101010101010

value to change 

C 

0000000000000011  1111111111111111

all 1’s pattern 

D 

0000000000000100   1010101010101010

1,0 pattern 

 

instr_2  0000000000001000  0000000000000001  from A 

0000000000001001  0000000000001111  to next of instr_3 

0000000000001010  0000000000010000  change this bit 

0000000000001011  0000000000110100  to instr_3, rot.4 

instr_3  0000000000001100  0000000000000000  doesn’t matter 0000000000001101  0000000000000000  doesn’t matter 

0000000000001110  0000000000000000  copy NO bits 

0000000000001111  00000000010 10000  to instr_4 OR instr_5 

instr_4  0000000000010000  0000000000000011  from C pattern 0000000000010001  0000000000000010  to B 

0000000000010010  1111111111111111  copy all bits 

0000000000010011  0000000001100000  to instr_6, no rot. 

instr_5  0000000000010100  0000000000000100  from D pattern 0000000000010101  0000000000000010  to B 

0000000000010110  1111111111111111  copy all bits 

0000000000010111  0000000001100000  to instr_6, no rot. 

instr_6  0000000000011000  0000000000000000  doesn’t matter 0000000000011001  0000000000000000  doesn’t matter 

0000000000011010  0000000000000000  copy NO bits 

0000000000011011  0000000001100000  go to this instruction 
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The following program  is the same as the previous one (before it was run) except that A now has value 0 instead of value 1 (in the rightmost bit).  This means that instr_4 will be executed  instead  of  instr_5  and  B  will  get  1111111111111111  from  C  rather  than 1010101010101010  from  D.  The  instructions  are  executed  in  the  following  order: instr_2, instr_3, instr_4, instr_6. Instr_5 is not executed. 



 

Branching Program with Flag = 0 

 

label 

address 

data 

comment 

 

start 

0000000000000000  0000000000100000  start 0000000000001000 

A 

0000000000000001  000000000000000 0

flag(1 or 0)right bit 

B  

0000000000000010   0000000000000000

value to change 

C 

0000000000000011   1111111111111111

all 1’s pattern 

D 

0000000000000100  1010101010101010

1,0 pattern 

 

instr_2  0000000000001000  0000000000000001  from A 

0000000000001001  0000000000001111  to next of instr_3 

0000000000001010  0000000000010000  change this bit 

0000000000001011  0000000000110100  to instr_3, rot.4 

instr_3  0000000000001100  0000000000000000  doesn’t matter 0000000000001101  0000000000000000  doesn’t matter 

0000000000001110  0000000000000000  copy NO bits 

0000000000001111  00000000010 00000  to instr_4 OR instr_5 

instr_4  0000000000010000  0000000000000011  from C pattern 0000000000010001  0000000000000010  to B 

0000000000010010  1111111111111111  copy all bits 

0000000000010011  0000000001100000  to instr_6, no rot. 

instr_5  0000000000010100  0000000000000100  from D pattern 0000000000010101  0000000000000010  to B 

0000000000010110  1111111111111111  copy all bits 

0000000000010111  0000000001100000  to instr_6, no rot. 

instr_6  0000000000011000  0000000000000000  doesn’t matter 0000000000011001  0000000000000000  doesn’t matter 

0000000000011010  0000000000000000  copy NO bits 

0000000000011011  0000000001100000  go to this instruction 154 



The following program shows the result of executing the preceding program.  Notice that B  now  contains  1111111111111111  from  C  and  address  0000000000001111  still contains 00000000010 0 0000.  Instr_4 has been executed instead of instr_5. 



 

After Branching Program with Flag = 0 Has Run 

 

label 

address 

data 

comment 

 

start 

0000000000000000   0000000001100000

start 0000000000001000 

A     

0000000000000001  000000000000000 0

flag(1 or 0)right bit 

B 

0000000000000010   1111111111111111

value to change 

C 

0000000000000011   1111111111111111

all 1’s pattern 

D 

0000000000000100  1010110010101010

1,0 pattern 

 

instr_2  0000000000001000  0000000000000001  from A 

0000000000001001  0000000000001111  to next of instr_3 

0000000000001010  0000000000010000  change this bit 

0000000000001011  0000000000110100  to instr_3, rot.4 

instr_3  0000000000001100  0000000000000000  doesn’t matter 0000000000001101  0000000000000000  doesn’t matter 

0000000000001110  0000000000000000  copy NO bits 

0000000000001111  00000000010 00000  to instr_4 OR instr_5 

instr_4  0000000000010000  0000000000000011  from C pattern 0000000000010001  0000000000000010  to B 

0000000000010010  1111111111111111  copy all bits 

0000000000010011  0000000001100000  to instr_6, no rot. 

instr_5  0000000000010100  0000000000000100  from D pattern 0000000000010101  0000000000000010  to B 

0000000000010110  1111111111111111  copy all bits 

0000000000010111  0000000001100000  to instr_6, no rot. 

instr_6  0000000000011000  0000000000000000  doesn’t matter 0000000000011001  0000000000000000  doesn’t matter 

0000000000011010  0000000000000000  copy NO bits 

0000000000011011  0000000001100000  go to this instruction 155 





MISCELLANEOUS 

 

 

Computer with Input and Output 

 





Inputs  and  outputs  have  been  added  to  the  computer  above  in  place  of  two  memory latches.  When data is written to (copied to) ‘output latch 1111,’ then each loop, O3, O2, O1,  and  O0,  will  turn  on  its  light  if  a  1  is  stored  in  the  loop.  When  data  is  read  from (copied  from)  input  ‘latch’  1110  (It’s  not  really  a  latch  because  it  doesn’t  have  loops.), then a 1 will be copied from key I3 if key I3 is pressed.  If key 3 is  not  pressed, then a 0 is copied from I3.  I2, I1, and I0 work similarly. 
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For  example,  the  following  one-instruction  program  (for  the  four-bit  computer  above) copies data from address (input ‘latch’) 1110 to address (output latch) 1111 over and over again.  Therefore,  when  the  program  is  running,  pressing  key  I3  turns  on  light  O3, pressing key I2 turns on light O2, pressing key I1 turns on light O1, and pressing key I0 

turns on light O0. 

 

 

label address data  comment 

 

start 

0000  0100  start at 0100 

 

instr_1  0100  1110  from inputs 

. 

0101  1111  to outputs 

. 

0110  1111  copy all bits 

. 

0111  0100  repeat this instruction, no rotate 





The keys PP, A3, A2, …D0 along the bottom of the computer diagrammed above allow you  to  control  the  computer.  You  can  write  to  memory,  start  the  processor,  stop  the processor, and read the results from memory.  These keys are, together, called the control panel.  A control panel controlled early computers.  However, today a keyboard controls a computer.  A keyboard is a lot of keys similar to the input keys.  The computer runs a program  that  checks  for  key  presses  and  reacts  accordingly.  That  program  is  called  an operating system.  A joystick may control a game computer.  Inside a typical joystick are keys  that  the joystick bumps into.  Those keys and the keys under the joystick’s buttons are also like the input keys above.  The outputs can control motors (like in a disk drive) rather than lights. 
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Transistors 

 

Modern  computers  use  two  types  of  transistors,  which  correspond  to  the  two  types  of relays.  An  N-channel  transistor  corresponds  to  a  normally  open  relay.  A  P-channel transistor  corresponds  to  a  normally  closed  relay.  However,  transistors  have  some idiosyncrasies  and  you  can’t  simply  replace  relays  with  transistors  to  make  a  successful transistor-based  design. 

It  takes  about  twice  as  many  transistors  as  relays  to  do something.  Of course, the high speed and low cost of transistors make transistors vastly superior  in  spite  of  the  extra  design  effort  required.  The  millions  of  transistors  in  a modern  microprocessor  allow  for  more  than  one  type  of  instruction.  For  example, besides,  or  instead  of,  rotate  and  mask,  the  instruction  set  can  include  add,  subtract, multiply, divide, etc. 

 

 

 

The Future 



This  completes  the  explanation  of  how  the  vast  majority  of  computers  work  now.  One instruction  is  executed  at  a  time.  In  modern  designs,  it  is  common  for  the  ensuing instruction to be  started  before the prior instruction finishes, so a few instructions can be executed  at  once. There  are designs that allow many instructions to be executed at once; but  such computers, though  very fast, are relatively hard to program and, mainly for that reason,  have  not  become  very  popular.  Most  such  designs  use  many  (often  relatively simple)  computers,  each  of  which  can  execute  an  instruction  at  once,  and  which communicate  with each other  through  inputs and  outputs.  Computers  with such designs are  called  parallel  computers  and  are  probably  what  will  be  used  in  the  future.  For example,  I  have  an  idea  for  a  computer  that  would  be  able  to  execute  thousands  of instructions  at  a  time  and  still  be  programmed  almost  the  same  way  as  a  normal computer.  That will have to be the subject of another book. 
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